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Partial-wave decomposition of the Keldysh ionization amplitude

S. Walker,∗ B. Ghomashi, and A. Becker
JILA and Department of Physics, University of Colorado, Boulder, Colorado 80309-0440, USA

We present an alternative way of calculating the Keldysh amplitude, i.e. the length-gauge form
of the ionization amplitude in the strong-field approximation. The amplitude is evaluated exactly
by expanding it in Fourier components and partial-waves. Comparisons of the semi-analytic model
predictions with results of ab-initio numerical simulations of the time-dependent Schrödinger equa-
tion for the interaction of electrons in short-range potentials with intense laser light yield excellent
agreement, for wavelengths from the single-photon to the multiphoton to the tunneling regime.
Specifically, for ionization from initial states with higher angular momentum quantum number, e.g.,
p-states, a significant improvement over predictions based on the popular saddle-point approxima-
tion is found. Furthermore, the current model rate allows for interpretation of the strong-field
ionization process in terms of multiphoton absorption pathways and angular momentum selection
rules.

I. INTRODUCTION

The interaction of matter with strong electromagnetic
radiation in the form of short laser pulses has been
a fundamental topic in quantum dynamics of atoms,
molecules, and solids for the past few decades. Appli-
cations of such laser pulses are found in many different
areas of atomic, molecular and optical physics, solid state
physics, nanomaterials, plasma physics, chemistry, biol-
ogy etc. Frequencies of currently available short-pulsed
laser systems range from the far-infrared through the op-
tical and the vacuum-ultraviolet up to the soft x-ray re-
gion. The focused laser intensities reach levels far beyond
the strength of the Coulomb fields that bind electrons and
nuclei together, while the pulse lengths have decreased to
femtoseconds (10−15 s) and more recently even below into
the attosecond (10−18 s) regime.

An analytical solution of the Schrödinger equation for
the interaction of an atom (or molecule, solid) with short-
pulsed electromagnetic radiation has not been found so
far. However, for rather simple systems numerical inte-
gration techniques and Floquet methods exist [1, 2]. In
view of the computational costs to perform such numer-
ical ab-initio calculations, approximation methods are
useful to analyze strong-field processes. Perhaps the
most popular one is the lowest order of a systematic S-
matrix series, known as the strong-field approximation
(or, Keldysh-Faisal-Reiss theory [3–5]). In its basic form
the first-order term for ionization of an electron from an
atom exhibits the transition from the unperturbed ini-
tial state in the atom via the interaction with the field
(in either the length or the velocity-gauge form) into the
final Volkov states, i.e., the states of a free electron in
the laser field. The ionization amplitude is then often
further evaluated in length gauge via the classical action
using the so-called stationary phase or saddle point ap-
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proximation [3, 6]. This leads to an analytical form of
the amplitude that can be easily computed, is typically
applied in the low-frequency regime and often reveals an
intuitive picture of the process via classical trajectories.

Recent developments in strong field physics, e.g. the
application of laser sources, such as free electron lasers [7]
and high harmonic sources [8], have extended the wave-
length regime, accessible for strong laser light, from the
ultraviolet to the (soft) x-ray regime. Moreover, it has
become possible to control the polarization state of such
pulses, enabling studies not only with linearly polarized,
but elliptically and circularly polarized light [9, 10]. This
makes it necessary to consider alternative evaluations of
the ionization amplitude, which may extend the applica-
tion regime of the standard approximation methods.

In this work we present an alternative method to eval-
uate the ionization amplitude in the strong-field approx-
imation. Several choices made in the derivation are mo-
tivated as follows: First, we choose to work with the
length-gauge amplitude [3, 11, 12]. This is motivated
by the recent interest in laser-mediated applications in-
volving chiral processes [13–22] where the helicity of the
ground-state is coupled to the helicity of the applied field
during ionization. Velocity gauge decouples these mo-
tions and does not consider the dependence of the ioniza-
tion rate on the sign of the magnetic quantum number
of the initial state [5]. Next, we apply the initial-state
Lippmann-Schwinger type expansion of the Keldysh am-
plitude [3] instead of the final-state expansion of Perelo-
mov, Popov and Terent’ev (PPT) [12] to allow for mod-
ification of the final state [23]. We may note that the
Keldysh and PPT models are identical in the limit of
zero-range potentials but deviate for finite-range appli-
cations (see discussion in Appendix A). Finally, our ap-
proach involves expanding the Keldysh ionization ampli-
tude in Fourier components (in time) and partial-waves
(in space), in this way we circumvent the stationary phase
approximation in length-gauge calculations. As we will
show below, this improves the agreement with results of
ab-initio numerical simulations in the case of initial states
with angular momentum quantum number li ≠ 0 signifi-
cantly. Our exact evaluation of the ionization amplitude
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is motivated by the partial-wave expansion [24–31] used
in nuclear physics and scattering theory as well as the
strong-field expansion given in Refs. [5, 32].

As an application to test the predictions of our ap-
proach, we use the ionization of electrons bound in s-
and p-states of short-range potentials by circularly, ellip-
tically and linearly polarized light at wavelengths from 10
nm to 800 nm. The applications include the reversal of
ionization ratio of co- to counter-rotating electrons (with
respect to the rotation direction of the applied field) in
the intermediate few-photon ionization regime, which has
been a topic of recent research in experiment and theory
[13–20]. As we will show below, our semi-analytical for-
mula provides excellent results for the ionization of elec-
trons bound to short range potentials in the presence of
strong circularly, elliptically and linearly polarized fields
at non-perturbative intensities over a broad wavelength
regime, from single-photon to tunneling ionization. Fur-
thermore, the results let us describe the strong field ion-
ization process in terms of multiphoton absorption path-
ways and angular momentum selection rules.

The rest of the paper is organized as follows: In sec-
tion II we first briefly review the Keldysh amplitude and
the popular saddle-point approximation. We then con-
tinue by presenting the formula resulting from an eval-
uation based on expansions in Fourier components and
partial-waves. This is first done for circular polarization
and then for the general case of elliptical polarization.
In the main text we present the main formula while the
detailed derivation is presented and discussed in the Ap-
pendices. In the second part (section III) we present
applications in the form of comparisons of the model pre-
dictions with results of ab-initio numerical simulations of
the time-dependent Schrödinger equation. Furthermore,
general trends for the photoelectron energy and angular
distributions will be presented and further approxima-
tions will be discussed. The article ends with a brief
summary.

II. IONIZATION AMPLITUDE

We seek to provide an alternative semi-analytic ap-
proximative solution of the time-dependent Schrödinger
equation (TDSE)

ih̵
∂

∂t
Ψϵ(r, t) = [Ha + ∣e∣Eϵ(t) ⋅ r]Ψϵ(r, t) (1)

for the interaction of an atomic system in a short-range
potential with an elliptically polarized laser pulse with
electric field and vector potential given by

Eϵ(t) = E [cos(ωt)x̂ + ϵ sin(ωt)ŷ], (2)

and

Aϵ(t) = −A [sin(ωt)x̂ − ϵ cos(ωt)ŷ] (3)

where A = cE
ω
. We write the vector potential as a linear

combination of both right-handed (+) and left-handed
(−) circularly polarized fields

Aϵ(t) = (
1 + ϵ

2
)A+(t) + (

1 − ϵ

2
)A−(t). (4)

In this way we can use the same steps to determine the
ionization amplitude first for circularly polarized fields
and then for elliptically polarized fields.
Our approach is based on the Keldysh ionization am-

plitude. In section IIA we will therefore briefly review
its derivation and discuss our selection of initial atomic
and final Volkov states. Then, in section II B, we first
briefly discuss the traditional semiclassical low-frequency
approach and then develop our alternative approach of
evaluating the amplitude, based on expanding the am-
plitude in discrete energy levels and partial-waves, first
for circular polarization and then for the general case of
elliptical polarization. We take the long pulse limit and
determine the ionization rate and angular emission rate
for each photon process.

A. Keldysh Amplitude

The exact solution to the TDSE can be expressed as
the Lippmann-Schwinger-type integral equation

Ψ(x) = ϕi(x) + ∫ d4x1 G(x;x1)VL(x1)ϕi(x1) (5)

for an arbitrary field where we use the notation

∫ d4x1 ≡ ∫

t

t0
dt1 ∫ dr1 (6)

for integration over intermediate coordinates. Here t0
is the moment when the field is turned on and t is the
instant in time when the field is turned off.
The initial atomic state is either chosen to be the exact

numerical eigenstates for a single active electron (SAE)
potential

ϕi(x) ≡ e
(i/h̵)Iptϕi(r) = e

(i/h̵)IptRi(r)Y
mi

li
(r) (7)

with Ri given by

Ha(r)ϕi(r) = [
p2
op

2m
+ Va(r)]ϕi(r) = −Ipϕi(r) (8)

with atomic potential Va(r) and momentum operator
pop = −ih̵∇r or the approximate asymptotic states from
Ref. [12], where

Ri(r) ≈ Cκliκ
3/2
(κr)ν−1e−κr (9)

which is accurate for calculations at long wavelengths
where ionization is dominated by the tail (κr ≫ 1) of the

ground state. Ip is the ionization potential, h̵κ ≡
√
2mIp

is the bound state momentum and we obtain Cκli by
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fitting the asymptotic state to the long range part (κr ≫
1) of the exact state. We will focus on accurate solutions
for the case of short range potentials where the solution
to the atomic Schrödinger equation for κr ≫ 1 gives the
zero-range approximation ν = 0 in Eq. (9). Long range
potentials will briefly be discussed where the power law
becomes ν ≡ (κC/κ) with the Coulomb momentum h̵κC =

mZ ∣e∣2/h̵ and residual ionic charge Z ∣e∣.
The ionization amplitude is derived by expanding the

Green’s function in Eq. (5) in finite-range or zero-range
Volkov states and projecting on it:

M(k, t) = ∫ drΦ
(−)

k (x)Ψ(x) (10)

where horizontal lines above symbols are used to repre-
sent the complex conjugate. The zeroth order contribu-
tion

M
(0)
(k, t) = ∫ drΦ

(−)

k (x)ϕi(x) (11)

is identically zero for finite-range Volkov states and dies
off for zero-range Volkov states in the long pulse limit
[12]. The lowest order contribution therefore arises from

M
(1)
(k, t) = −(

i

h̵
)∫ d4x1Φ

(−)

k (x1)[∣e∣E(t1) ⋅ r1]ϕi(x1)

(12)
which is the well known Keldysh amplitude [3].

B. Evaluation of Keldysh amplitude

1. Standard low-frequency semiclassical approach

Usually, the ionization rate is then evaluated by writing
it as [3, 12, 15]

w = lim
t→∞
∫ dk

∂

∂t
∣M

(1)
(k, t)∣2

= lim
t→∞
∫ dk

∂

∂t
∣M

(1,PPT)
(k, t)∣2 (13)

using the amplitude given by Perelomov, Popov and Ter-
ent’ev (PPT)

M
(1,PPT)

(k, t) = −(
i

h̵
)∫ d4x1Φk(x1)Va(r)ϕi(x1)

(14)
We note that the PPT and Keldysh rates are equivalent
when zero-range Volkov states are used, as shown in Ap-
pendix A. After taking the limit the rate simplifies to:

w =
2π

h̵
∫ dk

∞

∑
n=−∞

∣Ln(k)∣
2δ(Ek + Ĩp − nh̵ω) (15)

where Ek ≡ h̵
2k2/2m defines the kinetic energy of liber-

ated electrons and

Ln(k)∣k=kn ≡

ω

2π
∫

π/ω

−π/ω
dtS′(k, t) e(i/h̵)S(k,t)ϕ̃i(k(t))∣

k=kn

(16)

for zero-range final Volkov states Φk and zero-range ini-
tial bound states ϕi defined in Eq. (9) with momentum
representation

ϕ̃i(k(t)) = ∫ dr
e−ik(t)⋅r

(2π)3/2
ϕi(r). (17)

Here

S(k, t) = ∫
t

t0
dτ [

p(τ)2

2m
+ Ip] (18)

defines the classical action with kinetic momentum

p(t) = h̵k(t) = h̵k +
∣e∣

c
A(t) (19)

and the ponderomotive or cycle-averaged quiver energy

Up =
∣e∣2

2mc2
⟨A(t)2⟩T (20)

determines the effective ionization potential Ĩp ≡ Ip + Up

where primes denote derivatives with respect to t.

For laser parameters where the photon energy satis-
fies h̵ω ≪ Ip and h̵ω ≪ Up one can then perform the
stationary phase approximation [3, 6]. This semiclassi-
cal approach involves determining saddle points ts which
satisfy the conservation law

S′(k, ts) =
p(ts)

2

2m
+ Ip = 0 (21)

and approximates the time integral in Eq. (16) as a finite
sum over all saddle points

Ln(k)∣k=kn ≡
ω

2π
∑
ts

√
2πih̵

S′′(k, ts)

×S′(k, ts) e
(i/h̵)S(k,ts)ϕ̃i(k(ts))∣k=kn

. (22)

Contributions Ln(k)∣k=kn are non-zero since ϕ̃i(k(ts))
contains poles that coincide with the zeros of S′(k, ts).

2. Exact time integration and expansion in partial-waves:
Circular polarization

In order to extend the application of the Keldysh am-
plitude into the regime h̵ω ≳ Ip or h̵ω ≳ Up a different

approach is required. To this end, we select t0 = 0 and
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write the amplitude as

M
(1)
(k, t) = ∫

t

0
dt1e

(i/h̵)S(k,t1) (−
∂

∂t1
) ϕ̃i(k,A(t1))

(23)
described by the bound-state momentum component

ϕ̃i(k,A(t1)) = ∫ dr1ϕ
(−)

k (r1)e
−

i∣e∣
h̵c A(t1)⋅r1ϕi(r1) (24)

and phase factors e(i/h̵)S(k,t1) at ionization time t1. We
then expand the terms in Eq. (23) in partial-waves to
determine the ionization amplitude in the case of circular
polarization as (see Appendix B):

M
(1)
±
(k, t) = (i/h̵)e−ik⋅ξ±(0)

∞

∑
lA=0

lA

∑
nA=−lA

(nAh̵ω)A
mA

lA

×
li+lA

∑
lk=max(∣li−lA∣,∣mi+mA∣)

Klk(k) I
lk,lA
li
(k) [

lk lA li
−(mi +mA) mA mi

]Y mi+mA

lk
(k̂)

×
∞

∑
lS=0

lS

∑
nS=−lS

XmS

lS
(k)Y mS

lS
(k̂)δt([N(k) − (nA + nS)]ω/2) (25)

where ξ±(0) = ξx̂ in the present case of circular polariza-

tion with ξ = ∣e∣A
ωmc

as the quiver radius and h̵kA ≡ (∣e∣/c)A

is the vector potential momentum. N(k) ≡ 1
h̵ω
(Ek + Ĩp)

corresponds to the number of absorbed photons for an

ejected electron with kinetic energy Ek =
h̵2k2

2m
, while li

and mi are the orbital and magnetic angular momentum
quantum numbers of the initial state. Furthermore,

AmA

lA
≡ 4π(−i)lA Y mA

lA
(Â±(0)), (26)

where Y mA

lA
(Â±(0)) are the spherical harmonics with

mA ≡ ±nA,

Klk(k) ≡ (−i)
lkeiηlk

(k) (27)

with ηlk(k) as the phase shift of the continuum state,

XmS

lS
(k) ≡ 4πilS jlS(kξ)Y

mS

lS
(ξ̂±(0)) (28)

with spherical Bessel function jlS(kξ) in addition tomS ≡

±nS , with line-shape

δt(x) ≡ e
ixtsinc(xt)t (29)

and radial function

I lk,lAli
(k) ≡

1

k
∫

∞

0
dr r2Rk,lk(r)jlA(kAr)Ri(r) (30)

with Rk,lk(r) and Ri(r) as the radial parts of the con-
tinuum state and the initial bound state, respectively.

The angular momentum components are determined
by

[
lk lA li
−mk mA mi

] ≡ ∫ dΩr1Y
mk

lk
(r̂1)Y

mA

lA
(r̂1)Y

mi

li
(r̂1)

(31)
and the yield is given by

P
(ion)
±
(t) = ∫ dk ∣M±(k, t)∣

2. (32)

3. Long Pulse Limit

The time-averaged rate for a long pulse can be deter-
mined in the usual way by taking the limit in time

W±(k) = lim
t→∞

t−1∣M
(1)
±
(k, t)∣2 ≡

∞

∑
n=nth

∣M
(1)
n± (k̂)∣

2δ(k − kn)

(33)
and using the sinc representation of the Dirac delta func-
tion which results in the quantized final state momenta

h̵kn ≡
√

2m (nh̵ω − Ĩp) ≡mvn (34)

and the total rate

w± = ∫ dkW±(k) =
∞

∑
n=nth

∫ dΩk
dwn±

dΩk

=
∞

∑
n=nth

∞

∑
l=∣mi±n∣

wln± =
∞

∑
n=nth

wn± (35)

after the absorption of n photons with threshold value
nth = ⌈Ĩp/h̵ω⌉. Above we introduced the partial rates

wln± = k
2
n ∣C

mi±n
l (kn)∣

2 and wn± =
∞

∑
l=∣mi±n∣

wln± (36)

as well as the angular rates

dwn±

dΩk
= k2n∣M±(kn)∣

2 and
dw±
dΩk

=
∞

∑
n=nth

dwn±

dΩk
(37)

with

M
(1)
±
(kn) = e

−ikn⋅ξ±(0)
∞

∑
l=∣mi±n∣

Cmi±n
l (kn)Y

mi±n
l (k̂n)

(38)
where the coefficients are given by
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FIG. 1: Total ionization yield for the length gauge amplitude corresponding to a 16 cycle laser pulse with an intensity of 1014

W/cm2 for zero-range Volkov states and zero-range asymptotic bound states. Results are compared between the saddle-point
approximation (red dashed curve) and the exact time integration (green solid curve) for s-states (panel a) and total yield from
the sum of all p-states (panel b). All zero-range states have an ionization potential of Ip ≈ 13.6 eV.

Cmi±n
l (kn) ≡ (i/h̵)

√
2π

vn

∞

∑
lA=0

lA

∑
nA=−lA

(nAh̵ω)A
mA

lA

×
li+lA

∑
lk=max(∣li−lA∣,∣mi+mA∣)

Klk(kn) I
lk,lA
li
(kn) [

lk lA li
−(mi +mA) mA mi

]

×
∞

∑
lS=∣mS ∣

XmS

lS
(kn) [

l lS lk
−(mi +mA +mS) mS (mi +mA)

] (39)

with nS = n − nA, enforced by the t → ∞ limit. For a
long, but finite pulse the total ionization yield can be
approximated as

Nion = 1 − e
−wT (40)

where T is the pulse duration.

4. Comparison with the saddle point approximation

Before we proceed, we assess the difference between the
results of the two evaluations of the Keldysh amplitude.
To this end, we have performed calculations for the laser
induced ionization of an electron bound in a zero-range
potential using both the standard saddle point approxi-
mation and our approach. For the comparison we have
chosen zero-range Volkov final states and considered the
zero-range asymptotic initial states of different angular
momentum from Eq. (9) and a binding energy Ip ≈ 13.6
eV.

In Fig. 1 we compare the saddle point PPT result
(equivalent to Eq. (76-78) of Ref. [15]) to the same am-
plitude without the approximation for the ionization of
an electron in an initial s-state (left panel) and an initial
p-state (right panel) due to the interaction with 16 cy-
cle circularly polarized laser pulses (T = 16× 2π

ω
), having

an intensity of 1014 W/cm2 and wavelengths between 10
nm and 800 nm. Equivalence between our evaluation of
the Keldysh amplitude and a similar exact evaluation of
the PPT amplitude is demonstrated in Appendix A. The
comparison shown in Fig. 1 therefore outlines the errors
introduced by approximating the integral over ionization
times with the saddle point approximation.
From the comparison it is obvious that in the case of an

s-state for nearly all wavelengths longer than the single
photon ionization threshold (∼ 92 nm), both the exact
(green curve) and approximate amplitude (red dashed
curve) predict essentially the same results.
In contrast, the same comparison for the sum of all

initial p-states with

N
(j)
ion = 1 − e

−w(j)T (41)
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as before and

Nion = N
(2p1)

ion +N
(2p0)

ion +N
(2p−1)
ion (42)

shows that the exact (green curve) and approximate am-
plitude (red dashed curve) disagree over almost the entire
wavelength regime considered.

Comparison of the exact evaluation of the zero-range
model with finite-range numerical solutions of the TDSE
will be discussed in section IIIA, where we will show the
acurateness of the present calculations. In particular, we
note that the s−state results of Fig. 1(a) are included in
Fig. 2(a) and the p−state results of Fig. 1(b) are included
in Fig. 3(c) and show acceptable levels of agreement with

the TDSE results.

5. Exact time integration and expansion in partial-waves:
Elliptical polarization

By writing the field in the general case of elliptical
polarization as a linear combination of two circularly po-
larized fields, as discussed at the outset of this section,
similar steps can be taken to determine the ionization
rate for the interaction with an elliptically polarized field
(see Appendix C):

M
(1)
ϵ (k, t) = (i/h̵)e

−ik⋅ξϵ(0) ∑
lA,nA

(nAh̵ω)A
mA

lA ∑
lk

Klk(k)I
lk,lA
li
(k, kA, ϵ) [

lk lA li
−(mi +mA) mA mi

]

× ∑
lS ,nS

XmS

lS
(k, ξ, ϵ)∑

l

[
l lS lk

−(mi +mA +mS) mS (mi +mA)
]Y mi+mA+mS

l (k̂)

×∑
a

Ba(A,ω, ϵ)δt([N(k) − (nA + nS + 2a)]ω/2) (43)

where

XmS

lS
(k, ξ, ϵ) ≡ 16π2ilS jlS− ((

1 − ϵ

2
)kξ) jlS+ ((

1 + ϵ

2
)kξ)Y

−nS−

lS−
(ξ̂−(0))Y

nS+

lS+
(ξ̂+(0)), (44)

AmA

lA
= 16π2

(−i)lAY
−nA−

lA−
(Â−(0))Y

nA+

lA+
(Â+(0)), (45)

Klk(k) = (−i)
lkeiηlk

(k) (46)

and

Ba(A,ω, ϵ) = Ja (
∣e∣2A2(1 − ϵ2)

8h̵ωmc2
) (47)

with nA ≡ (nA− , nA+), nA ≡ nA++nA− ,mA ≡ (−nA− , nA+),
mA ≡ nA+ − nA− , lA ≡ (lA− , lA+) and lA ≡ lA+ + lA− with
similar for A↦ S. Additionally the shorthand notations

∑
lA,nA

≡
∞

∑
lA+=0

lA+

∑
nA+=−lA+

∞

∑
lA−=0

lA−

∑
nA−=−lA−

(48)

and

∑
lS ,nS

≡
∞

∑
lS+=0

lS+

∑
nS+=−lS+

∞

∑
lS−=0

lS−

∑
nS−=−lS−

. (49)

have been used to simplify the sums. The angular con-
tribution becomes

[
lk lA li
−mk mA mi

] ≡

∫ dΩrY
mk

lk
(r̂)Y

−nA−

lA−
(r̂)Y

nA+

lA+
(r̂)Y mi

li
(r̂) (50)

and

I lk,lAli
(k, kA, ϵ) ≡

1

k
∫

∞

0
dr1 r

2
1 Rk,lk(r1)

× jlA− ((
1 − ϵ

2
)kAr1) jlA+ ((

1 + ϵ

2
)kAr1)Rni,li(r1)

(51)

determines the radial behavior.

Taking the long-pulse limit as in section II B 3 we ob-
tain the amplitude for elliptical polarization:
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FIG. 2: Comparison of predictions for the s-state model with the TDSE results for exponential parameters a = a0/5, a0/3, a0

and ∞ (panel a,b,c and d). The red line corresponds to calculations using zero-range (zr) initial bound and final Volkov states.
The green curve replaces the zero-range initial states with the short-range (sr) states of the atomic Hamiltonian. The black
curve corresponds to calculations with the same short-range initial states, but now the zero-range Volkov states have been
replaced with short-range Volkov states. a = ∞ is included for an initial ground-state of Hydrogen with final zero-range Volkov
states (green) and long-range (lr) Coulomb-Volkov scattering states (black). Laser parameters and bound state energies are
identical to Fig. 1.

M
(1)
nϵ (kn) = (i/h̵)

√
2π

vn
e−ikn⋅ξϵ(0) ∑

lA,nA

(nAh̵ω)A
mA

lA ∑
lk

Klk(kn)I
lk,lA
li
(kn, kA, ϵ) [

lk lA li
−(mi +mA) mA mi

]

×∑
a

Ba(A,ω, ϵ)
′

∑
lS ,nS

XmS

lS
(kn, ξ, ϵ)∑

l

Y mi+mA+mS

l (k̂n) [
l lS lk

−(mi +mA +mS) mS (mi +mA)
]

= e−ikn⋅ξϵ(0)∑
l,m

Cm
l (kn)Y

m
l (k̂n) (52)

with

′

∑
lS ,nS

≡
∞

∑
lS+=0

lS+

∑
nS+=−lS+

∞

∑
lS−= ∣nS− ∣

, (53)

Wϵ(k) =
∞

∑
n=nth

∣M
(1)
nϵ (k̂)∣

2δ(k − kn), (54)



8

wϵ = ∫ dkWϵ(k) =
∞

∑
n=nth

∫ dΩk
dwnϵ

dΩk

=
∞

∑
n=nth

∑
l,m

wm
lnϵ =

∞

∑
n=nth

wnϵ, (55)

dwnϵ

dΩk
= k2n∣M

(1)
nϵ (k̂n)∣

2, and wm
lnϵ = k

2
n∣C

m
l (kn)∣

2

(56)
where

nS− = n − nA − nS+ − 2a (57)

is enforced by the t→∞ limit. We may finally note that
the partial-wave expansions used throughout are appli-
cable to other gauges as well.

III. APPLICATIONS

In this section we first show comparisons of the model
predictions for the ionization yields with results of simu-
lations of the time-dependent Schrödinger equation. Fur-
thermore, we give examples of predictions for the energy
and angular distributions, which show the general fea-
tures expected for light-induced processes.

A. Ionization Yields

To test the model predictions we compare ionization
yields of spinless Hydrogen-like and Neon-like anions us-
ing Eq. (35) and Eq. (55) with results of the time depen-
dent Schrödinger equation. In our test calculations we
have used short-range Yukawa potentials of the form

Va(r) = −
Za∣e∣

2

r
e−r/a (58)

where the exponential factor a determines the range of
the potential and the prefactor Za is chosen such that
the binding energy of Ip ≈ 13.6 eV remains the same for
all ranges considered. Comparisons are performed for
three selections of initial- and final-states. In the first
set we use zero-range initial (Eq. 9) and zero-range fi-
nal Volkov states [3] to analyze the errors introduced by
the zero-range approximation. In the next set of cal-
culations we replace the zero-range initial states with
finite-range states of the atomic Hamiltonian to deter-
mine errors introduced by the use of a zero-range initial
state. Finally, we consider another set of calculations
again using finite-range initial states, but the plane wave
component (2π)−3/2eik⋅r of the final zero-range Volkov
states are replaced with finite-range scattering states of

the atom ϕ
(−)

k (r) [23].
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FIG. 3: Comparison of predictions for the p-state model with
the TDSE results for an exponential parameter of a = a0/2 for
an ellipticity of (a) ϵ = 0, (b) ϵ = 0.5 and (c) ϵ = 1. Bound state
parameters are given in table I. Definitions of each curve and
the choice of laser parameters are consistent with Fig. 2.
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1. Hydrogen-like anions

In Fig. 2, we compare the predictions of the model rate
to the TDSE results for the case of an s-state and expo-
nential parameters a = a0/5, a0/3, a0 and ∞ (a0 is the
Bohr radius) to show that the model can provide accu-
rate results for short-range potentials at all wavelengths.
For the TDSE calculations we used velocity gauge and
expanded the wave function in a basis of spherical har-
monics for the angular dimensions (lmax = ∣mmax∣ = 30)
and a basis of 8th order B-splines in the radial dimen-
sion. The 600 B-spline nodes are placed such that the
spacing between nodes is quadratic near the origin then
becomes constant at a chosen radius (30 a.u.). The maxi-
mum radius of the box is 500 a.u., where exterior complex
scaling has been applied to the last 50 a.u. of the grid.
The Crank-Nicolson method has been used to propagate
the wave function in time with a step size of 0.1 a.u.. Cal-
culations have been performed for the interaction with a
16 cycle circularly polarized flat-top pulse with intensity
1 × 1014 W/cm2 at wavelengths between 10 nm and 800
nm. An additional two cycle sin2 ramp on and ramp off
has been included to the 16 cycle flat-top pulse to en-
sure that the vector potential smoothly goes to zero at
t→ ±∞ .

For s-states the predictions for the yield are essentially
independent of the choice of the specific initial and fi-
nal state representation and agree well with the TDSE
results for the case a = a0/5 (panel (a)). Expanding
the atomic range to a = a0/3 (panel (b)) and a0 (panel
(c)) makes it clear that short-range atomic initial and
final (Volkov) states are required to obtain reliable re-
sults. The case of a = ∞ (panel (d)) is also considered,
where the results based on long-range Volkov states (solid
black curve) provides excellent predictions of the ioniza-
tion yield for wavelengths shorter than the single photon
ionization threshold. In comparison, for any other choice
of the states considered here the yield does not provide
reasonable agreement at any of the wavelengths. This
is exemplified by the results of the calculations using an
atomic initial state and a zero-range Volkov state, which
are represented by the green curve. The finite values of
a were chosen such that there were no unoccupied ex-
cited states. The first order amplitude is insufficient as
excited states are introduced via an increase in range.
The a → ∞ limit of hydrogen should be thought of as a
worst case scenario. Expansion to higher-order S-matrix
elements are expected to resolve these issues [3, 23, 33].

2. Neon-like anions

For the case of a Neon-like anion we chose a valence
ionization potential Ip(2p) ≈ 13.6 eV to enable direct

comparison with the Hydrogen-like data. The Yukawa
range parameter of a = a0/2 was chosen to obtain 1s,
2s and 2p bound states with parameters given in Table
I. To obtain the total ionization yield for the Neon-like
anion we assume all orbitals are occupied, neglect spin
and calculate the single orbital yield as

N
(j)
ion = 1 − e

−w(j)T (59)

as before and add those up

Nion = N
(1s)
ion +N

(2s)
ion +N

(2p1)

ion +N
(2p0)

ion +N
(2p−1)
ion (60)

to get the total yield. As one can anticipate, the oc-
cupied core 1s orbital can be neglected since the yield is
much smaller than all the other yields for all wavelengths
considered.

In Fig. 3 we present the results for the interaction of the
Neon-like anion with laser fields of different ellipticities,
namely (a) ϵ = 0 (linear polarization), (b) ϵ = 0.5 and
(c) ϵ = 1 (circular polarization). Other laser parameters
were chosen to be the same as in the calculations for
the Hydrogen-like anion. Comparison between the model
predictions for the same choice of initial and final states
and with the TDSE results, as in Fig. 2, are shown.

As in the case of Hydrogen-like anion, the results show
that the best agreement with the TDSE results are found
using initial and final atomic states, independent of the
polarization state of the laser field. Some disagreement
is observed near ionization thresholds since we did not
include properties of the pulse envelope in the evaluation
of the model predictions. Thus, we may summarize that
the exact calculation of the Keldysh ionization ampli-
tude in length gauge can provide an excellent agreement
with results of ab-initio numerical calculations for short-
range potentials. Most remarkable, this finding is inde-
pendent of the angular momentum of the initial state,
i.e. it holds for s- as well as p-states. The predictions
of the present approach therefore provide a significant
improvement over those of the popular saddle point ap-
proximation, especially for initial states having an angu-
lar momentum of li > 0.

State 1s 2s 2p a = a0/2

Ip(Hartree) 33.9 1.32 0.50 Zc = 10.15

TABLE I: Table of bound-state energy levels and Yukawa
parameters for the Neon-like anion.
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FIG. 4: Photoelectron energy (a-c) and angular distributions (d-f) for the Neon-like anion data. Both finite-range initial and
final (Volkov) states are chosen and wavelengths of 10 nm (a,d), 100 nm (b,e) and 800 nm (c,f) are selected. Parameters are
as in Fig. 3 and angular distributions correspond to the total emission summed over all photon processes.

B. Photoelectron Energy and Angular
Distributions

After we have validated the accuracy of the model pre-
dictions for the total ionization yields we will now present
examples for photo-electron distributions. The energy
and angular distributions have been obtained using stan-
dard formulas. We evaluate the population of the ground
state and each energy level in the continuum via the rate
equations

d

dt

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ni

Nnth

Nnth+1

⋮

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−w

wnth

wnth+1

⋮

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Ni, (61)

while the total angular distribution is given by

dNion

dΩk
=

1

w

dw

dΩk
Nion =

∞

∑
n=nth

dNn

dΩk
(62)

with angular distributions for each photon process as

dNn

dΩk
=

1

wn

dwn

dΩk
Nn, (63)

as well as the polar distributions

dNion

d(cos θk)
≡ ∫

2π

0
dφk

dNion

dΩk
= 2π

dNion

dΩk
∣
φk=0

(64)

and

dNn

d(cos θk)
≡ ∫

2π

0
dφk

dNn

dΩk
= 2π

dNn

dΩk
∣
φk=0

(65)

for the total and the partial yields, respectively.
In Fig. 4 we plot the photo-electron energy and angular

distributions for Neon-like anion with both atomic initial
and final states, interacting with a circularly polarized
field. Wavelengths of 10 nm, 100 nm and 800 nm have
been considered. The 10 nm and 100 nm data correspond
to the single photon and perturbative multiphoton limit
and, as expected, the energy distribution is linear on a
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log scale. In contrast, the kinetic energy distribution at
800 nm is peaked at energies larger than the threshold
value nth demonstrating the expected behavior in the
non-adiabatic limit [15]. The total angular distributions
correspond to emission summed over all photon processes
and becomes increasingly localized around the plane of
polarization as wavelengths increase due to electrons be-
longing to higher-order orbital angular momentum states
with l ≈m via the absorption of additional photons [20].
All these results qualitatively agree with the expectations
for light-induced ionization in the single photon, pertur-
bative and non-perturbative multiphoton regimes.

C. Short Wavelength Limit

In this subsection we discuss and apply two ways to
further approximate the model formulas, which are espe-
cially applicable in the short-wavelength regime.

1. Restriction of orbital angular momentum states

We first consider approximations to the coefficients in
Eq. (39). Initial s-states will be discussed, but similar
steps may be taken for other states. The s-state coeffi-
cients are written as:

C±nl (kn) = (i/h̵)
1
√
2vn

∞

∑
nA=−∞

(nAh̵ω)

×
∞

∑
lA=∣mA∣

AmA

lA
KlA(kn) I

lA
0 (kn)

×
∞

∑
lS=∣mS ∣

XmS

lS
(kn) [

l lS lA
−(mA +mS) mS mA

] (66)

with nS = n − nA. The evaluation of the coefficient in-
volves two sums over lA and lS , which we may interpret
as a two-step absorption process. The initial state (li = 0,
mi = 0, for s-states) is promoted to a small set of inter-
mediate momentum states (lA, mi +mA) via the absorp-
tion of nA photons before an additional nS photons are
absorbed to transition into a final momentum state (l,
mA +mS). We will now explore how to restrict the sums
over the orbital angular momentum states.

As lA increases the value of the integral I lA0 (kn) ≡

I lA,lA
0 (kn) (c.f., Eq. (30)) decreases due to the decreased
overlap of both the continuum state Rk,lA(r) and the
Bessel function jlA(kAr) with the initial bound state
Ri(r). The coefficient should therefore be dominated
by the lowest order contribution lA = ∣mA∣. Similarly, we
should expect that for the intensity and wavelengths con-
sidered the sum over lS should be dominated by the low-
est order contribution ∣mS ∣. Continuing along the same
lines, the sum over l in the final rate w± (c.f., Eq. (35))
may be restricted. This is done by choosing the set of nA

which minimizes ∣mA∣ + ∣mS ∣ for a particular n. Geomet-
rically this amounts to identifying the set of nA which
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FIG. 5: Comparison between the weak-field approximation
(solid red curve), exact yield (black dashed curve) and re-
duced set of selection rules (solid cyan curve). Laser and
atomic parameters are identical to Fig. 2.

minimizes the total distance (∣mA∣+ ∣mS ∣) over which the
magnetic quantum number changes from the initial state
to the intermediate state (∣mA∣) and then from the inter-
mediate state to the final state (∣mS ∣). This is achieved
for all 0 ≤ nA ≤ n where l = n. Thus, the l > n contri-
butions may be neglected for fixed n since the distance
∣mA∣ + ∣mS ∣ is larger than for n = l yielding the approxi-
mation

w± ≈
∞

∑
n=nth

wnn±. (67)

2. UV limit

A way to further approximate the coefficients is to con-
sider that at the shortest wavelengths (Up ≪ h̵ω) the
Bessel functions jlA(kAr) and jlS(knξ) are accurately
approximated by their lowest-order polynomial contribu-
tion

jl(x) ≈
l!(2x)l

(2l + 1)!
. (68)

Using this additional approximation along with the re-
striction of the orbital angular momentum states the ra-
dial integral simplifies to

I
∣mA∣

0 (kn) =
Cκ,0∣mA∣!

Γ(lk + 3/2)

√
κ

2

(knkA)
∣mA∣

(k2n + κ
2)∣mA∣+1

(69)
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with resultant coefficients

C±nn (kn) = 2(i/h̵)
(∓i)n n! Cκ,0
√
(2n + 1)!

√
κ

vn

(knξ)
n

(k2n + κ
2)

× (h̵ω)
n

∑
nA=0

nA

nS !
(
2kA/ξ

k2n + κ
2
)

nA

= i
Cκ,0(∓iknξ)

n

√
(2n + 1)!

√
h̵κ

mkn
[1 + (

Up

nh̵ω
) 2F0 (−n,1; ;−

1

n
)]

(70)

where the identity

Y ±ll (θ,φ) =
1

l!

√
(2l + 1)!

4π
(∓

1

2
sin θe±iφ)

l

(71)

has been applied,

2F0(a, b; ; z) =
∞

∑
j=0

(a)j(b)j

j!
zj (72)

is a hypergeometric function, (a)j is the Pochhammer
symbol, Γ(a) is the Euler integral and nS = n − nA as
before.

Again choosing physical parameters such that Up ≪ h̵ω
one obtains

C±nn (kn) = i
Cκ,0(∓iknξ)

n

√
(2n + 1)!

√
h̵κ

mkn
(73)

and the partial rates

wn,n± = C
2
κ,0

(κ vn) (knξ)
2n

(2n + 1)!
(74)

which gives the expected near-threshold (l = n) scaling of
∼ k2l+1n [24, 31, 34].
To test these two approximations we consider the zero-

range ionization yield and compare the results of the ap-
proximations along with the full result in Fig. 5. Quan-
titative agreement is found between the exact Keldysh

amplitude (black dashed lines) and the restriction of the
orbital angular momentum states (solid cyan curve), as
discussed in subsection III C 1. The additional weak-field
approximation (solid red curve) used in the present sub-
section provides good agreement up to the four-photon
ionization process. Although applied to the present zero-
range example, the restriction on orbital angular momen-
tum states may be applied to finite-range applications as
well.

IV. SUMMARY

We have presented an alternative method to evalu-
ate the length gauge form of the ionization amplitude
in the strong-field approximation, i.e. the Keldysh am-
plitude. In the evaluation we circumvent the popular
saddle-point approximation by expanding the amplitude
in Fourier components and partial-waves. Semi-analytic
formulas have been derived for both circular polarization
and the general case of elliptical polarization. Predictions
of this approach for laser induced ionization of electrons
in short-range potentials are in excellent agreement with
results of simulations of the time-dependent Schrödinger
equation. In particular, the predictions show a signifi-
cant improvement over those obtained using the popular
saddle-point approximation for initial states with angu-
lar momentum li > 0. It is further shown that this alter-
native approach qualitatively reproduces the trends for
photoelectron energy and angular distributions.
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Appendix A: Equivalence of Keldysh and PPT
ionization amplitudes

In this section we will show that the first order Kedysh
amplitude is equivalent to the PPT amplitude [12] up to
boundary terms for zero-range final states. To this end,
we write the Keldysh amplitude as

M
(1)
(k, t) = ∫

t

t0
dt1e

(i/h̵)S(k,t1) (−
∂

∂t1
) ϕ̃i (k(t1)) (A1)
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where

ϕ̃i(k,A(t)) = ∫ dr1ϕk+
∣e∣
h̵cA(t)

(r1)ϕi(r1)

≡ ϕ̃i (k(t)) (A2)

and

p(t) = h̵k(t) = h̵k +
∣e∣

c
A(t). (A3)

Acting on both sides with ih̵ ∂
∂t

and using primes to
denote time derivatives we see that

ih̵
∂

∂t
[M

(0)
(k, t) +M(1)

(k, t)]

= −S′(k, t) e(i/h̵)S(k,t)ϕ̃i (k(t)) . (A4)

Solving for the amplitude yields

M
(1)
(k, t) = − [M(0)

(k, t1)∣
t

t1=t0

+ (
i

h̵
)∫

t

t0
dt1S

′
(k, t1) e

(i/h̵)S(k,t1)ϕ̃i (k(t1)) (A5)

where the boundary term

M
(0)
(k, t) = e(i/h̵)S(k,t)ϕ̃i (k(t)) , (A6)

can be neglected.
Using

S′(k, t) =
p2(t)

2m
+ Ip (A7)

the remaining term is written as

M
(1)
(k, t) = (

i

h̵
)∫ d4x1Φk(x1) [

p2(t1)

2m
+ Ip]ϕi(x1).

(A8)

We then obtain the zero-range PPT formulas by recog-
nizing

−Ipϕi(x) = [
pop

2

2m
+ Va(r)]ϕi(x) (A9)

which gives

M
(1)
(k, t) =

−(
i

h̵
)∫ d4x1Φk(x1) [

p2
1,op − p

2(t1)

2m
+ Va(r1)]ϕi(x1).

(A10)

Integrating by parts we see that

p2
op

2m
Φk(x1) =

p2(t)

2m
Φk(x1) (A11)

gives us the desired result

M
(1)
(k, t) =

− (
i

h̵
)∫ d4x1Φk(x1)Va(r1)ϕi(x1). (A12)

For finite-range final states the situation is different.
Writing down the PPT amplitude and substituting in
finite-range states gives a different rate than using the
equivalent Keldysh amplitude with the same states. To
show this, we start with Eq.(A10) and separate the am-
plitude into a PPT-like contribution and a perturbation

M
(1)
(k, t) =M(1,PPT)

(k, t) + δM(1)
(k, t) (A13)

where

M
(1,PPT)

(k, t) =

− (
i

h̵
)∫ d4x1Φ

(−)

k (x1)Va(r1)ϕi(x1). (A14)

and

δM(1)
(k, t) =

− (
i

h̵
)∫ d4x1Φ

(−)

k (x1) [
p2
1,op − p

2(t1)

2m
]ϕi(x1). (A15)

Using the Fourier representation

ϕi(x) = (2π)
−3/2
∫ dk′eik

′
⋅rϕ̃i(k

′, t) (A16)

and

Φ
(−)

k (x) = (2π)
−3/2
∫ dk′′eik

′′
⋅rΦ̃
(−)

k (k
′′, t) (A17)

we see that the perturbation becomes
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δM(1)
(k, t) = − (

i

h̵
)∫

t

t0
dt1 ∫ dq Φ̃

(−)

k (k + q, t1)

⎡
⎢
⎢
⎢
⎢
⎣

(h̵q)2 + 2(h̵k) ⋅ (h̵q − ∣e∣
c
A(t1)) − (

∣e∣
c
A(t1))

2

2m

⎤
⎥
⎥
⎥
⎥
⎦

ϕ̃i(k + q, t1). (A18)

If ϕ
(−)

k is a plane wave then the corresponding Volkov
state contains a single Fourier component corresponding

to h̵q = ∣e∣
c
A(t) and gives δM(1) = 0 as before. Atomic

scattering states are described by a distribution of vectors
q which leads to δM(1) ≠ 0 in general and therefore a
different result.

Appendix B: Expansion of ionization amplitude in
partial-waves: Circular polarization

In this appendix we provide the details of the eval-
uation of the ionization amplitude, Eq. (23). We
start by expressing the vector potential contribution in
ϕ̃i(k,A(t)) as

e−
i∣e∣
h̵c A±(t)⋅r = 4π

∞

∑
lA=0

lA

∑
nA=−lA

(−i)lAjlA(kAr)

× Y mA

lA
(Â±(0))Y

mA

lA
(r̂)e−inAωt (B1)

where kA ≡
∣e∣A
h̵c

is the vector potential momentum. We
note that Y mA

lA
(r̂) represents the angular momentum

transfer with mA ≡ ±nA and e−inAωt represents the total
energy transfer nAh̵ω. Since lA ≥ ∣nA∣, in general, nA

describes the net absorption or emission of energy and
not necessarily an order of perturbation theory. Further-
more, we expand the continuum state as

ϕ
(−)

k (r) =
1

k

∞

∑
lk=0

lk

∑
mk=−lk

ilke−iηlk
(k)Rk,lk(r)Y

mk

lk
(k̂)Y mk

lk
(r̂)

(B2)
where Rk,lk is the radial continuum state with phase shift

ηlk(k). Here ϕ
(−)

k describes scattering states which are
asymptotically described at r →∞ by a plane wave plus
an ingoing spherical wave [27].

Thus, we can evaluate

(−
∂

∂t
) ϕ̃i(k,A(t)) = (i/h̵) ∑

lA,nA

(nAh̵ω)A
±nA

lA
e−inAωt

×∑
lk

Klk(k)I
lk,lA
li
(k) [

lk lA li
−(mi +mA) mA mi

]Y mi±nA

lk
(k̂)

(B3)

with coefficients

AmA

lA
≡ 4π(−i)lAY mA

lA
(Â±(0)), (B4)

and

Klk(k) ≡ (−i)
lkeiηlk

(k). (B5)

The Fourier component e−inAωt corresponds to the
contributions of nA quanta of energy to the ionized elec-
tron and the angular integrals

[
lk lA li
−mk mA mi

] ≡ ∫ dΩr1Y
mk

lk
(r̂1)Y

mA

lA
(r̂1)Y

mi

li
(r̂1)

(B6)
describe the corresponding angular momentum selection
rules which are evaluated as Wigner-3j symbols. The
radial integral

I lk,lAli
(k) ≡

1

k
∫

∞

0
dr1 r

2
1 Rk,lk(r1)jlA(kAr1)Ri(r1),

(B7)
determines how the initial state influences the photo-
electron distribution and is numerically evaluated in the
current work.
To finish the derivation we expand the action term in

partial-waves and perform the time integrals where

S±(k, t) = ∫
t

0
dτ [

p(τ)2

2m
+ Ip]

= N(k)h̵ω t + h̵k ⋅ (ξ±(t) − ξ±(0)) , (B8)

N(k) ≡
1

h̵ω
(Ek + Ĩp) , Up ≡

h̵2k2A
2m

(B9)

and

ξ±(t) ≡
∣e∣

mc
∫

t

A±(τ)dτ = ξ[cos(ωt)x̂±sin(ωt)ŷ] (B10)

with ξ ≡ ∣e∣A
ωmc

. Using the same partial-wave expansion as
before we have

eik⋅ξ±(t) = 4π
∞

∑
lS=0

lS

∑
nS=−lS

ilS jlS(k ξ)

× Y mS

lS
(ξ̂±(0))Y

mS

lS
(k̂)e−inSωt (B11)

with mS ≡ ±nS . For a given number of quanta nA from
the vector potential term we have

∫

t

0
dt1e

(i/h̵)S±(k,t1)−inAωt1 =

e−ik⋅ξ±(0)
∞

∑
lS=0

lS

∑
nS=−lS

XmS

lS
(k)Y mS

lS
(k̂)

× δt([N(k) − (nA + nS)]ω/2) (B12)

with coefficient

XmS

lS
(k) ≡ 4πilS jlS(kξ)Y

mS

lS
(ξ̂±(0)). (B13)
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The shape term

δt(x) ≡ e
ixtsinc(xt)t (B14)

describes the distribution of final energy states after the

absorption of nA + nS photons by a finite flat-top pulse.

Combining all contribution we get for the ionization
amplitude

M
(1)
±
(k, t) = (i/h̵)e−ik⋅ξ±(0)

∞

∑
lA=0

lA

∑
nA=−lA

(nAh̵ω)A
mA

lA

×
li+lA

∑
lk=max(∣li−lA∣,∣mi+mA∣)

Klk(k) I
lk,lA
li
(k) [

lk lA li
−(mi +mA) mA mi

]Y mi+mA

lk
(k̂)

×
∞

∑
lS=0

lS

∑
nS=−lS

XmS

lS
(k)Y mS

lS
(k̂)δt([N(k) − (nA + nS)]ω/2) (B15)

with angular momentum components determined by

Y mS

lS
(k̂)Y mi+mA

lk
(k̂) =

∑
l

[
l lS lk

−(mi +mA +mS) mS (mi +mA)
]

× Y mi+mA+mS

l (k̂) (B16)

and yield described by

P
(ion)
±
(t) = ∫ dk ∣M±(k, t)∣

2. (B17)

It is worth noting that the amplitude may be evaluated
exactly for the often used case of zero-range Volkov states
and asymptotic initial states. In that case the Bessel
functions in the radial integral are expanded as

jl(x) =

√
π

2x
Jl+1/2(x)

=

√
π

2

(x/2)l

Γ(l + 3/2)
0F1(; l + 3/2;−x

2
/4), (B18)

with hypergeometric function

0F1(;a;x) ≡
∞

∑
m=0

xm

m! (a)m
(B19)

where (a)m ≡ Γ(a +m)/Γ(a) is the Pochhammer symbol
and Γ(a) is the Euler integral.

As a result, one obtains

I lk,lAli
(k) = Cκ,li

2ν−1/2

κ3/2

Γ([lk + lA + ν + 2]/2)Γ([lk + lA + ν + 3]/2)

Γ(lk + 3/2)Γ(lA + 3/2)

× (
k

κ
)

lk

(
kA
κ
)

lA

F4 (
lk + lA + ν + 2

2
,
lk + lA + ν + 3

2
; lk +

3

2
, lA +

3

2
;−(

k

κ
)

2

,−(
kA
κ
)

2

) . (B20)

Here, the Appell F4 function [35] is defined as

F4(a, b; c1, c2;x, y) =
∞

∑
m,n=0

(a)m+n(b)m+n
(c1)m(c2)n

xm

m!

yn

n!
(B21)

with domain of convergence
√
∣x∣ +

√
∣y∣ < 1 (or k + kA <

κ). Note that the domain can be extended via various
analytic continuations [36–39].
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Appendix C: Expansion of ionization amplitude in
partial-waves: Elliptical polarization

We now provide the details of the derivation of the
ionization amplitude for the general case of elliptical po-

larization. Again, we start with ϕ̃i(k,A(t)) in Eq.(23).
Following the same steps as in appendix B we express
the vector potential contribution as

(−
∂

∂t1
)∫ dr1ϕ

(−)

k (r1) e
−

i∣e∣
h̵c Aϵ(t1)⋅r1ϕi(r1) =

(i/h̵) ∑
lA,nA

(nAh̵ω)A
mA

lA
e−inAωt1∑

lk

Klk(k)Y
mk

lk
(k̂)I lk,lAli

(k, kA, ϵ) [
lk lA li

−(mi +mA) mA mi

] (C1)

where

AmA

lA
= 16π2

(−i)lAY
−nA−

lA−
(Â−(0))Y

nA+

lA+
(Â+(0)) (C2)

and

Klk(k) = (−i)
lkeiηlk

(k) (C3)

with nA ≡ (nA− , nA+), nA ≡ nA++nA− ,mA ≡ (−nA− , nA+),
mA ≡ nA+ − nA− , lA ≡ (lA− , lA+) and lA ≡ lA+ + lA− with
similar for A↦ S. The sum ∑lA,nA

is performed over the
physical range of the four angular momentum indices lA+ ,
nA+ , lA− and nA− .
Other contributions correspond to the angular integral

[
lk lA li
−mk mA mi

] ≡

∫ dΩrY
mk

lk
(r̂)Y

−nA−

lA−
(r̂)Y

nA+

lA+
(r̂)Y mi

li
(r̂) (C4)

expanded in terms of 3j-symbols and the radial integral

I lk,lAli
(k, kA, ϵ) ≡

1

k
∫

∞

0
dr1 r

2
1 Rk,lk(r1)

× jlA− ((
1 − ϵ

2
)kAr1) jlA+ ((

1 + ϵ

2
)kAr1)Rni,li(r1)

(C5)

which is evaluated numerically.
The amplitude is completed by the action

Sϵ(k, t) = (Ek + Ip) t + h̵k ⋅ (ξϵ(t) − ξϵ(0))

+
∣e∣2

2mc2
∫

t

0
dτAϵ(τ)

2, (C6)

where the ponderomotive term

∣e∣2

2mc2
∫

t

0
dτAϵ(τ)

2
= Up t +

∣e∣2A2(1 − ϵ2)

8ωmc2
sin(−2ωt)

(C7)
with

Up ≡
∣e∣2A2(1 + ϵ2)

4mc2
(C8)

has now additional time-dependent oscillations due to
the presence of both right- and left-handed fields.

The quiver motion

ξϵ(t) = (
1 + ϵ

2
)ξ+(t) + (

1 − ϵ

2
)ξ−(t) (C9)

is separated into left- right-handed contributions giving
the exponential partitions

e(i/h̵)Sϵ(k,t) = e−ik⋅ξϵ(0)eiN(k)ωtei
∣e∣2A2

(1−ϵ2)

8h̵ωmc2
sin(−2ωt)

× ei(
1−ϵ
2
)k⋅ξ−(t)ei(

1+ϵ
2
)k⋅ξ+(t) (C10)

with

N(k) ≡
1

h̵ω
(Ek + Ĩp) . (C11)

Factors ei(
1±ϵ
2
)k⋅ξ±(t) are evaluated as before with mod-

ified coefficients

XmS

lS
(k, ξ, ϵ) ≡ 16π2ilS jlS− ((

1 − ϵ

2
)kξ) jlS+ ((

1 + ϵ

2
)kξ)Y

−nS−

lS−
(ξ̂−(0))Y

nS+

lS+
(ξ̂+(0)) (C12)
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and the new contribution

ei
∣e∣2A2

(1−ϵ2)

8h̵ωmc2
sin(−2ωt)

=
∞

∑
a=−∞

Ba(A,ω, ϵ)e−2iaωt (C13)

completes the exponential with

Ba(A,ω, ϵ) = Ja (
∣e∣2A2(1 − ϵ2)

8h̵ωmc2
) . (C14)

Collecting all the terms, the finite-pulse amplitude be-
comes

M
(1)
ϵ (k, t) = (i/h̵)e

−ik⋅ξϵ(0) ∑
lA,nA

(nAh̵ω)A
mA

lA ∑
lk

Klk(k)I
lk,lA
li
(k, kA, ϵ) [

lk lA li
−(mi +mA) mA mi

]

× ∑
lS ,nS

XmS

lS
(k, ξ, ϵ)∑

l

[
l lS lk

−(mi +mA +mS) mS (mi +mA)
]Y mi+mA+mS

l (k̂)

×∑
a

Ba(A,ω, ϵ)δt([N(k) − (nA + nS + 2a)]ω/2) (C15)

and the yield is given by

P (ion)ϵ (t) = ∫ dk ∣Mϵ(k, t)∣
2. (C16)

The sum ∑lS ,nS
is performed over the physical range of

the four angular momentum indices lS+ , nS+ , lS− and nS− .

It is again worth noting that the amplitude may be
evaluated exactly for the often used case of zero-range
Volkov states and asymptotic initial states. In that case
the radial integral can be written as

I lk,lAli
(k, kA, ϵ) =

Cκli

23/2−ν

√
π

κ3/2

Γ ( lk+lA+ν+2
2

)Γ ( lk+lA+ν+3
2

)

Γ (lk +
3
2
)Γ (lA− +

3
2
)Γ (lA+ +

3
2
)

× (
k

κ
)

lk

[(
1 − ϵ

2
)
kA
κ
]

lA−

[(
1 + ϵ

2
)
kA
κ
]

lA+

F
(3)
C (

lk + lA + ν + 2

2
,
lk + lA + ν + 3

2

; lk +
3

2
, lA− +

3

2
, lA+ +

3

2
;−(

k

κ
)

2

,−[(
1 − ϵ

2
)
kA
κ
]

2

,−[(
1 + ϵ

2
)
kA
κ
]

2

) (C17)

where

F
(3)
C (a, b; c1, c2, c3;x1, x2, x3) ≡

∞

∑
i1,i2,i3=0

(a)i1+i2+i3(b)i1+i2+i3
(c1)i1(c2)i2(c3)i3

xi1
1

i1!

xi2
2

i2!

xi3
3

i3!
(C18)

is the Lauricella hypergeometric series [40] which may be

evaluated past its radius of convergence
√
∣x1∣ +

√
∣x2∣ +

√
∣x3∣ < 1 (or k+kA < κ) through various analytic contin-

uations.


