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Quantum error correction and quantum error detection necessitate syndrome measurements to
detect errors. Performing syndrome measurements for each stabilizer generator can be a significant
overhead, considering the fact that the readout fidelity in the current quantum hardware is generally
lower than gate fidelity. Here, by generalizing a quantum error mitigation method known as symme-
try expansion, we propose a protocol called virtual quantum error detection (VQED). This method
virtually allows for evaluating computation results corresponding to post-selected quantum states
obtained through quantum error detection during circuit execution, without implementing syndrome
measurements. Unlike conventional quantum error detection, which requires the implementation of
Hadamard test circuits for each stabilizer generator, our VQED protocol can be performed with a
constant depth shallow quantum circuit with an ancilla qubit, irrespective of the number of sta-
bilizer generators. Furthermore, for some simple error models, the computation results obtained
using VQED are robust against the noise that occurred during the operation of VQED, and our
method is fully compatible with other error mitigation schemes, enabling further improvements in
computation accuracy and facilitating high-fidelity quantum computing.

I. INTRODUCTION

The last decade has seen the remarkable development
of the noisy-intermediate quantum computing paradigm
from both theoretical and experimental sides [1–8]. Nev-
ertheless, the effect of noise lies as a crucial problem in
realizing practical quantum computing. Quantum error
correction (QEC) and quantum error detection (QED),
which reduce computation errors through the encoding
of logical qubits with many physical qubits, have been
investigated for enhancing computation accuracy for a
long time since the early days of quantum information
science [9–14]. Syndrome measurements are performed
in QEC and QED to detect physical errors by using an-
cilla qubits; QEC actively corrects physical errors based
on the error information obtained in the decoding pro-
cess while QED discards the noisy quantum states once
an error is detected.

While the utility of QEC and QED have been shown
theoretically in numerous previous works, they require
high-fidelity syndrome measurements of stabilizer gener-
ators. Furthermore, the number of required syndrome
measurements increases with the number of stabilizer
generators in the QEC/QED code. Considering the cur-
rent situation of superconducting hardware, in which the
measurement fidelity is lower than gate errors [6, 15, 16],
the necessity of single-shot measurements [17] for syn-
drome measurements can be a significant overhead in
QEC/QED.
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For the ease of error reduction in near-term quan-
tum hardware, a class of error reduction techniques re-
ferred to as quantum error mitigation (QEM) has been
recently studied [18–22]. In many QEM methods, the
noiseless expectation values of observables are estimated
via post-processing of measurement results. This indi-
cates that we cannot physically obtain quantum states
with reduced noise; nevertheless, QEM allows for virtu-
ally simulating the expectation values of observables for
such states. Symmetry expansion (SE) is one of the QEM
methods that use symmetries inherent to the system to
mitigate errors [23–26]. The noisy quantum state is vir-
tually projected onto the symmetric subspace through
random sampling of the symmetry operators, additional
measurements, and classical postprocessing of measure-
ment outcomes. As we will discuss later, SE allows for
the calculation of the expectation value of an observ-
able corresponding to the post-selected quantum states
through QED without implementing syndrome measure-
ments, and hence is suitable for near-term hardware. So
far, SE is theoretically formulated for error mitigation
for noisy states immediately before measurement [24, 25]
and state preparation for rotation symmetric bosonic
codes [26]. Thus, SE in its current form cannot effectively
suppress the accumulation of noise during computation,
whereas the conventional QED can be more flexibly used
during the circuit execution.

In this work, we significantly expand the framework of
SE so that it can be leveraged during the execution of
quantum algorithms. Because our method enables us to
obtain the expectation values corresponding to the post-
selected state via QED, we call it virtual quantum error
detection (VQED). While the conventional SE can only
detect errors immediately before the measurement of ex-
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pectation values, VQED can detect errors even while the
execution of the quantum circuit, enabling us to mitigate
the accumulation of errors during the computation. Al-
though VQED inherits the disadvantages of SE, i.e., we
can only obtain error-mitigated expectation values, not
the quantum state itself, and the required sampling com-
plexity is quadratically worse for the success probability
of QED, the significant advantages of VQED compared
with the QED are as follows: 1. the depth for QEM is
constant regardless of the number of stabilizer generators
of the code; 2. we only measure an expectation value of
an observable without the need for single-shot syndrome
measurements; 3. the obtained expectation values are ro-
bust against the noise that occurred during the operation
of VQED for some simple error models; 4. our method is
fully compatible with other QEM methods, e.g., readout
error mitigation for the ancilla qubit used in our proto-
col. We numerically verify the behavior of the fidelity
improvement with our VQED protocol over the conven-
tional SE and the unencoded physical qubits. We also
evaluate the required sampling costs and verify that the
sampling cost for VQED does not significantly increase
compared to SE. Furthermore, our method can offer vir-
tual implementation of stabilizer-like QEM methods us-
ing spin and particle number preservation in the compu-
tation [23, 27] in even more hardware-friendly manner.

In addition, we discuss the virtual implementation of
quantum error correction, which results in the computa-
tion outcome corresponding to the error-corrected quan-
tum states. While the conventional QEC does not induce
additional sampling overheads, we find that our virtual
QEC generally incurs a larger sampling overhead than
the virtual QED method; therefore, we conclude VQED
is preferred in typical quantum computation scenarios.

II. PRELIMINARIES

A. Quantum error detection and quantum error
correction for stabilizer codes

We first review stabilizer codes and ways to detect and
correct their errors [28, 29]. QED and QEC are per-
formed by encoding quantum information into enlarged
Hilbert space at the expense of multiple quantum sys-
tems. Due to its redundancy, we can detect and correct
their errors during the computation.

Here, we review the stabilizer formalism, which is
the most standard method to construct quantum error-
correcting codes. Consider an n-qubit Pauli group as

Gn = {±1,±i} × {I,X, Y, Z}⊗n
(1)

where I is the identity operator for single qubit sys-

tem and X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, and Z =(

1 0
0 −1

)
are Pauli operators. To encode k logical qubits

into n physical qubits, we define a stabilizer group
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FIG. 1. Quantum circuit for quantum error detection (QED).

S = {S1, · · · , S2n−k} ⊂ Gn as a commutative sub-
group of the Pauli group Gn with −I⊗N /∈ S. We
denote a generator set of the stabilizer group S as
G = {G1, · · · , Gn−k}. Then, we can define the logi-
cal space of the stabilizer code C as an eigenspace with
+1 eigenvalues for all the operators in the stabilizer
group, i.e., C = {|ψ⟩ |∀Si ∈ S, Si |ψ⟩ = |ψ⟩}. In the 2k-
dimensional Hilbert space, we can introduce a logical

basis as {|0⟩L , |1⟩L}
⊗k

and logical Pauli operators as

{IL, XL, YL, ZL}⊗k
. The code distance d is the mini-

mum number of physical qubits on which an arbitrary
logical operator of the code non-trivially operates. We
denote such stabilizer codes as [[n, k, d]] stabilizer codes.
We can detect physical errors during quantum com-

putation by measuring the generators G1, · · · , Gn−k by
using the Hadamard test circuits as shown in Fig 1, and
such measurement is called syndrome measurement. If
there exists Gi such that its measurement result is −1,
then we can determine the presence of errors during the
computation. Conversely, when the measurement results
are +1 for all Gi, we can say that there was no error
with a sufficiently high probability. By continuing the
computation only when the measurement results for all
the generators are +1, we can project the noisy state
ρ = E(ρid) into the code space as

ρdet =
PρP

tr[ρP ]
, (2)

where P is an projector to the code space C written as

P =
∏

Gi∈G

I +Gi

2
=

1

2n−k

∑
Si∈S

Si. (3)

Because the probability to measure +1 for all the syn-
drome measurements is tr[ρP ], the effect of physical er-
rors acting on less than d qubits can be eliminated with
O(tr[ρP ]

−1
) times more execution of quantum circuits.

Note that stabilizer-like QEM methods work in a sim-
ilar way when the spin and electron number preserva-
tion is imposed in the variational ansatz of quantum
states [23, 27].
We can not only detect errors but also correct them

by applying appropriate feedback operations according
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to the measurement results, enabling us to suppress the
effect of noise without any additional execution of quan-
tum circuits. When the measurement result for the gen-
erator Gi is si, and there is no measurement error, we
can correct errors by applying a recovery operation Rs,
which is estimated from s = (s1, ..., sn−k) to maximize
the probability of correcting erroneous quantum states
to the original logical state. Since the recovery Pauli op-
erator at least maps quantum states to a logical state,
Rs commutes with Gi if si = +1 and anti-commutes if
si = −1. In this way, the effect of physical errors acting
on less than ⌊(d− 1)/2⌋ qubits can be corrected as

ρcor =
∑

s∈{−1,1}n−k

EsρEs, (4)

where

Es = Rs

∏
i

I + siGi

2

= PRs.

(5)

While QEC and QED can reduce the effective error
rates, they impose additional difficulties in the implemen-
tation. To implement QEC and QED, we need repetitive
applications of Pauli measurements for all the elements
in the stabilizer generator set. Since the error rates of
measurement operations are typically higher than the
others [6, 15, 16], they induce large overheads on the
process. In the case of QEC, we also need to estimate
recovery operations from the observed syndrome values,
and error rates must be smaller than the value called
code threshold for a reliable estimation.

B. Symmetry expansion

In order to combat errors on near-term devices, QEM
has been developed in recent years [21, 22]. Symmetry
expansion (SE) is one of the promising QEM methods
which mitigates errors by virtually projecting the noisy
quantum state onto the symmetric subspace without syn-
drome measurements [24, 25].

Suppose that we want to estimate an expectation value
of an observable O for a noiseless state ρid from the mea-
surement of the noisy state ρ = E(ρid). We assume that
the observable O commutes with the projector P . Then,
we can mitigate errors by virtually projecting the noisy
states onto the code space as

tr[ρdetO] =
tr[ρOP ]

tr[ρP ]

=
2−(n−k)

∑
Si∈Si

tr[ρOSi]

2−(n−k)
∑

Si∈Si
tr[ρSi]

,

(6)

which can be calculated in the following way.

1. For s = 1, · · · , N , repeat the following operations.
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FIG. 2. Quantum circuits for virtually projecting a quantum
state ρ into the code space. The white/black circles indicate
the control operations which act for the state 0/1. The circuit
in Panel (a) utilizes two controlled-stabilizer gates, whereas
the circuit in Panel (b) can virtually project quantum states
using only a single controlled-stabilizer gate.

(a) Uniformally sample Si ∈ S.
(b) Simultaneously measure the noisy state ρ for

Si and OSi, and record the results as as and
bs.

2. Calculate a = 1
N

∑
s as and b = 1

N

∑
s bs.

3. Output b/a.

The number of measurements needed to estimate Eq.
(6) for some fixed accuracy ε is known to scale as N =

O(ε−2 tr[ρP ]
−2

). In this way, we can obtain an error-
mitigated expectation value of the observable O, which
corresponds to the virtual projection of the noisy state
immediately before the measurement ρ onto ρdet.

III. VIRTUAL QUANTUM ERROR
DETECTION

Symmetry expansion is only applicable to the state im-
mediately before measurement [24, 25] and state prepa-
ration for rotation symmetric bosonic codes [26]. In this
section, we introduce our VQED method, which allows
for the computation of error-mitigated expectation values
corresponding to the post-selected states after syndrome
measurements during circuit execution.
Let us first explain the way to virtually project a quan-

tum state ρ into the code space by using the circuit shown
in Fig. 2 (a). We can derive the expectation value ob-
tained through this circuit as:

1

2
(tr[SiρSjO] + tr[SjρSiO]). (7)

Thus, by uniformly sampling i, j ∈
{
1, · · · , 2n−k

}
and

taking the average of the distribution, we can obtain the
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expectation value of the projected state as

tr[PρPO] (8)

since the average of Si can be written as ⟨Si⟩ =
2−(n−k)

∑
i Si = P .

We can further simplify the circuit as in Fig. 2 (b) for
stabilizer codes. The expectation value obtained through
this circuit is

1

2
(tr[SjSiρSiO] + tr[SiρSiSjO]). (9)

Thus, by uniformly sampling i, j ∈
{
1, · · · , 2n−k

}
and

taking the average of the distribution, we can also obtain
Eq. (8) since PSi = SiP = P holds.

These methods can be used to virtually detect errors in
noisy quantum circuits. We consider a logical quantum
circuit composed of a state preparation of a logical initial

state ρ0 followed by L logical unitary gate Ul(·) = Ul ·U†
l

(l = 1, · · · , L), and a measurement of an observable O
in the hope of estimating the expectation value of O for
the state ρid = UL ◦ · · · ◦ U1(ρ0). However, we assume
that these logical quantum gates are affected by Marko-
vian noise and that the actual gates are represented as
U ′
l = El ◦ Ul. For simplicity, we ignore state preparation

and measurement (SPAM) errors, but these effects can
easily be reflected. When we can perform quantum error
detection after each gate, we will have

ρdet =
ρ′det

tr[ρ′det]
, (10)

where

ρ′det = P ◦ EL ◦ UL ◦ · · · ◦ P ◦ E1 ◦ U1(ρ0). (11)

Here, we define P(·) = P · P .
In order to obtain the expectation value for ρdet

through VQED, we construct a quantum circuit repre-
sented in Fig. 3. This circuit allows for computing the ex-
pectation values corresponding to the error-detection cir-
cuits by performing Sil gate on the noisy circuit, prepar-
ing a single qubit ancilla initialized to |+⟩, coupling the
ancilla qubit with the noisy circuit through controlled-
Sjl gate, and measuring the ancilla in the X bases. Note
that the frequency of applying these operation for VQED
can be reduced according to the noise level, although we
discuss gate-wise VQED for generality. The state imme-
diately before the measurement of this circuit ρbf reads:

ρbf =
1

2L

∑
pq

|p⟩ ⟨q| ⊗ ρpqij ,

ρpqij = PpLqL
iLjL

◦ EL ◦ UL ◦ · · · ◦ Pp1q1
i1j1

◦ E1 ◦ U1(ρ0),

(12)

where p and q are bitstrings of length L and

Pplql
iljl

(·) = Spl

jl
Sil · SilS

ql
jl
. (13)

Then, the expectation value of the observable X⊗L ⊗ O
in this state is:

⟨X⊗L ⊗O⟩ = tr
[
ρbfX

⊗L ⊗O
]

=
1

2L

∑
p

tr[ρpp+1
ij O]

(14)
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FIG. 3. Quantum circuit for virtual quantum error detection
(VQED).

where 1 is a bit string of length L whose elements are
all 1. When we uniformly sample il, jl ∈

{
1, · · · , 2n−k

}
(1 ≤ l ≤ L) and denote the expectation value under the
probability distribution as ⟨·⟩ij , we can project the noisy
state into the code space after each noisy gate as

⟨ρpp+1
ij ⟩ij = P ◦ EL ◦ UL ◦ · · · ◦ P ◦ E1 ◦ U1(ρ0)

= ρ′det,
(15)

where we use

⟨Pplpl+1
iljl

(·)⟩iljl = ⟨Spl

jl
Sil · SilS

1−pl

jl
.⟩iljl

=

{
⟨Sil · SilSjl⟩iljl (pl = 0)

⟨SjlSil · Sil⟩iljl (pl = 1)

= P · P.

(16)

Thus, the expectation value of the observable O for the
post-selected state ρdet can be represented as:

tr[ρdetO] =

〈
tr
[(

1
2L

∑
pq |p⟩ ⟨q| ⊗ ρpqij

)
X⊗L ⊗O

]〉
ij〈

tr
[(

1
2L

∑
pq |p⟩ ⟨q| ⊗ ρpqij

)
X⊗L ⊗ I

]〉
ij

.

(17)
Therefore, we can perform our VQED in the noisy quan-
tum circuit with the following procedure:

1. For s = 1, · · · , N , repeat the following operation.

(a) Uniformly sample il, jl ∈
{
1, · · · , 2n−k

}
(1 ≤

l ≤ L).

(b) Run the circuit illustrated in Fig. 3.

(c) Record the product of the X measurement as
as and the product of as and O measurement
as bs.

2. Calculate a = 1
N

∑
s as and b = 1

N

∑
s bs.

3. Output b/a.

In this way, with the sampling overhead of N =

O(ε−2 tr[ρ′det]
−2

), we can perform VQED to virtually
detect errors that occurred during the computation
with some fixed accuracy (standard deviation) ε. Note
that while we focus on the stabilizer QEC/QED codes,
our method can be straightforwardly applied to the
stabilizer-based QEM method for the spin and electron
number preservation [23, 27] for more near-term quan-
tum hardware.
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(a) [[4, 1, 2]] stabilizer code

Name Operator
G1 XXXX
G2 ZZZZ
G3 IZZI
ZL ZZII
XL IXXI

(b) [[5, 1, 3]] stabilizer code

Name Operator
G1 XZZXI
G2 IXZZX
G3 XIXZZ
G4 ZXIXZ
ZL ZZZZZ
XL XXXXX

(c) [[7, 1, 3]] stabilizer code

Name Operator
G1 IIIZZZZ
G2 IZZIIZZ
G3 ZIZIZIZ
G1 IIIXXXX
G2 IXXIIXX
G3 XIXIXIX
ZL ZZZZZZZ
XL XXXXXXX

TABLE I. Generators and logical operators for (a) [[4, 1, 2]], (b) [[5, 1, 3]], and (c) [[7, 1, 3]] stabilizer codes.

Note that our VQED protocol circumvents the syn-
drome measurements of stabilizer generators that need
high-fidelity single-shot measurement of ancilla qubits;
our method only measures expectation values of the ob-
servable. Moreover, while quantum error detection re-
quires measurements of n − k stabilizer generators via
Hadamard test circuits shown in Fig. 1, our method only
necessitates a single controlled operations irrespective of
the number of stabilizer generators.

Furthermore, for certain simple error models, the ob-
tained expectation value is robust against noise that oc-
curs in the ancilla qubit. Since we calculate the ex-
pectation value of X for each ancilla, the only terms
of the ancilla that affect Eq. (17) are |0⟩⟨1| and |1⟩⟨0|.
Thus, even if the single qubit depolarizing noise Ep : ρ 7→
(1−p)ρ+pI/2 affects each ancilla during the execution of
controlled-Sjl gate, the numerator and the denominator
of Eq. (17) are only multiplied by (1 − p)L. Therefore,
the value obtained through VQED remains unchanged.
Note that this is also the case even when we consider
the circuit level noise where each CNOT gate and CZ
gate to implement the controlled-Sjl is affected by single
qubit depolarizing noise, since the noisy term represented
as |0⟩⟨0| ⊗ ρ + |1⟩⟨1| ⊗ ρ′, where ρ and ρ′ are the state
of the system qubits where noise may be propagated, is
canceled out when we take the expectation value of X.
The same principle applies to other noise models which
are not biased by Pauli X or Y , such as local dephasing
and amplitude damping noise. We further discuss these
points in Appendix A. We also want to mention that,
by combining the readout error mitigation method with
our method for the ancilla qubits, we can perform high-
fidelity virtual projection onto the code space even under
the existence of measurement errors.

The disadvantages of VQED are that we can only ob-
tain the error-mitigated expectation values, not the quan-
tum state itself as well as quadratically worse sampling
cost for the projection probability tr[ρ′det]. While sam-
pling costs can only be overcome by increased paralleliza-
tion, lightweight quantum phase estimation algorithms
only employing expectation values are proposed [30–33]
in addition to the fact that most of NISQ algorithms use
expectation values. Our VQED methods can be used in
such algorithms.

IV. VIRTUAL IMPLEMENTATION OF
QUANTUM ERROR CORRECTION

We also discuss how to perform quantum error correc-
tion virtually without any syndrome measurements and
feedback operations. The main idea is that the error-
corrected state as in Eq. (4) can be also written as

ρcor =
∑

s∈{−1,1}n−k

P(RsρRs). (18)

Thus, we can virtually correct errors by uniformly sam-
pling s1, · · · , sn−k ∈ {+1,−1}, applying Rs to the noisy
state, virtually projecting the state into the codes pace
using the way mentioned above, and multiplying the re-
sult by 2n−k. However, the sampling cost of this method
scales as 22(n−k), which grows exponentially with the
number of redundant qubits. We may decrease the cost
by limiting the scope of the sum. Let B ⊂ {−1, 1}n
be a subset of highly probable measurement results such
as the measurement results when an error did not occur
or occurred only once. Then, we may approximate the
error-corrected state as

ρcor′ =
1∑

s∈B ps

∑
s∈B

P(RsρRs) (19)

where ps = tr[PRsρRs] represents the probability of
obtaining s at the syndrome measurement. However,
the sampling cost of virtually calculating this state is
|B|2(1/

∑
s∈B ps)

2, which is still significantly higher than

just performing VQED with B = {1}n. Furthermore,
while error detection can detect errors of at most d
qubits, error correction can only correct errors of at most
⌊(d − 1)/2⌋ qubits. This means that even the accuracy
of this virtual implementation of QEC is generally worse
than VQED. Even though these methods may be more
effective than VQED in the case where the noise maps
the state in the code space outside of it with high proba-
bility, finding practical scenarios to utilize these methods
is left as our future work.
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(c) [[7,1,3]], noiseless (d) [[4,1,2]], noisy(a) [[4,1,2]], noiseless (b) [[5,1,3]], noiseless

FIG. 4. Depth L dependence of infidelity 1 − tr[ρdet
∣∣Ψ̄〉〈

Ψ̄
∣∣] = 1 − ⟨Ψ̄|ρdet|Ψ̄⟩ between the output state of the noisy circuit

with VQED ρdet and the noiseless circuit |Ψ̄⟩ for (a) and (d): [[4, 1, 2]], (b): [[5, 1, 3]], and (c): [[7, 1, 3]] stabilizer codes. Panels
(a)-(c) denotes the results when the controlled-stabilizer gates are noiseless and (d) denotes the results when the VQED gadgets
are affected by local depolarizing noise. The “without VQED” line represents infidelity when we did not perform VQED. The
“last gate (SE)” line represents infidelity when we perform VQED only before the measurement, which is just a normal SE,
as in Refs. [24, 25]. The “every 20 gates” and the “every 10 gates” lines represent infidelity when we perform VQED after
every 20 and 10 gates. The “every gate” line represents infidelity when we perform VQED after every gate. The “physical”
line represents the infidelity of a single physical qubit without encoding.

(b) [[5,1,3]], noiseless (c) [[7,1,3]], noiseless (d) [[4,1,2]], noisy(a) [[4,1,2]], noiseless

FIG. 5. Scaling of the sampling cost tr[ρ′det]
−2 with respect to the depth L of the quantum circuit for (a) and (d): [[4, 1, 2]],

(b): [[5, 1, 3]], and (c): [[7, 1, 3]] stabilizer codes. Panels (a)-(c) denotes the results when the controlled-stabilizer gates are
noiseless and (d) denotes the results when the VQED gadgets are affected by local depolarizing noise. The “without VQED”
line represents sampling cost when we did not perform VQED. The “last gate (SE)” line represents sampling cost when we
perform VQED only before the measurement, which is just a normal SE, as in Refs. [24, 25]. The “every 20 gates” and the
“every 10 gates” lines represent the sampling cost when we perform VQED after every 20 and 10 gates. The “every gate” line
represents the sampling cost when we perform VQED after every gate.

V. NUMERICAL SIMULATION

In this section, we numerically evaluate the perfor-
mance of our method for [[4, 1, 2]], [[5, 1, 3]], and [[7, 1, 3]]
stabilizer codes [11, 12, 14]. The generators and logical
operators of these codes are shown in Tabel I. Similar
to the numerical calculation presented in the previous
study on SE [24], we initialize the state ρ0 as the logical
state |0⟩L, and the unitary gate Ul is randomly chosen
from a set of transversal single-qubit gates [29, 34]. We
specify the set of transversal single-qubit gates we use
in Appendix B. We assume that the local depolariz-
ing noise E = E⊗n

p (Ep(ρ) = (1 − np)ρ + pI/2) disturb
the circuit with noise strength p = 0.01 each after the
gate. We numerically calculate the depth L dependence
of the infidelity 1− ⟨Ψ̄|ρdet|Ψ̄⟩ between the output state
of the noisy circuit ρdet and the noiseless circuit |Ψ̄⟩,
and the scaling of the sampling cost tr[ρ′det]

−2 by using

QuTiP [35].

Our results are shown in Fig. 4 and Fig. 5. As shown
in Fig. 4, we can reduce the infidelity using VQED com-
pared to a single physical qubit affected by the error Ep
without encoding. Furthermore, frequent application of
VQED during the circuit execution prevents the noisy
state to be highly mixed on the code space. This allows
us to suppress logical errors that cannot be mitigated by
the conventional SE performed only on the state immedi-
ately before the measurement [24, 25]. We also find that
we can reduce infidelity without performing error detec-
tion after every gate: we can sufficiently mitigate errors
simply by performing VQED after every fixed number of
gates. This fact can be useful when the measurement
time is much longer than the gate execution time. By
comparing infidelity among different codes, we can say
that infidelity becomes smaller as the code distance gets
larger.
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Fig. 5 shows that the sampling cost increases exponen-
tially with the circuit depth L when we perform VQED
frequently. This scaling can be roughly considered to
be given by the square inverse of the probability that a
state in the code space remains in the code space when

the noise is applied; thus we can say N ∼ tr[ρ′det]
−2

=
O((1 − 3

4p)
−2nL). It is noteworthy that the sampling

cost is not significantly influenced by the frequency of
VQED, even when comparing the cases of the conven-
tional SE and VQED applied each after the gate (See the
numerical results up to the depth L = 40, for example).
Meanwhile, it may appear that the sampling cost of SE
approaches a constant value for large L. However, this
is because the accumulated errors increase and the noisy
state approaches a completely mixed state, and thus the
sampling cost converges to N ∼ tr[I/2nP ] = 1

2n−k .
In Fig. 4 (d) and Fig. 5 (d), we also present the per-

formance of VQED for [[4, 1, 2]] stabilizer code when the
VQED gadgets Sil gate and controlled-Sjl gate in Fig.
3 are each affected by the local depolarizing noise E⊗n

p

and E⊗(n+1)
p with the same error rate p = 0.01. See

Appendix C for the results for [[5, 1, 3]] and [[7, 1, 3]] sta-
bilizer codes. In the previous section, we have mentioned
that a wide class of realistic noise that occurred in the
ancilla does not affect the accuracy of VQED. By com-
paring Fig. 4 (a) and Fig. 4 (d), we can also say that even
in the presence of additional noise acting on the system
qubits, VQED still significantly outperforms the unmit-
igated results and the conventional SE. Meanwhile, we
can see from Fig. 5 (a) and Fig. 5 (d) that the sampling
cost increases when we assume that the noise affects the
VQED gadget. This is mainly because the probability
that a state in the code space remains in the space de-
creases due to the additional noise acting on the system
qubits, and the denominator in Eq. (17) is multiplied by
the factor of (1 − p)L. Thus, the sampling cost scales
as N ∼ O((1 − 3

4p)
−6nL(1 − p)−2L). However, these ef-

fects can be circumvented by reducing the frequency of
applying the operation of VQED.

From the above, we can say that our method can be
used effectively by adjusting the code distance or fre-
quency of VQED according to the hardware constraints,
the desired accuracy, or the allowable sampling cost.

VI. DISCUSSION

We propose virtual quantum error detection (VQED)
so that the computation errors during the circuit execu-
tion can be flexibly suppressed by using additional two-
qubit operations and measurements in the X basis. We
verify in the numerical simulations that our virtual quan-
tum error detection protocol allows for the realization
of significantly higher-fidelity calculation of expectation
values, compared with the conventional symmetry ex-
pansion method, at the cost of sampling costs. We also
discuss the virtual implementation of quantum error cor-
rection; however, even though the fidelity of the quantum

state after quantum error correction is generally lower
than that for quantum error detection, the sampling cost
of virtual implementation of quantum error correction
becomes larger than VQED.
Although we mainly discuss the stabilizer codes based

on the Pauli group, we can apply our method to other
types of codes such as rotation symmetric bosonic codes
(RSBCs) [36] as well. In Ref. [26], symmetry expan-
sion in RSBCs is proposed, but it is restricted to state
preparation and immediately before measurement. By
considering the rotation symmetry operators rather than
Pauli symmetries, we can also perform virtual quantum
error detection for RSBCs, which is a significant gener-
alization of Ref. [26]. In this case, we need controlled-
rotation gates, which is implemented by the dispersive
interactions [37] between the resonator and the ancilla
qubit.
Even after the application of VQED, there remains

a finite logical error, e.g., due to the limitations of
code distances. Therefore, the efficient combination of
VQED with other QEM methods, e.g, purification-based
QEM [38–43], will also be an important research direc-
tion for the realization of even more accurate quantum
computing. Also, because VQED can be regarded as a
QEM method implemented on the code space, the re-
lationship between VQED and other hybrid QEM/QEC
methods are worth exploring [30, 44–46].
Experimental implementation of VQED is also an im-

portant direction for future work. The VQED circuit
we propose in Fig. 3 requires connectivity between
the ancilla qubit and all the qubits constructing logical
qubits, and we generally need swap operations to im-
plement controlled-stabilizer operations in the case of re-
stricted connectivity, e.g., current superconducting hard-
ware. However, we can relax the requirement by as-
signing different ancilla qubits for each logical qubit and
flexibly choosing the arrangement of the ancilla qubits
according to the constraints of the experiment. For
example, for trapped ion systems, all-to-all connectiv-
ity is a relatively reasonable assumption [47]; therefore,
one ancilla qubits may be iteratively used for all logical
qubits. Meanwhile, superconducting qubit devices have
restricted connectivity [6], and it may be better to assign
different ancilla qubits to each logical qubit.
Finally, information-theoretic analysis of QEM is one

of the intensively studied topic [48–53]. As far as we
know, symmetries of the system is not explicitly consid-
ered in these works while our work shows that they can
play a crucial role for QEM. Therefore, the construction
of an information-theoretic analysis of QEM incorporat-
ing the symmetries may shed light on e.g., the character-
ization cost of the noise model for performing QEM.

ACKNOWLEDGMENTS

This work is supported by PRESTO, JST, Grant
No. JPMJPR1916, JPMJPR2114, JPMJPR2119;



8

CREST, JST, Grant No. JPMJCR1771; MEXT Q-LEAP
Grant No. JPMXS0120319794 and JPMXS0118068682,
JST Moonshot R&D, Grant No. JPMJMS2061, COI-
NEXT program Grant No. JPMJPF2221, JST CREST
Grant No. JPMJCR23I4, and JST ERATO Grant

Number JPMJER2302. K.T. is supported by Worldlead-
ing Innovative Graduate Study Program for Materials
Research, Industry, and Technology (MERITWINGS)
of the University of Tokyo.

[1] J. Preskill, Quantum 2, 79 (2018).
[2] S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin,

and X. Yuan, Reviews of Modern Physics 92, 015003
(2020).

[3] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin,
S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan,
L. Cincio, et al., Nature Reviews Physics 3, 625 (2021).

[4] J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li,
E. Grant, L. Wossnig, I. Rungger, G. H. Booth, et al.,
Physics Reports 986, 1 (2022).

[5] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug,
S. Alperin-Lea, A. Anand, M. Degroote, H. Heimo-
nen, J. S. Kottmann, T. Menke, et al., arXiv preprint
arXiv:2101.08448 (2021).

[6] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin,
R. Barends, R. Biswas, S. Boixo, F. G. Brandao, D. A.
Buell, et al., Nature 574, 505 (2019).

[7] A. Kandala, A. Mezzacapo, K. Temme, M. Takita,
M. Brink, J. M. Chow, and J. M. Gambetta, Nature
549, 242 (2017).

[8] L. S. Madsen, F. Laudenbach, M. F. Askarani, F. Rortais,
T. Vincent, J. F. Bulmer, F. M. Miatto, L. Neuhaus,
L. G. Helt, M. J. Collins, et al., Nature 606, 75 (2022).

[9] S. J. Devitt, W. J. Munro, and K. Nemoto, Reports on
Progress in Physics 76, 076001 (2013).

[10] D. A. Lidar and T. A. Brun, Quantum error correction
(Cambridge university press, 2013).

[11] M. Grassl, T. Beth, and T. Pellizzari, Physical Review
A 56, 33 (1997).

[12] A. M. Steane, Physical Review Letters 77, 793 (1996).
[13] P. W. Shor, Physical review A 52, R2493 (1995).
[14] R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek,

Physical Review Letters 77, 198 (1996).
[15] R. Hicks, B. Kobrin, C. W. Bauer, and B. Nachman,

Physical Review A 105, 012419 (2022).
[16] J. M. Günther, F. Tacchino, J. R. Wootton, I. Tavernelli,

and P. K. Barkoutsos, Quantum Science and Technology
7, 015009 (2021).

[17] In this work, we use the term “single-shot measurement”
to represent the measurements that are performed only
once, rather than repeating the measurement many times
in order to obtain the expectation value of some observ-
able. Note that the meaning is different from the term
“single-shot error correction” [54].

[18] K. Temme, S. Bravyi, and J. M. Gambetta, Physical
review letters 119, 180509 (2017).

[19] Y. Li and S. C. Benjamin, Physical Review X 7, 021050
(2017).

[20] S. Endo, S. C. Benjamin, and Y. Li, Physical Review X
8, 031027 (2018).

[21] S. Endo, Z. Cai, S. C. Benjamin, and X. Yuan, Journal
of the Physical Society of Japan 90, 032001 (2021).

[22] Z. Cai, R. Babbush, S. C. Benjamin, S. Endo, W. J.
Huggins, Y. Li, J. R. McClean, and T. E. O’Brien, arXiv

preprint arXiv:2210.00921 (2022).
[23] X. Bonet-Monroig, R. Sagastizabal, M. Singh, and

T. O’Brien, Physical Review A 98, 062339 (2018).
[24] J. R. McClean, Z. Jiang, N. C. Rubin, R. Babbush, and

H. Neven, Nature communications 11, 1 (2020).
[25] Z. Cai, Quantum 5, 548 (2021).
[26] S. Endo, Y. Suzuki, K. Tsubouchi, R. Asaoka, K. Ya-

mamoto, Y. Matsuzaki, and Y. Tokunaga, arXiv
preprint arXiv:2211.06164 (2022).

[27] S. McArdle, X. Yuan, and S. Benjamin, Physical review
letters 122, 180501 (2019).

[28] M. A. Nielsen and I. Chuang, “Quantum computation
and quantum information,” (2002).

[29] D. Gottesman, Stabilizer codes and quantum error cor-
rection (California Institute of Technology, 1997).

[30] Y. Suzuki, S. Endo, K. Fujii, and Y. Tokunaga, PRX
Quantum 3, 010345 (2022).

[31] L. Lin and Y. Tong, PRX Quantum 3, 010318 (2022).
[32] K. Wan, M. Berta, and E. T. Campbell, Physical Review

Letters 129, 030503 (2022).
[33] R. Zhang, G. Wang, and P. Johnson, Quantum 6, 761

(2022).
[34] D. Gottesman, arXiv preprint arXiv:1610.03507 (2016).
[35] J. R. Johansson, P. D. Nation, and F. Nori, Computer

Physics Communications 183, 1760 (2012).
[36] A. L. Grimsmo, J. Combes, and B. Q. Baragiola, Phys-

ical Review X 10, 011058 (2020).
[37] A. Blais, A. L. Grimsmo, S. M. Girvin, and A. Wallraff,

Reviews of Modern Physics 93, 025005 (2021).
[38] W. J. Huggins, S. McArdle, T. E. O’Brien, J. Lee, N. C.

Rubin, S. Boixo, K. B. Whaley, R. Babbush, and J. R.
McClean, Physical Review X 11, 041036 (2021).

[39] B. Koczor, Physical Review X 11, 031057 (2021).
[40] M. Huo and Y. Li, Physical Review A 105, 022427

(2022).
[41] N. Yoshioka, H. Hakoshima, Y. Matsuzaki, Y. Tokunaga,

Y. Suzuki, and S. Endo, Physical Review Letters 129,
020502 (2022).

[42] A. Seif, Z.-P. Cian, S. Zhou, S. Chen, and L. Jiang, PRX
Quantum 4, 010303 (2023).

[43] T. E. O’Brien, S. Polla, N. C. Rubin, W. J. Huggins,
S. McArdle, S. Boixo, J. R. McClean, and R. Babbush,
PRX Quantum 2, 020317 (2021).

[44] Y. Xiong, D. Chandra, S. X. Ng, and L. Hanzo, IEEE
Access 8, 228967 (2020).

[45] C. Piveteau, D. Sutter, S. Bravyi, J. M. Gambetta, and
K. Temme, Physical Review Letters 127, 200505 (2021).

[46] M. Lostaglio and A. Ciani, Physical Review Letters 127,
200506 (2021).

[47] C. Figgatt, A. Ostrander, N. M. Linke, K. A. Landsman,
D. Zhu, D. Maslov, and C. Monroe, Nature 572, 368
(2019).

[48] R. Takagi, Physical Review Research 3, 033178 (2021).



9

[49] R. Takagi, S. Endo, S. Minagawa, and M. Gu, npj Quan-
tum Information 8, 114 (2022).

[50] R. Takagi, H. Tajima, and M. Gu, arXiv preprint
arXiv:2208.09178 (2022).

[51] K. Tsubouchi, T. Sagawa, and N. Yoshioka, arXiv
preprint arXiv:2208.09385 (2022).

[52] H. Hakoshima, Y. Matsuzaki, and S. Endo, Physical
Review A 103, 012611 (2021).

[53] Y. Quek, D. S. França, S. Khatri, J. J. Meyer, and J. Eis-
ert, arXiv preprint arXiv:2210.11505 (2022).

[54] H. Bomb́ın, Physical Review X 5, 031043 (2015).

Appendix A: Robustness against the noise in ancilla
qubits

In this section, we discuss the robustness of the VQED
gadget against the noise in ancilla qubits. In order to
perform Si or controlled-Sj gates in the VQED gadget,
we need to perform Pauli or controlled-Pauli gates as in
Fig. 6. Here, let us assume that the ancilla qubit is
noisy and affected by the single-qubit depolarizing noise
Ep : ρ 7→ (1−p)ρ+pI/2 every time we perform controlled-
Pauli gates. If the error occurred on the controlled-Pauli
gates, the error propagates to the system qubits and may
cause an undetectable error. This may seem to ruin the
performance of VQED. However, our VQED protocol is
not based on single-shot stabilizer measurements that are
highly sensitive to such noise; our method only measures
the expectation value of observables, and thus the effect
of the error on the ancilla qubits can be removed.

When we apply the noisy VQED gadget as in Fig. 6
to the state ρ, the state before the measurement will be

(1− p)w(Sj)

2

(
|0⟩⟨0| ⊗ SiρSi + |1⟩⟨1| ⊗ SjSiρSiSj

+ |1⟩⟨0| ⊗ SjSiρSi + |0⟩⟨1| ⊗ SiρSiSj

)
+ |0⟩⟨0| ⊗ ρ′ + |1⟩⟨1| ⊗ ρ′′,

(A1)

where w(Sj) is the Pauli weight of Sj (the number of
Pauli operator in Sj) and ρ′ and ρ′′ are unnormalized
noisy quantum states in the system qubits. By inserting
additional noise in the ancilla qubits before the measure-
ment, we can further convert this state to

(1− p)n

2

(
|0⟩⟨0| ⊗ SiρSi + |1⟩⟨1| ⊗ SjSiρSiSj

+ |1⟩⟨0| ⊗ SjSiρSi + |0⟩⟨1| ⊗ SiρSiSj

)
+ |0⟩⟨0| ⊗ ρ′′′ + |1⟩⟨1| ⊗ ρ′′′′,

(A2)

where ρ′′′ and ρ′′′′ are also unnormalized noisy quantum
states in the system qubits. When we take the expecta-
tion value of the operator X⊗O for this state, we obtain

(1− p)n

2
(tr[SjSiρSiO] + tr[SiρSiSjO]), (A3)

and by uniformly sampling i, j ∈
{
1, · · · , 2n−k

}
and tak-

ing the average of the distribution, we obtain

(1− p)n tr[PρPO]. (A4)

| ⟩+ &

& +

& +

& +

& +

ℰ) ℰ) ℰ) ℰ)

FIG. 6. Gate-based decomposition of the VQED gadget in
Fig. 2 (b) for [[4, 1, 2]] stabilizer code with Si = XXXX and
Sj = ZZZZ. We assume that the single-qubit depolarizing
noise Ep : ρ 7→ (1− p)ρ+ pI/2 affects the ancilla qubit every
time we perform controlled-Pauli gates.

Thus, even under the existence of noise on the ancilla
qubit, we can still calculate the expectation value corre-
sponding to the post-selected state ρdet as

tr[ρdetO] =
(1− p)n tr[PρPO]

(1− p)n tr[PρP ]
. (A5)

In the same way, we can say that the value obtained
through VQED in Eq. (17) remains unchanged even
under the existence of such noise, since the numerator
and the denominator of Eq. (17) are only multiplied by
(1−p)nL. The only change to the performance of VQED
is the slight increase in the sampling overhead from N =

O(ε−2 tr[ρ′det]
−2

) to N = O(ε−2(1− p)−2nL tr[ρ′det]
−2

).
The essential point of this robustness is that the noisy

term |0⟩⟨0| ⊗ ρ′′′ + |1⟩⟨1| ⊗ ρ′′′′ in Eq. (A2) is removed
when we take the expectation value of X for the ancilla
qubit. We note that the same principle applies to other
noise models that are not biased by Pauli X or Y , such
as local dephasing and amplitude damping noise. We
also note that the noise model we used for the VQED
gadget in our numerical simulation is different from what
we consider in this section: instead of assuming that the
noise affects the ancilla qubits every after the execution
of the controlled-Pauli gates, we assumed that the noise
affects both the system and ancilla qubits every after the
execution of Si and controlled-Sj gates.

Appendix B: Transversal single-qubit gates in
stabilizer codes

In this section, we clarify the sets of transversal single-
qubit gates we use in the numerical simulation. For
[[4, 1, 2]] stabilizer code, we use a set of single-qubit Pauli
gates as a set of transversal single-qubit gates [34]. For
[[5, 1, 3]] stabilizer code, we use {X,Y, Z, SH} as a set of
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(b) [[7,1,3]], noisy(a) [[5,1,3]], noisy

FIG. 7. Depth L dependence of infidelity 1− tr[ρdet
∣∣Ψ̄〉〈

Ψ̄
∣∣] = 1− ⟨Ψ̄|ρdet|Ψ̄⟩ between the output state of the noisy circuit with

VQED ρdet and the noiseless circuit |Ψ̄⟩ for (a): [[5, 1, 3]] and (b): [[7, 1, 3]] stabilizer codes. All of the panels denote the results
when the VQED gadgets are affected by local depolarizing noise. The “without VQED” line represents the infidelity when we
did not perform VQED. The “last gate (SE)” line represents infidelity when we perform VQED only before the measurement,
which is just a normal SE, as in Refs. [24, 25]. The “every 20 gates” and the “every 10 gates” lines represent infidelity when
we perform VQED after every 20 and 10 gates. The “every gate” line represents infidelity when we perform VQED after every
gate. The “physical” line represents the infidelity of a single physical qubit without encoding.

(a) [[5,1,3]], noisy (b) [[7,1,3]], noisy

FIG. 8. Scaling of the sampling cost tr[ρ′det]
−2 with respect to the depth L of the quantum circuit for (a): [[5, 1, 3]] and (b):

[[7, 1, 3]] stabilizer codes. All of the panels denote the results when the VQED gadgets are affected by local depolarizing noise.
The “without VQED” line represents sampling cost when we did not perform VQED. The “last gate (SE)” line represents
sampling cost when we perform VQED only before the measurement, which is just a normal SE, as in Refs. [24, 25]. The
“every 20 gates” and the “every 10 gates” lines represent the sampling cost when we perform VQED after every 20 and 10
gates. The “every gate” line represents the sampling cost when we perform VQED after every gate.

transversal single-qubit gates [29]. For [[7, 1, 3]] stabilizer
code, we use a set of single-qubit Clifford gates as a set
of transversal single-qubit gates [29].

Appendix C: Numerical simulation of VQED when
the VQED gadgets are noisy

In this section, we present the performance of VQED
for [[5, 1, 3]] and [[7, 1, 3]] stabilizer codes when the VQED
gadget Sil gate and controlled-Sjl gate in Fig. 3 are each

affected by the local depolarizing noise E⊗n
p and E⊗(n+1)

p

with the same error rate p = 0.01. Our results are shown
in Fig. 7 and Fig. 8. The results for [[5, 1, 3]] and [[7, 1, 3]]
stabilizer codes are qualitatively similar to those for the
[[4, 1, 2]] stabilizer codes shown in Fig. 4 (d) and Fig. 5
(d).


