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Abstract.  

Vacuum UV light at a well-defined wavelength excites N2 to different vibronic levels of the 

singlet electronic states that strongly interact through non adiabatic coupling. Each discrete 

vibronic state acts as an isolated resonance: it is weakly coupled to a dissociative continuum of 

triplet states via a weak spin-orbit coupling. Here we seek to compare this decay to that of a 

coherent superposition of bound singlets pumped by a broad in energy – ultrafast pulse. Despite 

the strong inter-singlets and inter-triplets nonadiabatic couplings, the coherent set of states 

decays as a mixture of the isolated vibronic states with essentially their individual lifetimes as 

determined separately in a sharp wavelength excitation. The vibrational quantum number of 

the vibronic states is a nearly good one when the spin-orbit coupling is as weak as is the case 

for N2. Numerically converged dynamical computations valid for longer times show that for 

non-rotating molecules the individual vibronic resonances overlap and interfere only upon an 

artificially order of magnitude increase of the strength of the spin-orbit coupling. The 

resonances strongly overlap only at an even stronger coupling to the dissociative continuum. 
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I.INTRODUCTION 

 

At higher energies molecules have a dense spectrum that often cannot be well 

characterized by good quantum numbers. This mixing of states is primarily due the strong 

coupling induced by the breakdown of the Born-Oppenheimer separation of electronic and 

nuclear dynamics and, in polyatomics, by resonance coupling of normal modes due to 

anharmonicities. States of well-defined character are thereby typically entangled resulting in a 

coherent superposition of allied states. By coherence we here mean the special quantum 

mechanical linear superposition relation of otherwise stationary states that is relevant to 

systems of many and closely spaced levels. Such a coherent state evolves in time in an 

oscillatory manner where the relevant frequencies are the energy gaps between the participating 

states. Different spectroscopies can therefore create and/or probe coherences of different 

character. The slower are coherences in the microwave range as studied in NMR [1,2] through 

IR for rotational states [3,4] or for higher Rydberg electronic states [5,6]. In the near IR/visible 

range is the coherence of vibrational states [7-10]. Excited electronic states can each carry a 

rich manifold of vibrotational states that can be coherently pumped [11]. In this paper we deal 

with the currently fastest oscillating coherences due to electronic states accessed by fast, few 

femtoseconds pulses [12-14]. Our concrete example is the diatomic molecule N2 [15-18] that 

even in its lowest optically reachable excited states is a mix of electronic states of definite 

character. 

To define a vibrational basis, we here first diagonalize the electronic Hamiltonian using 

quantum chemical methods. This generates an adiabatic electronic basis that is dependent on 

the internuclear distance R. We next diagonalize the full Hamiltonian in this adiabatic basis. 

The full Hamiltonian matrix contains the off-diagonal terms that couple different adiabatic 

states, terms that are known as the nonadiabatic couplings. The result is that each vibrational 

state is associated with a coherent linear superposition of adiabatic electronic states. In a fast 

excitation one can readily pump a coherent superposition of these vibronic states. 

We can proceed differently to the diagonalization of the Hamiltonian. We first use quantum 

chemistry to introduce a diabatic electronic basis. Here each electronic state has a definite 

character [19-21]. These states are assumed to be only slowly varying with the interatomic 

distance R. They are coupled by electronic off-diagonal potentials that are functions of R. One 

can also diagonalize the total Hamiltonian in this basis. The vibrational states and their 

spectrum are essentially the same as in the alternative method above. Following an attosecond 

excitation also the diabatic states beat against one another [16]. Indeed the exchange of 
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population occurs at much the same time ranges, i.e., when the vibrational wave packets 

overlap in the region of coupling, see, for example, Fig. 5 in [22]. It is therefore possible to 

experimentally detect the coherence of the electronic states [12,13,23]. 

In the nitrogen molecule, the electronic states of the same symmetry interact strongly due 

to large off-diagonal coupling terms and thus each vibrational level is a coherent superposition 

of a few electronic states represented in either adiabatic or diabatic basis. The chosen basis 

does not affect the energy of the vibronic states, just the composition of each eigenstate will 

reflect the difference between the bases. The following discussion will be given in the adiabatic 

representation which is the direct result of quantum chemical calculations.  

The optically accessible excited 
1

u
  states of the N2 molecule are well apart from its 

ground state 
1

gX   by almost 12 eV which makes these states accessible under vacuum 

ultraviolet (VUV) one-photon excitation. Three adiabatic 
1

u
  singlet states are shown in 

Fig. 1a with colored lines. These singlets are bound for the excitation energies below 116,000 

cm-1, and so the energy rich N2 molecule dissociates indirectly by a weak and localized spin-

orbit coupling of the singlet states to the triplet and then quintet states which are shown in 

Fig. 1a in dark grey color. Our quantum chemical calculations predicted the coupling between 

1
u
  and 

3
u  states to be of the order of 30 cm-1 at most. This makes the total population in 

the singlet states decay slowly, varying non-monotonically in energy from hundreds down to 

tens of picoseconds.  

The independent of one another decay of the singlet vibronic states is as expected for 

isolated meaning not overlapping resonances [24]. Our singlet states are not trapped [25] 

because of the sparsity of the continuum but decay through a narrow bottleneck [26] to a dense 

and strongly mixed continuum. There are two main exit channels accessible in the triplet 

manifold and each is coupled to the singlets at different internuclear distances. The spin-orbit 

coupling of the vibronic states to the continuum is weak and smaller than their spacing so they 

are uncoupled via the triplets and act as isolated resonances. Indeed, high resolution optical 

spectroscopy typically resolves even the rotational states of a given vibronic state [27,28]. The 

non-monotonic variation of the lifetimes of the singlets as a function of energy can be 

interpreted in terms of the complexity of the nonadiabatic couplings of the different triplet 

states, see Fig. 4 of [29]. In the present study we also examine how this complexity can be 

reflected in the coherent dynamics. 
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There has been important interest in the key differences in the dynamics between a fast 

laser and a slow, sunlight like, natural incoherent excitation [30-33]. In this paper we compare 

the results for an ultrafast excited molecule to the earlier work on predissociation dynamics of 

individually excited vibrational states using a long laser pulse [15,29]. Both the short and long 

duration pulses are Gaussians that are transform limited in a manner that insures that there is 

no source term in the Fourier transform. The pulse of short duration coherently spans about a 

dozen single vibrational eigenstates. The pulse of long duration is chosen so that it excites 

essentially just a single eigenstate, and it is about 50-fold longer than the short pulse. The earlier 

work was undertaken to compare with experimental results on the distribution of exit channels 

in VUV excited N2 [34-36]. In the present work, we aim to elucidate the role of a not stationary 

initial state on the photodissociation dynamics in N2 that follows upon excitation by a laser 

pulse that is wide in energy.  
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II.THEORETICAL OVERVIEW 

 

Selection rules  

Here we briefly discuss the rules important for understanding population transfer in the N2 

molecule, a more detailed explanation of selection rules can be found in [37]. The homonuclear 

N2 molecule belongs to hD  point group and therefore all its electronic states can be classified 

either ‘gerade’ or ‘ungerade’ relative to the inversion operation. In the present paper, we discus 

one photon VUV excitation of N2 from its ground state 
1

gX  . The dipole allowed transitions 

are those with the change of parity that means only 
1

u
  and 1

u  can be optically accessed 

with one photon. We assume that the molecule is aligned along its Z axis and so the 
1

u
  states 

will be populated exclusively. These states are coupled to other ‘ungerade’ states of higher 

multiplicity via spin-orbit coupling. There are three Cartesian components of the spin-orbit 

coupling integrals, along X, Y and Z axes in the molecular frame. For LSZ coupling the two 

interacting states should have the same magnetic quantum number, 0sm  , where ms,  is the 

projection of S on the internuclear axis. For LSX/LSY coupling 1sm   . 
1

u
  singlet states 

are coupled by LSX/LSY spin-orbit interaction to the 
3

u  states and only 1sm    of the 

triplet states can be populated. 
1

u
  are also coupled by LSZ spin-orbit interaction to the 3

u
  

states and for this type of coupling the selection rule is 0sm  . The same is applied to the 

quintets: LSZ spin-orbit interaction to the 
3

u  and LSX/LSY spin-orbit coupling to the 3
u


. A schematic representation of these interstate relation is shown in Fig. S1 of the Supplemental 

Material (SM) and description for an extended basis set is given in [38]. The states of the same 

symmetry and multiplicity are coupled by nonadiabatic interaction and they can exchange 

population among themselves especially in the avoided crossings regions. 

In the present study, we discuss results for the rotational level J=0 for each considered 

vibrational level of N2. This is warranted by the experimental results that show limited J-

dependence of the dissociation branching fraction at low J’s. Furthermore, the high-resolution 

spectrum shows limited perturbation at low J’s.  

 

Quantum chemical and quantum dynamical computations 
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To explore the photodissociation of N2, we employ a fully quantum mechanical 

propagation technique [16] where the time-dependent Schrödinger equation is solved 

numerically at each internuclear coordinate of the non-rotating molecule from the region of its 

excitation to a dissociation limit. Propagating in such manner, we include electron-nuclear 

interactions, such as nonadiabatic and spin-orbit couplings computed ab initio using high-level 

quantum chemistry methods: a state-averaged complete active space self-consistent field 

(CASSCF) [39-41] approach followed by multi-reference configuration interaction (MRCI) 

[42,43]. In all the computations an active space of 17 orbitals (4σu, 3σg, 4πu, 4πg, and 2δg) for 

10 valence electrons is employed. The two lowest 1σu and 1σg orbitals are not included in the 

active space but are fully optimized in the CASSCF procedure. Restriction of only single 

occupancy for the higher Rydberg orbitals is used. We use a doubly augmented cc-pVQZ 

atomic basis set with additional bond-centred s and p diffuse functions for a proper description 

of Rydberg and valence singlet and triplet states. The non-adiabatic couplings are calculated 

using the finite difference approach for MRCI wave functions as implemented in the DDR 

program of MOLPRO [44]. The step for the finite difference computation was optimized to get 

a convergence in the values of NAC, see [38] for more details. In the calculations of the spin-

orbit coupling terms the averaging over the coupled states is employed. Spin-orbit coupling 

integrals are evaluated for the MRCI wave functions with the Breit-Pauli spin-orbit operator as 

implemented in MOLPRO.[45] All the quantum chemistry calculations are performed with the 

MOLPRO program [46]. Accuracy of the resulted potentials and couplings of the optically 

accessible singlet 1 u
  states is discussed in details in [38]; there also all the computed data can 

be found in the digital format. 

The multi-electronic state wave function defined on the grid of internuclear coordinate, R, 

is propagated according to the time-dependent Schrodinger equation of motion in the basis of 

9 excited electronic states: three 1
u
 , four 3

u , one 3
u
 , and one 5

u . The equation of 

motion for the amplitudes )(nj n jC R  at a given electronic state n and grid point : jj R R  

is given as follows: 
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Here dT  and 
off
qT  are diagonal and off-diagonal kinetic energy terms, respectively, evaluated 

within the five-point finite difference approximation, see Ref.[16]. ( )nV R  denotes potential 

energy of an electronic state n. At large internuclear distances, 6.2R   a.u., a complex 

absorbing potential, 
3( ) 0.01 ( 6.2)CAPV R R , is applied for all the dissociative states. The 

non-adiabatic couplings ( )nk R  between electronic states n and k are scaled by the momentum 

terms, 
qp .[47-50]. The propagation of the equation (1) is solved via the Runge-Kutta method 

[51] with a time step of t  =10-4 fs and R = 0.005 a.u. for the grid spacing. The propagation 

lasted for 3 ps in all the dynamical calculations. 

The lifetimes of the excited vibrational singlet states are estimated by a linear fit for the 

logarithm of their time-dependent population, 
2

( )njC t , assuming a unimolecular exponential 

decay. 

 

Parameters of the laser pulses 

The interaction with the light field is governed by the transition dipole moment )(nk R  

between the ground 
1

gX   and 
1

u
  excited singlet electronic states. Explicit time-profile for 

the VUV light field is used: 

 2 2

max 2
( ) exp ( ) / 2 [cos ])( sin( )

p

p p p p p

p p

t t
E Et t t t t  

 

 
  




   

 

ε  (2) 

Here 
pε  is the polarization direction of the light field, set along the internuclear axis so as 

to access the 
1

u
  states; maxE  is the maximum amplitude of the field; 

pt  and 
p  are the 

time at which the pulse is centered and the width of the Gaussian envelope of the field.  

Two sets of settings were used to mimic coherent and incoherent excitation. To excite the 

N2 molecule incoherently, the duration of the pulse was set to be long enough to selectively 
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excite specific vibrational levels of the singlet states, 
p   160 fs, 

pt = 1200 fs and 
pε = 

0.0001 au. The carrier frequency 
p  was varied from 111,500 to 114,500 cm-1 according to the 

energy of the vibrational levels obtained by diagonalization in the singlets manifold. The choice 

of this energy range was due to the availability of two dissociation channels. 

Coherent excitation was established with 
p   4.2 fs, 

pt = 35 fs, 
pε  = 0.001 au at 

frequency 
p = 112,490 cm-1. Such a pulse is sufficiently broad in energy to excite a bunch of 

vibronic singlet state: Fig. S2a of the SM shows the dipole strength distribution along with the 

laser pulse profile and Fig. S2b exhibits the actual vibronic singlet states distribution. 
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III.RESULTS AND DISCUSSION 

 

The ultrafast excitation is by an energy broad laser pulse from the ground state to the 

manifold of 
1

u
  states. The pulse is centered at 112,490 cm-1 and effectively covers the region 

from 111,000 to 115,000 cm-1 (from 13.76 to 14.26 eV, see the grey area in Fig. 1a). In this 

energy region the singlet states are all bound and the molecule dissociates primarily through 

the triplet 
3

u  manifold [17,18]. The contribution of the triplet 
31 u

  and the quintet 
52 u  

states is orders of magnitude smaller [29], however we also include them in the dynamics.  

The fast pulse lasts for 10 fs FWHM during which time 
1

u
  states are populated. The 

11 u
  and 

12 u
  states are strongly mixed by nonadiabatic coupling and they are constantly 

exchanging population among themselves, Fig. 1b. The exchange is slower than the duration 

of the pulse. As soon as the singlets are getting populated, they begin transferring population 

to the triplets, Fig. 1c. We have earlier found the spin-orbit coupling between the singlet and 

triplet states to be less than 30 cm-1 which makes the transfer to the dissociation continuum 

rather slow: only 0.07 % of the excited singlets go to the dissociative states during 200 fs, 

compare the ordinates of Fig. 1b and 1c. Figs. S3 and S4 of the SM show in addition the 

dynamics for the 
1

u
  and 

3
u  states at longer time scale. The triplet states are coupled by 

nonadiabatic terms among themselves with a fast exchange and the second triplet, 2
3

u  state, 

is the one that is most populated throughout the propagation. There is hardly any backtransfer 

from the triplets to the singlets and this remains so even upon an order of magnitude increase 

in the strength of the fast pulse. On the other hand, as will be discussed below, considerably 

increasing the strength of the spin-orbit coupling enhances the exchange. 
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FIG. 1. Energetics and dynamics of fast pumping of N2 in the VUV. (a) Potential energy curves 

of adiabatic electronic states included in the Hamiltonian: optically accessible singlet 
1

u
  

states are shown in red, green, and blue colors and dissociative states of higher multiplicity are 

in dark grey. The energy range discussed in the paper is marked as the gray shade. (b) Short 

time evolution of adiabatic singlet excited 
1

u
  states with the profile of the ultrafast pulse 

indicted (black line) and (c) population of the triplet 
3

u  states up to 200 fs. 

 

Not only at early times but throughout the propagation, the vibrational quantum number is 

a relatively robust one. In the time-independent eigenstate picture this is seen by the rather low 

contribution of 
3

u  states to eigenstates in the discussed energy range. There is an exception 

as shown in Fig. S5a of the SM where at an energy of a very rapidly dissociating singlet the 

contribution is higher. Even so the vibronic resonances remain essentially isolated. The weak 

interaction between two multiplicities allows us to move from the dynamics of adiabatic states 

to the dynamics of vibronic states of definite multiplicity. To do that, we transfer from adiabatic 

electronic states to the vibronic basis using the eigenvectors , ,g n  where ν is the vibrational 

index and n is the index of the singlet electronic states and g is the site on the internuclear 

distance grid. The resulting amplitude of the ν’th vibronic state is ( )A t  given by: 

, ,
1 1

,( ) ( )

Ng Ne

g n
g n g nA t C t 

 

          (3) 
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, ( )g nC t  are time-dependent amplitudes of the wave function of state n at a grid point g 

propagated for Ne singlet electronic states on a grid consisting of Ng points. The resulting 

population of each vibronic state ν, ( )P t , is calculated via the amplitudes ( )A t : 

*( ) ( ) ( )P t t A tA            (4) 

and the coherence between different ν and ν ' states, , ( )B t   , is computed as: 

*
, ( )( ) ( )B At A tt              (5) 

Fig. 2a shows population of vibronic states of the singlets ( )P t  at 60 fs when the fast 

pulse is just over. The states with the highest weights are at the vibronic quantum numbers ν15 

– ν20 and their distribution is what one would expect from excitation in the Franck-Condon 

region, see also Fig. S6 of SM. This is unchanged when we increase the strength of the pulse. 

We next discuss the more populated vibronic states in detail. These states decay very slowly in 

time (Fig. 2b) and their vibronic coherence is oscillating (Fig. 2c and Fig. S7 of the SM). 

Relatively slow linear decay caused by dissociation can be seen in Fig. 2b for the states ν18 and 

ν19 while for other states the population’s loss is not even evident to a graph reading accuracy. 

By using a logarithmic plot of the populations, Fig. 2d, one determines the predissociation rate 

of each vibronic state as the slope of the straight line. Using the rates, one can extrapolate the 

exponential decay of the population to longer times. Fig. 3 shows the decay of the overall 

excited singlet states, PS(t), and vibronic states ν = 15-21. 
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FIG. 2. (a) Population of all the vibronic singlet states of 
1

u
  symmetry excited by an ultrafast 

pulse. Vibronic levels that are shown in color, ν =15-20, have the higher weight, so (b) and (c) 

demonstrate the time dependence for population, ( )P t  (b), and coherence, , ( )B t   (c), 

between these particular states only. The vibrational quantum number is essentially a good one 

because these vibronic states also diagonalize the nonadiabatic couplings. The color code in 

panel (c) shows the coherence between states v and v'. (d) The logarithmic plot of the 

population decay during 3 ps after the pulse is over. The slight wiggles in (d) are due to the 

transfer of amplitudes from the singlets to the triplets that is non monotonic in time nor is it 

uniform along the grid. In other words, the decay on a logarithmic scale is almost a staircase 

function reflecting the localized along the grid transfer from singlets to triplets. See the movie 

S1 in the SM. 
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FIG. 3. (a) Decay of the overall excited singlet states population PS(t) extrapolated to longer 

times, in black. The contributions of the vibronic components are color coded. (b) The initial 

fast exponential decay rate changes to a slower decay at longer times. The faster decay is due 

to the states ν = 18,19 and 20 that are coupled to a repulsive triplet 32 u exit channel. The 

respective predissociation lifetimes are given in Table 1.  

 

The lifetime of each vibronic state in the coherent superposition is obtained by taking the 

inverse of the predissociation rate. The computed predissociation lifetimes of the vibronic 

levels 15-20 are given in Table 1. We compare these lifetimes with the lifetimes computed for 

an excitation of isolated vibronic states by an ultraslow laser pulse. These are computed using 

the same Hamiltonian, grid, and time spacings. The individual state dynamics is carried out 

with well-defined narrow laser pulses of total width of 200 cm-1 which allows accessing a single 

vibronic level. The duration of the pulse is far longer than the period of the coherence of the 

electronic singlets. Hence, in contrast to the situation for the ultrafast excitation, see Fig. S8, 

we do not see the beating of the electronic coherence. 

Excited isolated vibronic states decay exponentially, each with its own lifetime as shown 

in Table 1. These lifetimes are fully consistent with values reported previously for computations 

with a larger electronic basis set. The electronic basis used here is those states that are primarily 

involved in the dynamics as listed in Table I of [29].  

Reported experimental singlet’s lifetimes are also shown in Table 1. Apart from the very 

long-lived state there is a quite good agreement. 

 

Table 1. Predissociation lifetime τdiss computed for singlet states population decay followed 

upon the ultrafast (coherent) and ultraslow (incoherent) [29] excitation along with the 

experimentally measured lifetimes. In the case of the ultrafast excitation, the lifetime is 

computed using the results shown in Fig. 2d.  

ν Eν, cm-1 
τdiss, ps 

Experimental τ, ps 
coherent incoherent 

15 111,549 1541 1535 250 [52] 

16 112,226 154 154 250 [52] 

17 112,551 443 440 340 [53] 

18 112,903 64 64 74 [53] 
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19 113,551 28 28 28 [54] 

20 114,182 38 38 31 [54] 

21 114,538 496 535  –  

 

As seen in Table 1 the lifetime of the singlets varies in a not quite monotonic way with the 

energy of excitation. This is a reflection of the entangled dynamics in the triplet manifold. In 

this energy range there are two exit channels that correspond to different triplet states. The 

relative branching between the two exits varies in a similar non-monotonic way with energy. 

To demonstrate the different dynamics at different energies we plot in Fig. 4 the results of the 

computed separately at three different energies with a long pulse. Shown are the populations 

along the grid for either singlets, upper panels, or triplets. The longer lifetime at ν =17 is due 

to a weaker coupling between the Rydberg singlet and triplet at short internuclear distances, 

Fig. 4a. The fast decay of ν =18-20 (shown in Fig. 4b is ν =19) is due to an effective exit 

through a repulsive 32 u state. The slow decay of ν =21 is due to an effective trapping at the 

33 u state, see Fig. 4c. Excitation by a short pulse creates a coherent superposition of these 

states with a complex dynamics as seen in the movie S1 of the SM. At the time of 61 fs therein 

there is a  fast transfer from a singlet to a triplet repulsive potential. Around 91 fs one sees the 

transfer between the Rydberg states localized at a short distance. Snapshots at these two times 

are also shown in Fig. S9 of the SM. These non-monotonic in time exits are seen as the steps 

in the logarithmic decay of the populations. 

 

FIG. 4. The portraits of the dynamics at three different energies computed for excitation by a 

long pulse: (a) at 112,551 cm-1, (b) at 113,551 cm-1 and (c) 114,538 cm-1. Upper/lower panels: 
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Population in the singlets/triplets along the internuclear distance. Adiabatic electronic states 

are color coded. 

 

The dissociation lifetimes obtained from both types of excitation are close and so do not 

show any noticeable effect of interference between the coherently excited vibronic states [30]. 

To elucidate the role of spin-orbit coupling, we performed a simple computational test by 

increasing in silico the strength of the coupling between all triplet and singlet states by an order 

of magnitude and then even by two orders. Fig. 5a depicts the monoexponential 

photodissociation decay when the coupling is small. Each vibronic state decays in a 

unimolecular manner with its own rate. A larger spin-orbit coupling changes the predissociation 

rate and the wiggles due to the population transfer, Fig. 5b. The weights of the states in the 

eigenstates are shown in Fig. S5b and S5c of the SM. A further increase of the spin-orbit 

coupling makes for a very fast dissociation and even the order of preferable exit channels 

changes, Fig. 5c.  

 

FIG. 5. The logarithmic plot of the singlet state population decay in the vibronic levels 15-20 

(top panel) and overall dissociation into Channels 1 and 2 (bottom panel) during the ultrafast 

pulse induced dynamics. The dissociation is calculated as a population of triplet states absorbed 

by a complex potential at R > 6.2 a.u. [38]. (a) Dynamics computed for a weak spin-orbit 

coupling of N2, and then in silico increasing the spin-orbit coupling between the singlet and 

triplet states by a factor of (b) 10 and (c) 100; the color code the same as in Figure 2d.  

 

IV.CONCLUDING REMARKS 
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We discussed dissociation from a large manifold of states through a narrow bottleneck. 

The unusual feature is that the bottleneck is not in the exit region towards the free products but 

at a pre-dissociative early spin-orbit coupling regime as seen in Fig. 1. Quantum dynamical 

simulations based on high-level quantum chemical potentials, nonadiabatic and spin-orbit 

couplings show, Fig. 2, that a fast VUV pulse excites coherently different vibronic singlet states 

of N2. The dynamics show that following a fast coherent excitation these vibronic states 

dissociate essentially independently of one another as is to be expected for isolated resonances. 

Using a long pulse the simulations show that the very same vibronic states can be individually 

excited and that their population decay times are largely the same as for the coherent excitation. 

The state coherently excited by a fast pulse decays as an incoherent mixture of the vibronic 

states as seen in Fig. 3. The non-monotonic variation of the decay time as seen in Table 1 is 

interpreted in Fig. 4. The effects of coherence can be seen but only for an artificially much 

stronger spin-orbit coupling, Fig. 5 or for a probe that is phase sensitive. 
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