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Divalent atoms and ions with a singlet S ground state and triplet P excited state form the basis
of many high-precision optical atomic clocks. Along with the metastable 3P0 clock state, these
atomic systems also have a nearby metastable 3P2 state. We investigate the properties of the
electric quadrupole 1S0↔3P2 transition with a focus on enhancing already existing optical atomic
clocks. In particular, we investigate the 1S0↔3P2 transition in 27Al+ and calculate the differential
polarizability, hyperfine effects, and other relevant atomic properties. We also discuss potential
applications of this transition, notably that it provides two transitions with different sensitivities to
systematic effects in the same species. In addition, we describe how the 1S0↔3P2 transition can be
used to search for physics beyond the Standard Model and motivate investigation of this transition
in other existing optical atomic clocks.

INTRODUCTION

Optical atomic clock species with two long-lived ex-
cited states have proven to be very useful in constraining
systematic effects and searching for new physics beyond
the Standard Model. Prominently, the most stringent
constraints on the time variation of the fine structure
constant come from a comparison of two clock transi-
tions in Yb+ [1, 2] - an electric quadrupole transition
(E2), and electric octupole transition (E3). In addi-
tion, while the E3 transition is much narrower and is
more suited to low uncertainty, high stability clock op-
eration, the E2 transition provides important informa-
tion on systematic effects, for example, allowing in situ
measurement of the electric quadrupole field [3]. Here,
we consider similar applications with the previously un-
used 1S0↔3P2 transition in divalent systems using 27Al+

as a specific example. We find that the 1S0↔3P2 has
uses as an auxiliary transition which, when used along
with the well established 1S0↔3P0 transition, can pro-
vide insights into atomic structure calculations, inform
clock-related systematic shifts on both transitions, and
provide higher measurement stability due to the longer
excited state lifetime. Although the 1S0↔3P2 transition
involves a J ̸= 0 state and requires a slightly different
spectroscopy sequence, the transition retains the insensi-
tivity to blackbody radiation of the 1S0↔3P0 transitions
and is amenable to high-accuracy clock operation.

DIVALENT ATOMIC CLOCK SPECIES

Common species of optical atomic clocks are divalent
atoms or ions, with a 1S0 ground state and a metastable
3P0 excited state. Among the most prominent examples
are neutral Sr and Yb and singly-ionized Al+ and In+

[4]. Illustrated in Fig. 1 a), the ions are confined in a
linear rf trap and the neutral atoms in an optical lattice.
For each of these species, a nearby 1S0 ↔ 3P1 transition,
which has a lifetime many orders of magnitude shorter
than the strictly forbidden clock transition, provides
narrow-line cooling, efficient state preparation, and
readout. A dipole-allowed 1S0 ↔ 1P1 transition also
allows for state detection and broader Doppler cooling,
although in the case of ions this transition lies in the
vacuum ultra-violet (VUV) and is unused. As a result,
these clocks use co-trapped ions with more easily ac-
cessible cooling transitions for sympathetic cooling and
state readout via quantum logic spectroscopy [5]. How-
ever, in all these systems, there also exists an additional
metastable 3P2 state that has typically not been utilized,
although in some neutral atoms this transitions has been
considered for applications with many-body physics and
quantum simulation [6, 7]. Here, we investigate the
clock-related properties of the 1S0 ↔ 3P2 transition,
and, for concreteness, focus on 27Al+. While many
of our results inspire further investigation with other
systems, the case of 27Al+ was particularly interesting,
as clock comparison measurements with existing 27Al+

ion clocks are close to being limited by the 20.7 s lifetime
of the 3P0 state [9]. The longer-lived 3P2 state with
a lifetime of around 300 s is occasionally populated by
background gas collisions during typical clock operation
and has long been considered as a possible means of
obtaining higher stability in the same single ion system.
In addition, the 3P2 state lies only around 1THz higher
than the 1S0↔3P0 transition and could be driven with
minimal changes to the clock laser.

More generally, we emphasize the utility of an addi-
tional narrow linewidth transition in a well-established
atomic species. In the case of trapped ions, motional
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FIG. 1: a) The low-lying energy levels of divalent ions (left) and neutral atoms (right) are shown, not to scale. Neutral atoms
can be confined in an optical lattice while ions can be stored in a linear rf trap, enabling the use of an additional ion for
sympathetic cooling or quantum logic. Additional low-lying D-levels, not shown, exist in divalent neutral atoms but are at
much higher energy in ions. b) The level structure of 27Al+ is shown, including the hyperfine splitting of the 3P2 state. The
line thickness illustrates the relative strength, not to scale, of the transitions.

shifts, which can constitute a large fraction of the
uncertainty budget, are exactly the same for both tran-
sitions. As a result, differential frequency measurements
between the two transitions, either with co-trapped ions
[10] or a single ion, can reach a higher precision than
absolute frequency measurements or frequency ratio
measurements between two completely different systems.
In addition, some optical atomic clock species, notably
Yb+ and Lu+, routinely rely on auxiliary transitions
to constrain shifts of the primary clock transition using
only one ion [3, 11]. Furthermore, in the case of the Yb+

ion clock, high-precision frequency ratio measurements
between the E2 and E3 transitions provide extremely
tight constraints on certain types of proposed physics
beyond the Standard Model [1]. Despite the sparse
energy level spacing and lack of a level crossing in
divalent ions, the existence of long lived 3P0 and 3P2

states, in principle, allows for similar measurements.

In the following sections, we first detail calculations
of the clock-related atomic properties of the 1S0↔3P2

transition in 27Al+. We then describe averaging schemes
that have been developed for other species with J ̸= 0

and could be applied to the 1S0↔3P2 transition in
27Al+ to compensate leading systematic shifts. We also
discuss possible applications of the 1S0↔3P2 transition
in 27Al+. Of particular note, atomic structure calcula-
tions are available for both clock transitions in 27Al+

and an accurate frequency ratio measurement of the
1S0 ↔ 3P0 and 1S0 ↔ 3P2 transitions can provide
much needed theoretical input. Finally, we identify
potential measurements of physics beyond the Standard
Model and a measurement of the blackbody radiation
environment that, while challenging for the specific case
of 27Al+, are likely to be of interest for similar species.

ATOMIC PROPERTIES

Method of calculation

To calculate systematic effects of this new clock
transition, we first start with a general description of
atomic properties and perform theoretical calculations
of 27Al+. As discussed above, 27Al+ is a divalent
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ion and contains [1s2, 2s2, 2p6] core electrons and two
valence electrons. We use a relativistic high-precision
approach that combines configuration interaction (CI)
and coupled-cluster (CC) methods [18, 19] that allows
us to efficiently include correlation corrections.

We start with a solution of the Dirac-Hartree-Fock
(DHF) equations to construct the finite basis set used in
the calculations. The 3s, 4s, 3p, 4p, 3d, and 4d orbitals
were constructed in the DHF Al3+ frozen core potential.
The remaining virtual orbitals were formed using a
recurrent procedure described in Refs. [20, 21] and the
newly constructed functions were then orthonormalized
with respect to the functions of the same symmetry. The
basis sets included a total of six partial waves (lmax = 5)
and orbitals with a principal quantum number n up to
25. We included the Breit interaction on the same basis
as the Coulomb interaction in the stage of constructing
the basis set.

In a CI+CC approach that allows us to include core-
valence correlations [18, 19], the wave functions and en-
ergy levels of the valence electrons were found by solving
the multiparticle relativistic equation [18],

Heff(En)Φn = EnΦn, (1)

where the effective Hamiltonian is defined as

Heff(E) = HFC +Σ(E), (2)

where HFC is the Hamiltonian in the frozen-core approx-
imation. The energy-dependent operator Σ(E) accounts
for the virtual excitations of the core electrons and is con-
structed in two ways: using (i) second-order many-body
perturbation theory (MBPT) over the residual Coulomb
interaction [18] and (ii) the linearized coupled-cluster
single-double (LCCSD) method [19]. We refer to these
approaches as the CI + MBPT and CI + all-order meth-
ods and treat the difference between the two results as
the uncertainty of our calculation.

Energy levels and Polarizabilities

To calculate the differential polarizabilities of the
two clock states, we begin by calculating the low-lying
energy levels in the pure CI, CI+MBPT, and CI+all-
order approximations. To verify the convergence of the
CI approach, we performed several calculations and
sequentially increased the size of the configuration space.
Sets of configurations were constructed by including
single and double excitations from the main even (3s2)
and odd (3s3p) configurations in the upper shells. The
set of configurations in which the convergence of CI
was achieved included excitations to the orbitals up to
20s, 20p, 20d, 20f, 20g, designated [20spdfg]. The results

of these calculations are presented in Table I. For the
3s2 1S0 state we present the valence energy (in a.u.)
which can be compared to the sum of two ionization
potentials IP(Al+) and IP(Al2+) [22].

We then found the static polarizabilities of states
3s2 1S0, 3s3p 3P0, and 3s3p 3P2 and the differential po-
larizabilities α(3P0) − α(1S0) and α(3P2) − α(1S0) with
the scalar and tensor components of the total 3P2 polar-
izability defined as

α(3P2,m) = α0(
3P2) + α2(

3P2)

(
m2

2
− 1

)
. (3)

where m is the projection of the total angular momen-
tum J = 2. The uncertainties of ∆α are given by the
difference between the CI+all-order and CI+MBPT
values, both in Table II.

As seen in Table II, the polarizabilities of the 1S0 ↔3P0

and 1S0 ↔3P2 states are quite similar, with the differ-
ential polarizability of the 1S0 ↔ 3P2 transition being
slightly smaller. As a result, the 1S0 ↔ 3P2 transi-
tion will have a sensitivity to blackbody radiation (BBR)
similar to the 1S0 ↔ 3P0 transition, which is among
the lowest of all currently existing clock species. In a
later section, we describe how the existence of two nar-
row clock transitions in the same species can provide an
in situ measurement of the BBR environment, although
for the case of 27Al+ this measurement is challenging, as
the fractional BBR shift at room temperature of both
transitions is on the order of 1 × 10−18. We note, how-
ever, that the calculations of the differential polarizabili-
ties of both transitions are very similar, and, as a result,
measurement of both differential polarizabilities would
provide valuable insight into the accuracy of these calcu-
lations. Measurement schemes have been demonstrated
that enable measurement of the differential polarizability
of a clock transition to high accuracy [11, 27], potentially
benchmarking atomic theory in mid-Z atoms.

Zeeman Shift

The linear Zeeman shift of the 1S0 ↔ 3P2 transition is
larger than that of the 1S0 ↔ 3P0 transition by roughly
µB/µN , the ratio of the Bohr magneton to the nuclear
magneton. In addition, there exists a quadratic Zeeman
shift, including a small component that is proportional to
the magnetic dipole polarizability of the 3P2 state that
arises from mixing with the nearby 3P1 state. Although,
in general, averaging over Zeeman sublevels is necessary
for high accuracy clock operation, as with the 1S0 ↔ 3P0

[28] transition, we first calculate the hyperfine constants
and the Zeeman shifts for a fixed sublevel.



4

TABLE I: The low-lying energies (in cm−1) of the even- and odd-parity levels calculated in the pure CI (labeled as “CI”),
CI+MBPT (labeled as “CI+MBPT”) and CI+all-order (labeled as “CI+All”) approximations. For the 3s2 1S0 state, we present
its valence energy (in a.u.) which can be compared to the sum of two ionization potentials IP(Al+) and IP(Al2+) [22]. The
energies of the excited states (given in cm−1) are counted from the ground state. The experimentally determined values
(labeled as “NIST Exp.”) are taken from the NIST Atomic Spectra Database [22] and the differences between theoretical and
experimental values are given in the following columns, labeled “NIST-CI”, “NIST-MBPT”, and “NIST-All”, respectively.

CI CI+MBPT CI+All NIST Exp. [22] NIST-CI NIST-MBPT NIST-All

3s2 1S0 1.71583 1.73640 1.73712 1.73737 1.2% 0.06% 0.01%

3p2 1D2 83508 85423 85509 85481 2.3% 0.07% -0.03%

3s4s 3S1 90106 91316 91370 91275 1.3% -0.05% -0.10%

3p2 3P0 92598 94062 94095 94085 1.6% 0.02% -0.01%

3p2 3P1 92657 94127 94158 94147 1.6% 0.02% -0.01%

3p2 3P2 92772 94247 94279 94269 1.6% 0.02% -0.01%

3s3p 3P0 55236 54083 53548 53548 3.0% 0.09% -0.06%

3s3p 3P1 56858 55707 55196 55196 3.0% 0.09% -0.06%

3s3p 3P2 60979 59757 59228 59228 3.0% 0.09% -0.06%

3s3p 1P1 80162 80166 79912 79912 0.5% -0.06% -0.03%

TABLE II: The static polarizabilities of the 1S0,
3P0, and

3P2

states (including the core and cv contributions) and the differ-
ential polarizabilities ∆α (in a3

0, where a0 is the Bohr radius),
calculated in the pure CI, CI+MBPT and CI+all-order ap-
proximations, are presented. The total polarizability α(3P2)
was calculated at m = 1. The uncertainties are given in
parentheses.

CI CI+MBPT CI+All Ref. [24]

Static α(1S0) 24.449 24.091 24.096 24.048

α(3P0) 24.907 24.567 24.582 24.543

∆α 0.458 0.476 0.486(10) 0.495

α0(
3P2) 25.016 24.679 24.695

α2(
3P2) 0.610 0.562 0.565

α(3P2) 24.711 24.398 24.413

∆α 0.262 0.307 0.317(10)

Hyperfine Constants and Zeeman Shift

We first calculated the magnetic dipole and electric
quadrupole hyperfine constants Ahfs and Bhfs for the
3P2 state. For 27Al+ with nuclear spin I = 5/2, the
nuclear magnetic moment µI = 3.6415069(7)µN [29] and
the nuclear quadrupole moment, Qnuc = 0.1466(6) b [30].

In the presence of a weak external magnetic field B,
we need to consider both the hyperfine and Zeeman in-
teractions:

H = Hhfs − µatB (4)

where µat = −µ0gJJ − µNgII. Here, gJ is the electron
g-factor, given in the non-relativistic approximation by

the formula

gJ =
3

2
+

S(S + 1)− L(L+ 1)

2J(J + 1)
(5)

and gI = µI/(I µN ) ≈ 1.4566. In the absence of an
external magnetic field, the hyperfine splitting is given
by

∆Ehfs/h ≡
(
∆E

(1)
hfs +∆E

(2)
hfs

)
/h (6)

=
1

2
AhfsK + (7)

Bhfs
3/4K(K + 1)− J(J + 1)I(I + 1)

2I(2I − 1)J(2J − 1)
,

where K ≡ F (F + 1)− J(J + 1)− I(I + 1) and h is the
Planck constant.

Our calculation within the framework of the CI +
all-order approximation (including random phase ap-
proximation corrections) gives Ahfs ≈ 1132MHz and
Bhfs ≈ 30MHz. As an example, for the total momen-
tum F = 1/2, we find for the 3P2 state

∆E
(1)
hfs/h ≈ −7924 MHz,

∆E
(2)
hfs/h ≈ 21 MHz. (8)

We then estimate the quadratic Zeeman shift with-
out any averaging and neglect the contribution of the
electric-quadrupole interaction to the hyperfine splitting,
as it is 400 times smaller than the contribution of the
magnetic-dipole interaction.

The operator Hhfs is diagonal in both F and M
(where M is the projection of F) while the operator µat
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is diagonal in M but not in F . To take into account
hyperfine and Zeeman interactions, we use a basis of
|Jm, Iλ⟩ (where λ is the projection of I) or just |m,λ⟩
since J and I are constants within a given level. If
M = m + λ is fixed, we have the basis |m,M − m⟩. In
the case of a weak magnetic field, the Zeeman interac-
tion can be treated as a perturbation to the |F,M⟩ basis.

Although it is generally difficult to isolate the
quadratic component of the Zeeman shift, we consider
the extreme state F = 9/2 and denote the magnitude of
the applied magnetic field as B. It can be shown (see the
Appendix for more details) that for m = 2, λ = 5/2, and
M = 9/2 the matrix element is

⟨m = 2, λ = 5/2 |H|m = 2, λ = 5/2⟩
= 5hAhfs + 2µ0gJB (9)

and does not contain the term ∼ B2. For M = 7/2
there are only two possible states |m = 2, λ = 3/2⟩ and
|m = 1, λ = 5/2⟩ and we can define them as the basis.
The quadratic contribution in B, designated as ∆E(2), is
(see Appendix)∣∣∣∆E(2)

∣∣∣ = 1

18

(µ0gJ)
2

hAhfs
B2. (10)

Using gJ(
3P2) = 3/2 and Ahfs(

3P2) = 1132MHz, we find
that for 3P2, ∣∣∣∆E(2)

∣∣∣ ≈ 1.433× 10−23 J

T2
B2, (11)

∆ν(2) ≡ ∆E(2)/h ≈ 22
kHz

(mT)2
B2. (12)

We again emphasize that while these shifts are large, they
are easily taken into account by proper averaging over the
Zeeman sublevels. As these averaging schemes suppress
not only Zeeman shifts but additional higher order field
shifts such as the electric quadrupole shift, we discuss the
details in a later section.

Contribution proportional to M1 polarizability

Nevertheless, a small residual quadratic Zeeman shift
due to the magnetic dipole polarizability of the 3P2 state
remains, even with proper hyperfine averaging. This shift
is roughly inversely proportional to the fine structure
splitting of the 3P manifold and gives rise to the energy
splitting, ∆E [31]

∆E = −1

2
αM1B2. (13)

The magnetic dipole polarizability αM1 is given by

αM1 = αM1
0 + αM1

2

3m2 − J(J + 1)

J(2J − 1)
, (14)

where αM1
0 and αM1

2 are the scalar and tensor parts of
the magnetic dipole polarizability.

For the 3P2 state, the scalar static and tensor polariz-
abilities are given by

αM1
0 =

2

15

∑
n

|⟨n||µ||3P2⟩|2

E(n)− E(3P2)

αM1
2 =

4√
21

×
∑
n

(−1)Jn

{
2 1 Jn
1 2 2

}
|⟨n||µ||3P2⟩|2

E(n)− E(3P2)
,(15)

where µ is the magnetic dipole moment operator.

To estimate the shift for the clock transition due to
this term, we note that the αM1(1S0) polarizability is
negligibly small compared to αM1(3P2), so we have

∆ν(1) ≡ ∆E(3P2)−∆E(1S0)

h
≈ ∆E(3P2)/h.

For an estimate of αM1(3P2) we take into account that
the main contribution to this polarizability comes from
the intermediate state 3s3p 3P1. Then, using Eq. (15),
we obtain

αM1
0 (3P2) ≈ 2

15

⟨3P1||µ||3P2⟩2

E(3P1)− E(3P2)
,

αM1
2 (3P2) ≈ − 2

15

⟨3P1||µ||3P2⟩2

E(3P1)− E(3P2)
. (16)

In this approximation,

αM1(3P2) ≈ 2αM1
0 (3P2)

(
1− m2

4

)
. (17)

If m = 2, this contribution to αM1(3P2) becomes zero. If
m = 0, then we have

αM1(3P2) ≈ 2αM1
0 (3P2). (18)

Numerically, we find the matrix element
|⟨3P1||µ||3P2⟩| ≈ 1.5811µ0, where µ0 ≈ 9.274×10−24 J/T
is the Bohr magneton, and note that the values obtained
in the CI+MBPT and CI+all-order approximations
begin to differ only in the 6th significant figure.

Using Eqs. (13) and (18) and the experimental differ-
ential energy E3P2

− E3P1
≈ 124 cm−1, we arrive at

∆ν(1) ≈ 18
Hz

(mT)2
B2,

where the magnetic field is expressed in mT. This shift
is slightly smaller than in the case of the 1S0 ↔ 3P0

transition and can be readily accounted for by monitoring
the magnetic field via the linear Zeeman shift of opposing
hyperfine sublevels as has previously been done [28].
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Electric Quadrupole Shift

Quadrupole moment

The size of the electric quadrupole shift is determined
by the quadrupole moment of the 3P2 state. In general,
the quadrupole moment Θ of an atomic state |J⟩ is given
by

Θ = 2 ⟨J,MJ = J |Q0|J,MJ = J⟩

= 2

√
J(2J − 1)

(2J + 3)(J + 1)(2J + 1)
⟨J ||Q||J⟩, (19)

where ⟨J ||Q||J⟩ is the reduced matrix element of the elec-
tric quadrupole operator. For the 3s3p 3P2 state, we find

⟨3P2||Q||3P2⟩ ≈ 8.3 ea20 (20)

and

Θ(3P2) ≈ 4.0 ea20. (21)

For context, the quadrupole moment of the 3P2 state in
27Al+ is slightly larger than the quadrupole moments of
the 2D5/2 states in singly ionized alkaline earth elements
[33].

HYPERFINE AVERAGING

As highlighted above, the angular momentum of
the J = 2, 3P2 state introduces larger Zeeman shifts
and a larger electric quadrupole shift compared to
the 1S0↔3P0. Previously, Zeeman averaging of the
1S0↔3P0 transition was performed by alternately
driving ∆mF = 0 transitions from the two mF = ±5/2
extreme states. The magnetic and electric quadrupole
moments of the clock states in this transition come from
the 27Al+ nucleus so that the Zeeman shift and electric
quadrupole shift are both small enough that the Zeeman
averaging is needed only for monitoring the strength of
the DC magnetic field. A slightly different averaging
scheme is required for the 1S0↔3P2 transition to elimi-
nate the electric quadrupole shift and the leading-order
Zeeman shifts, such as have been successfully applied in
other clock species with J > 1/2 states [3, 11, 34–36].

It is well-known that the electric quadrupole shift and,
in fact, all rank 2 tensor shifts can be canceled either by
averaging over several mF levels for fixed F or by av-
eraging over several F levels for fixed mF [32, 37, 38].
Both schemes are illustrated in Fig. 2 with purple and
green boxes, respectively. The latter scheme has been
successfully demonstrated in 176Lu+ and enables each
component transition to be first-order magnetic field in-
sensitive [37]. Such a scheme would be well-suited to

-5/2 -3/2 -1/2 +3/2+1/2 +5/2
1S0

-5/2 -3/2 -1/2 +3/2+1/2 +5/2 +7/2 +9/2-9/2 -7/2
9/2

7/2

5/2

3/2

1/2

5/2

F-sublevels 

mF-sublevels 

3P2

mF averaging

F averaging

FIG. 2: The hyperfine structure of the 1S0↔3P2 transition in
27Al+ is shown where the F-levels of the metastable 3P2 state
are vertically offset and the mF -levels are offset horizontally.
Optical transitions from the ground state are illustrated in
purple, while rf and microwave transitions are illustrated in
black.

26Al+, which (although unstable) has even nuclear spin
and several mF = 0 levels. Here, we highlight the fixed
F averaging scheme which is conceptually very similar
to the averaging scheme applied to the 1S0↔3P0 clock
transition detailed above. There, the average of the two
transitions has no linear Zeeman shift, and the difference
frequency is used to measure the magnetic field and con-
strain the quadratic Zeeman shift. Averaging over the
two 3P2, F = 1

2 states requires just as many transitions
and eliminates the electric quadrupole shift. In both av-
eraging schemes, rf or microwave drives, illustrated with
black arrows in Fig. 2, applied during the spectroscopy
sequence, could be used to eliminate the first-order sen-
sitivity to magnetic field fluctuations [11, 34, 35]. We
note also that passive magnetic shielding is used in other
optical atomic clocks with higher sensitivity to first-order
Zeeman shifts [36, 39].

PROPOSED MEASUREMENTS

One of the strongest motivations for investigating the
properties of the 1S0↔3P2 transition in 27Al+ is the
longer lifetime of the excited state, around 300 s rather
than 20.7 s [22]. The standard quantum limit (SQL)
imposes a strict limit on measurement stability during
clock comparison measurements, and trapped-ion fre-
quency standards using only single ions are often limited
by probe durations. Techniques that allow clock com-
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parison measurements beyond the laser coherence limit
such as correlation spectroscopy recently demonstrated
measurement stability with 27Al+ consistent with the
lifetime limit [9], suggesting that further gains may be
possible by using narrower transitions. Among other
measurements, this increased stability could be used
to measure differential gravitational redshifts at high
precision or to measure the motional energy near the
ground state via the time dilation shift, both of which
would require months long measurement campaigns with
the 1S0↔3P0 transition.

However, it is not always the case that the 3P2 state
has a longer lifetime than the 3P0 state in divalent
species [22]. As a result, although less likely to be di-
rectly applicable in 27Al+ we highlight a few additional
measurements that the auxilliary 1S0↔3P2 transition
makes possible that do not rely solely on the exact
values of the lifetime.

Most generally, we note that an important use of a
second, long-lived clock transition is to calibrate a pri-
mary clock transition. For example, although the electric
quadrupole shift of the 1S0↔3P0 transition in 27Al+, due
to the nuclear quadrupole moment, is around an order of
magnitude below the current level of accuracy it could be-
come a relevant systematic effect in future accuracy eval-
uations. The much larger electric quadrupole moment of
the 3P2 state could then provide a means of measuring
the electric quadrupole field, as is done with the E2 and
E3 transitions in Yb+. Similarly, interleaved measure-
ments of individual hyperfine 1S0↔3P2 transitions could
potentially provide higher precision measurements of the
DC magnetic field, and thus the residual quadratic Zee-
man shift of the 1S0↔3P0 transition. In this approach,
the different sensitivities to various systematic effects of
two clock transitions in a single species can be leveraged
to constrain systematic shifts of the less sensitive tran-
sition. Of the examples highlighted here, magnetic field
measurements with the 1S0↔3P2 seems promising to im-
prove the accuracy of the 1S0↔3P0 transition.

Calibrating Clock Transitions: In Situ Measurement
of the Blackbody Radiation Environment

More novel measurements, however, are possible, and
here we apply this approach to the case of measuring the
BBR environment. Blackbody radiation is a prominent
systematic shift in many optical atomic clocks that has
remained difficult to accurately characterize. For exam-
ple, characterization of the BBR shift in the Yb+ ion
clock [3] required detailed measurement and modelling of
the BBR environment [40], while a recent measurement
campaign with two Lu+ ion clocks refrained entirely
from reporting the BBR shift of the clock transitions

without verification from independent clock comparisons
[11]. In contrast, the most recent accuracy evaluations
of the 27Al+ ion clock [28] and the 87Sr lattice clock
[41] were able to bound the BBR shift but unable to
provide statistical errors. As a result, a direct method of
measuring the equivalent temperature of the blackbody
radiation environment, even if difficult, could be a
valuable method to accurately measure and bound the
BBR shift without modelling.

We reproduce calculations from Refs. [28, 42] here, in
which the Stark shift of an atomic state |a⟩ in the pres-
ence of light at frequency ω and a electric field strength
E0 is given by

δνa (E,ω) = − 1

4h
E2αa (ω) , (22)

where the scalar polarizability αa (ω) is defined as,

αa (ω) =
e2

me

∑
j

fj
ω2
j − ω2

. (23)

Here, ωi and fi are the frequencies and oscillator
strengths of all atomic transitions from |a⟩, with the elec-
tron charge and mass denoted e and me, respectively.
The Stark shift, ∆ν, of the transition |a⟩ ↔ |b⟩ is then

∆νa→b (E,ω) = δνb (E,ω)− δνa (E,ω) (24)

= − 1

4h
E2∆αa→b (ω) , (25)

where ∆αa↔b (ω) is the scalar differential polarizabiltiy
listed in Table II for the 1S0↔3P0 and 1S0↔3P2 tran-
sitions, respectively. The Stark shift of a clock tran-
sition at frequency νclock with differential polarizability
∆αclock (ω) in the presence of BBR at temperature T is
then,

∆νclock = − 1

4ϵ0π3c3

∫ ∞

0

∆αclock (ω)
ω3

eℏω/kBT − 1
dω,

(26)
which, when integrated, yields the well known scaling

with T 4.

In general, the BBR environment “seen” by the clock
ion is not well described by a single temperature. In
the absence of a BBR shield of uniform temperature and
emissivity [36, 43, 44], the trap chamber is typically a pol-
ished metal well thermalized to the laboratory tempera-
ture, while some elements of the trap are locally heated,
by up to a few degrees. We propose measuring the fre-
quency difference of the 1S0↔3P0 and 1S0↔3P2 transi-
tions, which we now denote as ∆ν2,0, to high precision
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in a cryogenic environment with a blackbody radiation
environment characterized by the the electric field con-
tributing to the BBR shift,

〈
E2

〉
4K

. The frequency dif-
ference, including the BBR shift of ∆ν2,0, then becomes

∆ν4K = (ν2 − ν0)−
1

4h

〈
E2

〉
4K

(∆α2 −∆α0) (27)

where ν2, ν0 and α2, α0 are the respective frequencies and
differential polarizabilities of the 1S0↔3P2 and 1S0↔3P0

transitions. Near 4K, the BBR shift is suppressed by
around eight orders of magnitude and we can safely make
the approximation that ∆ν2,0 ≈ ∆ν4K. When ∆ν2,0 is
again measured at room temperature, and even in an
entirely different apparatus, the BBR shifted frequency
difference is given by

∆ν300K = (ν2 − ν0)−
1

4h

〈
E2

〉
300K

(∆α2 −∆α0) . (28)

The differential polarizabilities ∆α0, ∆α2 can each be
measured to high accuracy via a well characterized light
shift on a co-trapped Ca+ ion [27]. The differential po-
larizability of the 2S1/2 ↔ 2D5/2 transition in 40Ca+ is
around two orders of magnitude larger than both ∆α0

and ∆α2 and has been measured to a relative precision
of around 3 × 10−4 [45]. The individual differential po-
larizabilities ∆α0 and ∆α2 can be measured in a similar
manner by varying the intensity of laser coincident on the
Ca+ and Al+ ions while monitoring the frequency shift
of ν2 or ν0 against a stable reference. Eq. 28 can be re-
arranged so that the electric field spectrum contributing
to a BBR shift is given by,〈

E2
〉
300K

= 4h
∆ν4K −∆ν300K
∆α2 −∆α0

. (29)

Although this technique requires measurement in a
cryogenic environment, we emphasize that this mea-
surement only needs to be performed once and can
be performed in a completely different apparatus from
the one in which the clock, using either transition, will
ultimately be operated in. The frequency difference
ν2 − ν0 could be measured to high precision in a high-
performance cryogenic apparatus located at a metrology
institute which could then be used to calibrate the BBR
environment of a higher-uncertainty room temperature
system, e.g. a transportable clock. Transportable optical
atomic clocks have been proposed for use in geodesy
[46, 47] and would naturally be exposed to various BBR
environments, as a result, an in situ measurement could
be crucial for low-uncertainty operation. Similarly, as
a transportable optical atomic clock is likely to use
a lower stability probe laser, the measurement would
benefit from spectroscopy schemes such, as correlation
spectroscopy, which enable high-stability frequency dif-
ference measurements beyond the limit imposed by laser
phase noise [9]. Such a technique could be easily ap-
plied to two co-trapped ions as demonstrated in Ref. [10].

Nevertheless, the insensitivity to BBR of both the
1S0↔3P0 and 1S0↔3P2 transitions means that such a
measurement would inevitably be difficult and require
averaging down to below the 1×10−18 level to provide er-
rors that are similar to the non-statistical errors reported
in Ref. [28]. However, we note that the 3P0 lifetime lim-
ited stability of correlation spectroscopy [9] allows a frac-
tional statistical uncertainty of 1 × 10−18 to be reached
with less than one day of measurement time.

Searching for New Physics: Violation of Local
Lorentz Invariance

Finally, we investigate the suitability of the 1S0↔3P2

transition in the search for physics beyond the Standard
Model. Two clock transitions in a single species can
be a valuable tool here, with the most well known
example being the Yb+ ion, where a comparison of
an electric quadrupole and electric octupole transition
currently set the tightest bounds on potential time
variation of the fine structure constant [1]. Similarly, an
apparent oscillation of these transition energies would
be a signature of ultralight dark matter [48, 49]. In
the case of 27Al+, as a low-Z, light ion, sensitivity to
variation of the fine structure constant is minimal for
both the 1S0↔3P0 and 1S0↔3P2 transitions. However,
as the 3P2 state has non-zero orbital angular momentum
it is sensitive to potential violation of local Lorentz
invariance (LLI) and Einstein’s equivalence principle
(EEP). Here we calculate these sensitivities and note
a similar consideration applies to many other optical
atomic clocks based on divalent atoms and ions.

Violation of local Lorentz invariance (LLI) and Ein-
stein’s equivalence principle (EEP) in bound electronic
states results in a small shift of the Hamiltonian that
can be described by [50]

δH = −
(
C

(0)
0 − 2U

3c2
c00

)
p2

2
− 1

6
C

(2)
0 T

(2)
0 , (30)

where we use atomic units, p is the momentum of a
bound electron, c is the speed of light, and

T
(2)
0 ≡ p2 − 3p2z.

The coupling constants C
(q)
0 , U, and c00 are discussed in

detail in [50].

The change in 27Al+ energy levels depends on the val-
ues of the ⟨Jm|p2|Jm⟩ and ⟨Jm|p2 − 3p2z|Jm⟩ matrix
elements. The stretched and reduced matrix elements of
the T

(2)
0 operator are connected as

⟨Jm|T (2)
0 |Jm⟩ = (−1)j−m

(
J 2 J

−m 0 m

)
⟨J ||T (2)||J⟩.
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TABLE III: The results obtained in the CI, CI+MBPT, and
CI+all-order approximations, including the RPA corrections,
(in a.u.)

Matrix element CI CI + MBPT CI + All

⟨1S0|p2|1S0⟩ 3.39 3.55 3.55

⟨3P2|p2|3P2⟩ 3.05 3.17 3.17

⟨3P2|p2|3P2⟩ - ⟨1S0|p2|1S0⟩ -0.34 -0.37 -0.38

⟨3P2||T (2)||3P2⟩ 3.58 3.70 3.70

Writing down the 3j-symbol in explicit form, we have,

⟨Jm|T (2)
0 |Jm⟩ =

−J(J + 1) + 3m2√
(2J + 3)(J + 1)(2J + 1)J(2J − 1)

× ⟨J ||T (2)||J⟩. (31)

The value of the angular factor in Eq. (31) for 3P2 is
−0.2390 + 0.1195m2.
Calculations were carried out in the CI, CI+MBPT,

and CI+all-order approximations. The RPA corrections,

which describe a reaction of the core electrons to an ex-
ternally applied perturbation, were included. The results
are listed in Table III in atomic units. We note that we
present the reduced matrix elements for the T

(2)
0 operator

but the stretched matrix elements for p2 because this is
a scalar operator.

We use the CI + all-order values given in the last col-
umn of Table III for the matrix elements to obtain the
energy shift. Atomic units are converted to Hz using 1
a.u. ≈

(
6.57968× 1015 Hz

)
h.

We obtain the following.

⟨1S0|p2|1S0⟩ ≈ 3.55 a.u. ≈ (2.3× 1016 Hz)h,

⟨3P2|p2|3P2⟩ ≈ 3.17 a.u. ≈ (2.1× 1016 Hz)h,

⟨3P2|T (2)
0 |3P2⟩ = (−0.884 + 0.442m2)× 3.70 a.u.

≈
[
(−2.2 + 1.1m2)× 1016 Hz

]
h,

Substituting these values into Eq. (30), we obtain the
frequency shift (in Hz)

1S0 :
∆E

h
≈ −1.2× 1016

(
C

(0)
0 − 2U

3c2
c00

)
,

3P2 :
∆E

h
≈ −1.1× 1016

(
C

(0)
0 − 2U

3c2
c00

)
+ (3.7− 1.8m2)× 1015 C

(2)
0 .

The LLI-induced energy shift between the highest
(m = 2) and lowest (m = 0) sublevels of the 3P2 state is
given by ∣∣∣∣∣ ∆E

hC
(2)
0

∣∣∣∣∣ ≈ 7.2× 1015 Hz. (32)

For comparison, this sensitivity is around 50% larger
than in Ca+, which previously was used to set the
tightest constrains on LLI [51], and around an order of
magnitude smaller than Yb+, which provides the current
best constraints [52]. Again, given that 27Al+ is a low-Z,
relatively non-relativistic ion, this result is somewhat
surprising and suggests that future investigation into
other species is fruitful. An immediate example is the
115In+ ion clock with Z = 49, with a similarly unused
1S0↔3P2 transition lying far in the UV but still laser
accessible. Optical clocks based on Pb2+ [17] (Z = 82)
and Sn2+ [16] (Z = 50) may be promising systems for
LLI searches in the future. Notably, lead and tin have
many stable, even isotopes and the 1S0↔3P2 transition,
in combination with the 1S0↔3P0, would be a natural
candidate for King plot nonlinearity measurements

[53, 54].

OUTLOOK

Optical atomic clocks based on a 1S0↔3P0 transition
are both common and highly successful including, among
others, clocks using neutral Sr or Yb and trapped ion
clocks using Al+ and In+. Universally, these species
also contain an electric quadrupole 1S0↔3P2 transition
that is typically unused. We have investigated the
properties of this transition in 27Al+ and found that
it retains many favorable properties of the 1S0↔3P0

transition, most notably the low sensitivity to BBR.
While the nonzero orbital angular momentum of this
state makes the spectroscopy sequence slightly more
complex, we show that many of the techniques used in
other clock species with similar J > 0 states are easily
applicable and that the use of transitions involving J > 0
states does not impact fundamental accuracy or stability.

We have also described a few example use cases of
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this transition, for example an in-situ method of measur-
ing both the BBR coefficient and equivalent electric field
intensity at the position of a trapped ion - a measure-
ment that has been difficult to characterize and bound
but which can provide valuable input to evaluate sys-
tematic uncertainties and to test atomic structure calcu-
lations. We also highlight the potential of the under-
utilized 1S0↔3P2 transition to provide constraints on
physics beyond the Standard Model - in the case of 27Al+,
a search for LLI and EEP violation. Here, we note that
calculation of the clock-related atomic properties of the
1S0↔3P2 transition in other established clock systems
seems particularly fruitful. In species with many stable,
even, isotopes e.g. Yb and Sn2+, the existence of a second
clock transition could prove beneficial for King-plot non-
linearity tests and other searches for new physics. Mean-
while, in systems such as 27Al+ where the lifetime of the
3P0 state is limited by hyperfine mixing, the longer-lived
3P2 state could potentially be used in high-stability mea-
surements in which the atomic state lifetime is a limiting
factor [9]. Notably, the atomic state lifetime is already a
limitation for the In+ ion clock while the roughly 300 s
lifetime of the 3P2 state in 27Al+ balances the possibil-
ity of long probe durations with low probe light induced
Stark shifts.
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APPENDIX

Hyperfine Formalism

We use the basis set |JmIλ⟩ = |Jm⟩|Iλ⟩, where F =
J + I and M = m + λ. Keeping only the magnetic-field
dipole interaction in the operator Hhfs , we have

H = Hhfs − µatB

= hAhfs JI+ (µ0gJJ+ µNgII)B. (33)

Assuming that B is directed along the z axis and ne-
glecting the third term in Eq. (33) (because µ0 ≫ µN )
we can write Eq. (33) as

H ≈ hAhfsIzJz +
hAhfs

2
(J+I− + J−I+) + µ0gJJzB

= (hAhfsIz + µ0gJB)Jz +
hAhfs

2
(J+I− + J−I+).(34)

Here, J± and I± are the ladder operators for which

J±|Jm⟩ =
√
(J ∓m)(J ±m+ 1)|J,m+ 1⟩,

I±|Jλ⟩ =
√

(I ∓ λ)(I ± λ+ 1)|I, λ+ 1⟩. (35)

Using Eqs. (34) and (35) we can express
⟨Jm′Iλ′|H|JmIλ⟩ as

⟨Jm′Iλ′|(hAhfsIz + µ0BgJ) Jz|JmIλ⟩
= δmm′δλλ′(hAhfsλ+ µ0BgJ)m. (36)

Using Eq. (35) we find

⟨Jm′|J+|Jm⟩ =
√

(J −m)(J +m+ 1)⟨m′,m+ 1⟩,
= δm′,m+1

√
(J −m)(J +m+ 1),

and

⟨Iλ′|I+|Iλ⟩ =
√
(I − λ)(I + λ+ 1)⟨λ′, λ+ 1⟩,

= δλ′,λ+1

√
(I − λ)(I + λ+ 1).

Then

hAhfs

2
⟨Jm′Iλ′|J+I−|JmIλ⟩ = δm′,m+1δλ′,λ−1

×
√
(J −m)(J +m+ 1)(I + λ)(I − λ+ 1) (37)

and

hAhfs

2
⟨Jm′Iλ′|J−I+|JmIλ⟩ = δm′,m−1δλ′,λ+1

×
√

(J +m)(J −m+ 1)(I − λ)(I + λ+ 1). (38)

In total, we obtain

⟨Jm′Iλ′|H|JmIλ⟩ = δmm′δλλ′(hAhfsλ+ µ0BgJ)m

+
hAhfs

2

[
δm′,m+1δλ′,λ−1

√
(J −m)(J +m+ 1)(I + λ)(I − λ+ 1)

+ δm′,m−1δλ′,λ+1

√
(J +m)(J −m+ 1)(I − λ)(I + λ+ 1)

]
. (39)

Taking into account that λ = M −m, we can rewrite the equation above as follows.

⟨Jm′I(M −m′)|H|JmI(M −m)⟩ = δmm′ {hAhfs(M −m) + µ0BgJ} m

+
hAhfs

2

[
δm′,m+1

√
(J −m)(J +m+ 1)(I +M −m)(I −M +m+ 1)

+ δm′,m−1

√
(J +m)(J −m+ 1)(I −M +m)(I +M −m+ 1)

]
. (40)

Application of the formalism to the 3P2 state.

Here, we apply this formalism to the 3P2 state. Because
J and I are the same for an initial and final state, we
use a shorter notation for the basis states |m, (M −m)⟩
instead of |Jm, I(M −m)⟩.

We have J = 2 and, respectively, m = −2,−1, 0, 1, 2.
Then we can construct the 5 × 5 matrix ⟨m′, (M −
m′)|H|m, (M − m)⟩. As follows from Eq. (40), only el-
ements of the main and two secondary diagonals of this
matrix will be non-zero. Designating the matrix elements
by aij we obtain the following non-zero elements.
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a11 ≡ ⟨2, (M − 2)|H|2, (M − 2)⟩ = 2[hAhfs(M − 2) + µ0gJB],

a12 = a21 ≡ ⟨2, (M − 2)|H|1, (M − 1)⟩ = hAhfs

√
(I +M − 1)(I −M + 2),

a22 ≡ ⟨1, (M − 1)|H|1, (M − 1)⟩ = hAhfs(M − 1) + µ0gJB,

a23 = a32 ≡ ⟨1, (M − 1)|H|0,M⟩ = hAhfs

√
3

2
(I +M)(I −M + 1),

a34 = a43 ≡ ⟨0,M |H| − 1,M + 1⟩ = hAhfs

√
3

2
(I +M + 1)(I −M),

a44 ≡ ⟨−1, (M + 1)|H| − 1, (M + 1)⟩ = −hAhfs(M − 2)− µ0gJB,

a45 = a54 ≡ ⟨−1, (M + 1)|H| − 2, (M + 2)⟩ = hAhfs

√
(I +M + 2)(I −M − 1),

a55 ≡ ⟨−2, (M + 2)|H| − 2, (M + 2)⟩ = −2[hAhfs(M + 2) + µ0gJB]. (41)

Let us consider two particular cases of M = 9/2 and
M = 7/2.

M = 9/2

We fix M = 9/2. There is only one value of the total
angular momentum, F = 9/2, which corresponds toM =
9/2. Since M = m + λ, for M = 9/2 there is only one
option: m = 2 and λ = 5/2. Then, from Eq. (39) we
obtain

⟨2, 5/2|H|2, 5/2⟩ = 5hAhfs + 2µ0gJB. (42)

As we can see, in this case, there is no term ∼ B2.

M = 7/2

Now, fix M = 7/2. There are two values F = 9/2
and F = 7/2, the projection of which can be equal to

M = 7/2. It can be obtained in only two ways: |m =
2, λ = 3/2⟩ and |m = 1, λ = 5/2⟩ We can define these
states as a basis. To find the energy shift, ∆E, we have
to solve the equation

⟨Ψ|H|Ψ⟩ = ∆E, (43)

where

|Ψ⟩ =
(
|m = 2, λ = 3/2⟩
|m = 1, λ = 5/2⟩

)
. (44)

Using Eq. (41) and noting that only aij (i, j = 1, 2)
will be not equal to zero, we obtain

a11 ≡ ⟨2, 3/2|H|2, 3/2⟩ = 3hAhfs + 2µ0gJB,

a12 = a21 ≡ ⟨2, 3/2|H|1, 5/2⟩ = hAhfs

√
(I + 5/2)(I − 3/2) =

√
5hAhfs,

a22 ≡ ⟨1, 5/2|H|1, 5/2⟩ = 5

2
hAhfs + µ0gJB, (45)

where we accounted for I = 5/2.

Thus, we have to solve the equation

(
3hAhfs + 2µ0gJB −∆E

√
5hAhfs√

5hAhfs
5
2hAhfs + µ0gJB −∆E

)
= 0.

The solutions to this equation are as follows.

∆E1,2 =
11hAhfs

4
+

3

2
µ0gJB

± 9hAhfs

4

√
1 +

4µ0gJB

81hAhfs
+

4 (µ0gJB)2

81(hAhfs)2
. (46)



13

Then, extracting the quadratic contribution from B,
designated as ∆E(2), we find∣∣∣∆E(2)

∣∣∣ = 1

18

(µ0gJ)
2

hAhfs
B2.

To verify Eq. (46) we can put B = 0, arriving at

∆E1 = 5hAhfs,

∆E2 =
1

2
hAhfs. (47)

From this we obtain

∆E1 −∆E2 = (9/2)hAhfs, (48)

as it should be, because ∆E1 = ∆EF=9/2, ∆E2 =
∆EF=7/2 and

∆EF −∆EF−1 = FhAhfs. (49)
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