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We prove an entanglement area law for a class of 1D quantum systems involving infinite-
dimensional local Hilbert spaces. This class of quantum systems includes bosonic models and lattice
gauge theories in one spatial dimension. Our proof relies on new results concerning the robustness of
the ground state and spectral gap to the truncation of Hilbert space, applied within the approximate
ground state projector (AGSP) framework. Our result provides theoretical justification for using
tensor networks to study the ground state properties of quantum systems with infinite local degrees
of freedom.

Introduction.— It has long been conjectured
that for a wide range of quantum systems de-
scribed by gapped local Hamiltonians, the en-
tanglement entropy with respect to any biparti-
tion of the system scales as the boundary area.
Such entanglement entropy scaling is known as
the entanglement area law. An entanglement
area law for the ground state of 1D quantum
spin systems was first proved in the seminal pa-
per by Hastings [25], and the scaling with re-
spect to the spectral gap was improved by later
work [6, 7]. Entanglement area laws have also
been proved for degenerate ground states [8, 16]
and low-lying eigenstates [8]. Limited results
are also available for higher-dimensional quan-
tum systems, especially for the case where the
Hamiltonian is frustration-free [3, 5]. For 1D
systems, whether a quantum state satisfies an
entanglement area law is an important crite-
rion for determining whether it can be approxi-
mated by a matrix-product state [22, 43], which
is a key component in the density-matrix renor-
malization group (DMRG) algorithm [23, 46].
Using theoretical tools constructed for proving
the 1D area law, polynomial-time algorithms for
computing the ground state of 1D gapped local
Hamiltonians were given [8, 32].

The aforementioned results are all proved
in the setting of quantum spin systems, i.e.,
each lattice site is associated with a finite-
dimensional local Hilbert space. However, there

are many quantum systems of practical interest
that involve infinite-dimensional local Hilbert
spaces. Examples of such include bosonic sys-
tems and gauge theories. When a quantum sys-
tem involves bosons, each bosonic mode corre-
sponds to an infinite-dimensional local Hilbert
space representing the occupation number of
the mode. A similar situation arises when we
consider lattice gauge theories (LGTs), with
the Hamiltonians constructed according to [30].
Given a fixed lattice discretization of a gauge
theory, each gauge link (an edge of the lattice)
has a local Hilbert space that is spanned by all
the elements of the symmetry group, which is
infinite-dimensional when the symmetry group
contains infinitely many elements. The gauge
theories that are of the greatest interests, i.e.,
the U(1), SU(2), and SU(3) theories, all fall into
this category.

Tensor network methods have been exten-
sively applied to studying LGTs to obtain inter-
esting numerical results [10–13, 35, 36, 38, 39].
The entanglement area law is a prerequisite for
the ground state to be efficiently approximable
by a tensor network state, and hence our result
for LGTs provides a theoretical foundation for
these numerical results from previous work.

There are two ways in which standard area
law techniques are insufficient for our current
setting: Firstly, the known area laws exhibit
a bound which depends on the dimension of
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the local Hilbert space. The state-of-the-art 1D
area law result bounds the entanglement entropy
as O(∆−1 log3(d)) where d is the local Hilbert
space dimension and ∆ is the spectral gap [7, 8].
This becomes infinity when the local Hilbert
space is infinite-dimensional. Secondly, in quan-
tum spin systems all local Hamiltonian terms
can be rescaled to have operator norm at most
1, whereas in the models we consider in this work
the local Hamiltonian terms can be unbounded
which precludes such a normalization.
For certain non-interacting bosonic sys-

tems involving infinite-dimensional local Hilbert
spaces the entanglement area law has been
proven, for example when the system is exactly
solvable [9, 17–19, 21, 37]. However, a general
methodology is unavailable for establishing area
laws for quantum systems with infinite local de-
grees of freedom.
This letter gives an entanglement area law

for a class of 1D quantum systems that in-
volve bosons or arise from gauge theories. Our
quantum systems of interest involve infinite-
dimensional local Hilbert spaces. Examples of
such quantum systems include the Hubbard-
Holstein model, U(1) and SU(2) LGTs, all of
which are defined on a 1D chain. For these mod-
els, we can introduce a notion of local quantum
number, which is the occupation number in the
bosonic case, the electric field value in the U(1)
LGT, and the total angular momentum in the
SU(2) LGT.
The abstract model and main result.— We

consider a system on a line of length N +1 with
a geometrically local Hamiltonian of the form
H = H1 + H2 + · · · + HN , where Hx acts on
sites x − 1 and x. At each site x we have lo-
cal observable λx, which we call the local quan-
tum number. The conditions for our results are
stated in terms of the following quantities.

Definition 1.

1. Let Π
(x)
S = 1S(λx) be the spectral projector

for λx corresponding to eigenvalues in the
set S.

2. For cutoff Λ ≥ 0 define the truncated local
Hilbert space dimension of a site x to be

d(Λ) = rank(Π
(x)
[−Λ,Λ]).

3. For cutoff Λ ≥ 0 define the truncated norm
of the local Hamiltonian Hx constrained to

[−Λ,Λ] to be N (Λ) = maxx ‖HxΠ
(x)
[−Λ,Λ]‖

where ‖ · ‖ is the spectral norm and the
maximum is over sites x.

We require that the truncated local norm and
Hilbert space dimension of the local Hamilto-
nian grow at most polynomially with with the
cutoff Λ.

Assumption 2. The maximum truncated lo-
cal dimension d(Λ) and norm N (Λ) satisfy
d(Λ), N (Λ) = O(poly(Λ)). Also 〈|λx|〉 = O(1)
where 〈·〉 denotes the ground state expectation
value.

Following [41] we also assume a site-
dependent decomposition of the global Hamil-
tonian into a quantum number-preserving part
HR and a quantum number-modifying partHW .
As will be explained later, these assumptions are
satisfied by a variety of quantum systems, to
which our result applies.

Assumption 3 (Growth of local quantum num-
bers). There exist non-negative real-valued con-
stants χ and r such that, for any x, the Hamil-
tonian can be decomposed as

H = H
(x)
R +H

(x)
W , (1)

where H
(x)
R and H

(x)
W satisfy (for Π

(x)
λ ≡ Π

(x)
{λ})

[H
(x)
R ,Π

(x)
λ ] = 0 for all λ, (2a)

Π
(x)
λ H

(x)
W Π

(x)
λ′ = 0, if |λ− λ′| > 1, (2b)

‖H(x)
W Π

(x)
[−Λ,Λ]‖ ≤ χ(Λ + 1)r, (2c)

for all x = 1, 2, . . . , N .

Theorem (Main result). For the gapped ground
state of any Hamiltonian H satisfying Assump-
tions 2 and 3, in particular the 1D Hubbard-
Holstein model, or the 1D U(1) or SU(2) LGTs,
the entanglement entropy across a cut scales as
O(poly(∆−1)), where ∆ is the spectral gap, as-
suming that all coefficients in the Hamiltonian
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remain constant. In particular, this entangle-
ment entropy scaling is independent of the sys-
tem size.

Background on AGSPs.— The proof of our re-
sult uses the approximate ground state projec-
tor (AGSP) framework developed in [6, 7]. An
AGSP is an operator A which leaves the tar-
get state (i.e., ground state) |Ψ〉 invariant and
satisfies ‖A |Φ〉 ‖ ≤ σ for |Φ〉 ⊥ |Ψ〉. When R
is an upper bound on the entanglement rank of
A across the cut of interest we call A a (σ,R)-
AGSP. A good AGSP satisfies that Rσ ≤ 1/2
and ensures that the ground state satisfies an
entanglement entropy bound O(logR). One can
repeatedly apply such an AGSP to a product
state, and thus getting a sequence of quantum
states that are increasingly entangled and con-
verge to the ground state. This helps us quan-
tify how much entanglement is needed to ap-
proximate the ground state, and we can there-
fore bound its entanglement entropy. In essence
the task of proving the area law thus amounts
to constructing a good AGSP [6]. In practice
there is the additional complication from the
fact that for a frustrated Hamiltonian and an
AGSP constructed using truncations, the tar-
get space slightly differs from the actual ground
state [7], in which case is suffices to construct a
sequence of AGSPs [2, 7].

We apply the local truncations Π
(x)
[−Λ,Λ] to

bound the local quantum number, where Λ is
the truncation threshold, and thereby obtain a
spin system with finite local dimension. Apply-
ing existing area law results would prove a Λ-
dependent area law for the ground state of the
resulting system but not for our original sys-
tem because the ground state was perturbed
in the truncation process. We therefore aim
to obtain an increasing sequence of values Λn

such that the local truncation at level Λn per-
turbs the ground state at most a distance δn
where

∑∞
n=1 nδn < ∞, and such that the per-

turbed ground state has a (σn, Rn)-AGSP where
Rnσn ≤ 2−n and logRn = O(n poly(1/∆)).To
achieve this we show that for a modified Hamil-
tonian H̃ with spectral gap ∆̃, ∆̃/‖H̃‖ is at least

(∆/ logn)k for some constant power k while
the ground state of H̃ is δn-close to that of
H . Achieving such a ratio ∆̃/H̃ in turn re-
quires choosing the local truncations and the re-
sulting effective local dimensions to be at level
Λn, d(Λn) = poly(1/∆)polylog(n).

A local quantum number tail bound recently
obtained in [41] tells us that for the relevant class
of quantum systems, a spectrally isolated en-
ergy eigenstate can be well-approximated by a
truncated state with low local quantum num-
bers. This lets us choose an effective local
Hilbert space with finite dimensions. We show
in [1, Theorem 9] that the truncation changes
the ground state only by an exponentially small
amount. This is similar to what is known as the
robustness theorem [7, Theorem 6.1].

It is tempting to attempt to prove an area
law for unbounded quantum systems by plug-
ging the eigenstate tail bound from [41] directly
into the area law result for spin systems [7].
This näıve strategy fails in our setting because
the tail bound from [41] only guarantees the
proximity of the quantum states before and af-
ter truncation, but not the proximity of the
corresponding entanglement entropies. In the
finite-dimensional setting, one could invoke the
Fannes’ inequality to estimate the entanglement
entropy difference [45, 47], but its explicit de-
pendence on the dimension of the Hilbert space
will undo the area law scaling for unbounded
quantum systems. The main technical contri-
bution of our paper is overcome these complica-
tions by giving a careful truncation of the local
Hilbert space while controlling the entanglement
entropy of the ground state.

Mean local quantum number bounds.— In the
course of our proof we show that the mean ab-
solute value of the local quantum number can
be bounded independently of the system size
for many quantum systems without translation
symmetry [1, Section III]. This bound is of in-
dependent interest as it can be applied to many
other situations. For example, it helps shed
light on the difficulty of simulating spin-boson
in the sub-Ohmic regime [44]. From [1, Corol-
lary 7] (which can be generalized to the spin-
boson model without modification) it can be
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seen that a large occupation number cut-off is
required when the ratio between the coupling
strength and energy of the bosonic mode is large,
and this is precisely what happens when the
spin-boson model is in the sub-Ohmic regime, in
which this ratio is exponentially diverging dur-
ing the numerical renormalization group itera-
tion, as can be seen from [14, Eq. (13)]. This
divergence does not happen for the Ohmic and
super-Ohmic cases.

Application to 1D U(1) LGT.— Our result
applies to a wide range of physically rele-
vant quantum systems, including the Hubbard-
Holstein model and the U(1) and SU(2) LGTs.
In [41, Section I] it is discussed how they all sat-
isfy the Assumption 3. For concreteness, we will
discuss in detail how the U(1) LGT fits into the
framework of our current work.

In the 1D U(1) LGT, the system consists of
a chain of N nodes with N − 1 links between
adjacent nodes. We denote each node by x, and
the links by the node on its left end. The links
are sometimes called gauge links.

On each node x we have a fermionic mode
whose annihilation operator is denoted by φx.
Each link consists of a planar rotor, whose con-
figuration can be described by an angle θ ∈
[0, 2π]. The local Hilbert space is the vector
space of square-integrable functions on U(1).
An orthonormal basis of the local Hilbert space
can be chosen to be the Fourier basis (the elec-
tric basis). More specifically we denote by |k〉
the Fourier mode (2π)−1/2eikθ , and {|k〉 : k ∈
Z} form the basis we need.

We further define the operators Ex and Ux,
which act on the vector space of the links,
through Ex |k〉 = k |k〉 , Ux |k〉 = |k − 1〉 . The
Hamiltonian for U(1) LGT can then be de-
scribed in terms of these operators via

H = HM +HGM +HE , (3)

where the three terms HM , HGM , HE describe
the fermionic mass (using staggered fermions
[30]), the gauge-matter interaction, and the elec-

tric energy respectively,

HM = gM
∑

x

(−1)xφ†xφx,

HGM = gGM

∑

x

(φ†xUxφx+1 + φ†x+1U
†
xφx),

HE = gE
∑

x

E2
x.

(4)

For LGTs, physical states need to satisfy
Gauss’s law: Gx |Φ〉 = 0 for all physical states
|φ〉 where Gx = Ex − Ex−1 − ρx, ρx = φ†xφx +
((−1)x − 1)/2. To ensure that the ground state
of the Hamiltonian satisfy Gauss’s law, we add a
penalty term to the original Hamiltonian so that
it becomes H = HM +HGM +HE +λG

∑

xG
2
x,

where we assume that λG = O(1).

We can first write the Hamiltonian as a sum of
local termsH = H1+H2+· · ·+HN , whereHx =
gM (−1)xφ†xφx+ gGM (φ†xUxφx+1+φ

†
x+1U

†
xφx)+

gEE
2
x +λGG

2
x+1. We consider the site x to con-

sist of both the node x and the link x. The trun-
cation is done through projecting in the elec-

tric basis: we define Π
(x)
[−Λ,Λ] =

∑

|k|≤Λ |k〉 〈k|.
The truncated local Hilbert space is therefore
spanned by {|k〉 : |k| ≤ Λ} ⊗ {|0〉 , |1〉}, where
|0〉 , |1〉 are the states of the fermionic mode on
node x. We define the local quantum number
λx = Ex, which is consistent with this trunca-
tion.

Now let us first check Assumption 2. The
dimension of the truncated local Hilbert space
is clearly d(Λ) = 2(2Λ + 1). For N (Λ) =

‖HxΠ
(x)
[−Λ,Λ]‖, direct calculation shows N (Λ) =

O(Λ2). Verifying that 〈|λx|〉 = O(1) is a non-
trivial task, which we perform in [1, Section III]
(for the SU(2) LGT and the Hubbard-Holstein
model as well).

Next we check Assumption 3. To decompose

the Hamiltonian into H
(x)
R and H

(x)
W , we ob-

serve that the only term that changes the local
quantum number on site x is gGM (φ†xUxφx+1 +

φ†x+1U
†
xφx), which we define to be H

(x)
W . Be-

cause 〈k|Ux|k′〉 = 0 if |k − k′| > 1, (2b) is sat-

isfied. Because in this example H
(x)
W is bounded

even without truncation, (2c) is true by choosing
χ = 2|gGM | and r = 0. All the other terms are
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collected into H
(x)
R . Note that H

(x)
R acts non-

trivially on site x (through the term gEE
2
x), but

it does not change the local quantum number.
Therefore by this definition (2a) is satisfied.

By checking the Assumptions 2 and 3, we can
see that our main result [1, Theorem 18] applies
to the 1D U(1) LGT, and therefore the area law
is established provided that the spectral gap re-
mains bounded away from 0 as the system size
increases. A similar procedure can be applied to
the Hubbard-Holstein model and SU(2) LGT in
1D as well.

Possible extensions.— In this work we fo-
cused on systems with nearest-neighbor cou-
pling, but it is easy to generalize to systems
with finite interaction range, e.g., a Hubbard-
Holstein model with next-nearest-neighbor in-
teraction, by grouping sites and applying the re-
sult to the chain of enlarged sites. Area law in
the presence of long-range interaction is largely
an open problem even for spin systems [24]. It
is also worth considering how the result in this
work can be generalized to degenerate ground
state or low-energy states as in Ref. [8]. One
might also consider analyzing the growth of en-
tanglement during time evolution for these mod-
els, which has been studied numerically using
tensor network methods [15, 20].

Conclusion.— We have rigorously established
an entanglement area law for the gapped ground
state of 1D quantum systems with infinite-
dimensional local Hilbert spaces under natural
assumptions on the local quantum numbers. In
particular, our entanglement area law applies
to U(1) and SU(2) LGTs and the Hubbard-
Holstein model in 1D, and the result may be
adapted to handle other bosonic and gauge the-
ory models of interest. Proving the entangle-
ment area law is an important step toward jus-
tifying the use of tensor network methods in
classical simulation of quantum systems. The
proof techniques also provide many useful tools
for designing a rigorous RG algorithm for these
quantum systems, which should be investigated
by future work.

Our result relies on the local quantum num-
ber tail bound proved in Ref. [41], which in

turn follows from technical tools for analyzing
the dynamical simulation of unbounded Hamil-
tonians on digital quantum computers. Along
this line, previous work such as [4, 31, 33, 42]
have found other applications of quantum simu-
lation techniques, to solving problems in quan-
tum many-body physics beyond quantum com-
puting. We consider applications of this kind to
be very interesting, as they demonstrate impor-
tant byproducts of the study of quantum algo-
rithms which are of interest independently of the
hope of building scalable quantum computers.
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APPENDIX

1D GAUGE THEORIES AND BOSONIC SYSTEMS

We now introduce some specific quantum systems that we will study and extract the common
structure of these systems. These quantum systems are all discussed in [41, Section I]. We first
consider the 1D Hubbard-Holstein model [26], a model describing electron-phonon interactions.

The Hubbard-Holstein model. This model is defined on a 1D chain of N nodes. Each node in the
lattice, indexed by x, contains two fermionic modes (spin up and down) and a bosonic mode. The
Hamiltonian is

H = Hf +Hfb +Hb, (5)

where Hf is the Hamiltonian of the Fermi-Hubbard model [29] acting on only the fermionic modes,

Hfb = g

N
∑

x=1

(b†x + bx)(nx,↑ + nx,↓ − 1), (6)

is the boson-fermion coupling, and

Hb = ω0

N
∑

x=1

b†xbx,

the purely bosonic parts of the Hamiltonian. Here, bx is the bosonic annihilation operator on node
x, and nx,σ is the fermionic number operator for node x and spin σ.

For gauge theories, we consider the Hamiltonian formulation of the U(1) and SU(2) LGTs [30] in
one dimension. The U(1) LGT is also known as the Schwinger model.

The U(1) lattice gauge theory. The system consists of a chain of N nodes with N−1 links between
adjacent nodes. We denote each node by x, and the links by the node on its left end. The links are
sometimes called gauge links.

On each node x we have a fermionic mode whose annihilation operator is denoted by φx. Each
link consists of a planar rotor, whose configuration can be described by an angle θ ∈ [0, 2π]. The
local Hilbert space is the vector space of square-integrable functions on U(1). An orthonormal basis
of the local Hilbert space can be chosen to be the Fourier basis. More specifically we denote by |k〉
the Fourier mode (2π)−1/2eikθ, and {|k〉 : k ∈ Z} form the basis we need.

We further define the operators Ex and Ux, which act on the vector space of the links, through

Ex |k〉 = k |k〉 , Ux |k〉 = |k − 1〉 . (7)

The Hamiltonian for U(1) LGT can then be described in terms of these operators via

H = HM +HGM +HE , (8)
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where the three terms HM , HGM , HE describe the fermionic mass (using staggered fermions [30]),
the gauge-matter interaction, and the electric energy respectively,

HM = gM
∑

x

(−1)xφ†xφx,

HGM = gGM

∑

x

(φ†xUxφx+1 + φ†x+1U
†
xφx),

HE = gE
∑

x

E2
x.

(9)

In the context of the U(1) LGT, we need to ensure that the quantum state satisfies Gauss’s law:

Gx |Φ〉 = 0 (10)

for all physical states |φ〉 where

Gx = Ex − Ex−1 − ρx, ρx = φ†xφx + ((−1)x − 1)/2. (11)

To ensure that the ground state of the Hamiltonian satisfy Gauss’s law, we add a penalty term to
the original Hamiltonian so that it becomes H = HM +HGM +HE + λG

∑

xG
2
x, where we assume

that λG = O(1).

The SU(2) lattice gauge theory. We consider the theory using the fundamental representation
of SU(2), as done in [12]. Each node x now contains two fermionic modes, whose annihilation
operators are denoted by φlx, l = 1, 2. Each gauge link consists of a rigid rotator whose configuration
is described by an element of the group SU(2) [30].
The Hamiltonian takes the form (8), and is invariant under SU(2) transformations acting either

from the left or from the right, which correspond to rotations of the rigid rotator with respect to
space-fixed or body-fixed axes respectively.
Physical states in SU(2) LGT also needs to satisfy Gauss’s law, which takes a form that is similar

to the U(1) case. We also ensure that it is satisfied in the ground state we study by adding a penalty
term to the Hamiltonian.
For the SU(2) case the operators E2

x and Ux are different from the U(1) case. The operator E2
x is

defined through

E2
x |jmm′〉 = j(j + 1) |jmm′〉 . (12)

Because φx has two components, where each component is a fermionic mode, Ux is a 2 × 2 matrix,
where each of the 4 matrix entries is an operator acting on the link space

Ux =

(

U11
x U12

x

U21
x U22

x

)

. (13)

Given that Ux,ni
transforms as the j = 1/2 representation of SU(2), the rules for the addition of

angular momentum imply

〈j1m1m
′
1|U ll′

x |j2m2m
′
2〉 = 0, if |j1 − j2| > 1/2,

‖U ll′

x ‖ ≤ 1.
(14)

Here ‖O‖ denotes the spectral norm of an operator O.



10

TRUNCATING THE LOCAL HILBERT SPACE

Although we consider the setting where the local Hilbert spaces are infinite dimensional, we can
approximate spectrally isolated eigenstates with states containing low local quantum numbers. This
fact is made rigorous in [41, Theorem 12] which we restate here in a slightly modified way:

Theorem 4 (Quantum number distribution tail bound). Let H be a Hamiltonian satisfying As-
sumption 3 in the main text. Let |Ψ〉 be an eigenstate of H corresponding to an eigenvalue ε with
multiplicity 1, and ε be separated from the rest of the spectrum of H by a spectral gap ∆. Moreover,
for a fixed site x we assume local quantum number |λx| has a finite expectation value:

∑

λ

|λ| 〈Ψ|Π(x)
λ |Ψ〉 = λ̄x <∞,

we then have that

‖(I −Π
(x)
[−Λ,Λ]) |Ψ〉 ‖ ≤ e

−Ω
(√

χ−1∆(Λ1−r−(2λ̄x)1−r)
)

.

We will further need to apply this result to bound the error that emerges from applying the
truncation bound to many sites. The following corollary provides such a result in a convenient form.

Corollary 5. Let Π′ =
∏ℓ+s

x=ℓ+1Π
(x)
[−Λ,Λ], then under the same assumption as in Theorem 4, we have

‖(I −Π′) |Ψ〉 ‖ ≤ √
se

−Ω
(√

χ−1∆(Λ1−r−(2λ̄)1−r)
)

,

where λ̄ = maxℓ<x≤ℓ+s λ̄x.

Proof. Proof follows from Theorem 4 via a straightforward application of the triangle inequality and
the sub-multiplicative property of the spectral norm:

‖(I −Π′) |Ψ〉 ‖ =
√

〈Ψ| (I −Π′)2 |Ψ〉 =
√

〈Ψ| (I −Π′) |Ψ〉

=

√

√

√

√

ℓ+s
∑

x=ℓ+1

〈Ψ|
x−1
∏

x′=ℓ+1

Π
(x′)
[−Λ,Λ](I −Π

(x)
[−Λ,Λ]) |Ψ〉

≤

√

√

√

√

ℓ+s
∑

x=ℓ+1

‖(I −Π
(x)
[−Λ,Λ]) |Ψ〉 ‖ ≤ √

se
−Ω

(√
χ−1∆(Λ1−r−(2λ̄)1−r)

)

. (15)

A final important consequence of Theorem 4 is a bound on the quantity ‖Π′H(I−Π′) |Ψ〉 ‖ where
Π′ is defined as in Corollary 5. We use the above corollary to derive such a bound below.

Corollary 6. Let Π′ =
∏ℓ+s

x=ℓ+1Π
(x)
[−Λ,Λ], then under the same assumption as in Theorem 4, we have

‖Π′H(I −Π′) |Ψ〉 ‖ ≤ s3/2N (Λ)e
−Ω

(√
χ−1∆(Λ1−r−(2λ̄)1−r)

)

,

where λ̄ = maxℓ<x≤ℓ+s λ̄x.
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Proof. We only need to use Corollary 5 along with a bound for ‖Π′H(I −Π′)‖. We have

Π′H(I −Π′) =

N
∑

x=1

Π′Hx(I −Π′) =

ℓ+s
∑

x=ℓ+1

Π′Hx(I −Π′). (16)

The second equality is because Π′Hx(I −Π′) = Π′(I −Π′)Hx = 0 if x /∈ {ℓ+1, . . . , ℓ+ s}. Therefore

‖Π′H(I −Π′)‖ ≤
ℓ+s
∑

x=ℓ+1

‖Π′Hx(I −Π′)‖ ≤
ℓ+s
∑

x=ℓ+1

‖Π(x)
[−Λ,Λ]Hx‖ ≤ sN (Λ). (17)

We remark that the bound in the above corollary does not depend on the system size N . However,
there is a dependence on λ̄, an upper bound on the mean absolute value of the local quantum numbers
on sites ℓ+1, ℓ+2, . . . , ℓ+ s. One might worry that λ̄ will show up as an independent parameter in
our expression of the entanglement entropy. However, we will show in the next section that for the
ground states of U(1) and SU(2) LGTs as well as the Hubbard-Holstein model, λ̄ depends only on
the coefficients in the Hamiltonian, and is thus independent of the system size.

BOUNDING THE MEAN ABSOLUTE VALUE OF THE LOCAL QUANTUM NUMBER

In this section we prove bounds on the mean absolute value λ̄x = 〈|λx|〉 of the local quantum
numbers in the ground states of U(1) and SU(2) LGTs, as well as the Hubbard-Holstein model. λx
here is the local quantum number of site x and 〈·〉 denotes the ground state expectation value. We
will drop the subscript x in this section because we will focus on only a single bosonic mode or gauge
link. These bounds are independent of the system size and only depend on the coefficients in the
Hamiltonians.

In the following discussion, we view our lattice models as a bipartite system, where a subsystem
A is a gauge link or bosonic mode, and a subsystem B is the rest of the system. We then bound
〈|λ|〉, where λ is the local quantum number for A, using the variational principle.

Lemma 7. Consider a bipartite system with Hilbert space H = HA ⊗ HB, where HA and HB

are the Hilbert spaces for subsystems A and B respectively. Let H = HA + HAB + HB be the
Hamiltonian, where HA acts non-trivially only on A, and HB on B. Let |Ψ〉 be the ground state of
H. Furthermore, we assume that there exists an operator KA acting non-trivially only on A such
that |HAB| � KA. Then we have

〈Ψ| (HA −KA) |Ψ〉 ≤ 〈ΨA| (HA +KA) |ΨA〉 , (18)

for any |ΨA〉 ∈ HA. Here � denotes the partial order induced by the convex cone of positive semi-

definite operators and |O| =
√
O†O for operator O.

Proof. Let |ΨP 〉 = |ΨA〉 |ΨB〉 be a product state, where |ΨB〉 ∈ HB is the ground state of HB, and
|ΨA〉 ∈ HA is chosen arbitrarily. Then because |Ψ〉 is the ground state of H we have

〈Ψ|H |Ψ〉 ≤ 〈ΨP |H |ΨP 〉 . (19)
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For 〈Ψ|H |Ψ〉 we have

〈Ψ|H |Ψ〉 = 〈Ψ|HA|Ψ〉+ 〈Ψ|HAB|Ψ〉+ 〈Ψ|HB|Ψ〉
≥ 〈Ψ|HA|Ψ〉 − 〈Ψ|KA|Ψ〉+ 〈Ψ|HB|Ψ〉
≥ 〈Ψ| (HA −KA) |Ψ〉+ 〈ΨB|HB|ΨB〉 ,

(20)

where in the first inequality we have used |HAB| � KA and in the second inequality we have used
〈Ψ|HB|Ψ〉 ≥ 〈ΨB|HB|ΨB〉, which is true because |ΨB〉 is chosen to be the ground state of HB.
For 〈ΨP |H |ΨP 〉 we have

〈ΨP |H |ΨP 〉 = 〈ΨP |HA|ΨP 〉+ 〈ΨP |HAB|ΨP 〉+ 〈ΨB|HB|ΨB〉
≤ 〈ΨP | (HA +KA) |ΨP 〉+ 〈ΨB|HB|ΨB〉
= 〈ΨA| (HA +KA) |ΨA〉+ 〈ΨB|HB|ΨB〉 .

(21)

Combining (19), (20), (21), we have (18).

Lemma 8. Under the same assumptions as in Lemma 7, we further let Ξ be a Hermitian operator
on A. Assume that HA −KA � L(|Ξ|) where L(x) is a convex non-decreasing function for x ∈ R

+

satisfying L(x) → +∞ when x→ +∞. Then we have

〈Ψ||Ξ||Ψ〉 ≤ L−1 (〈Ψ| (HA −KA) |Ψ〉) ≤ L−1

(

min
|ΨA〉∈HA

〈ΨA| (HA +KA) |ΨA〉
)

. (22)

Proof. By the assumption that HA −KA � L(|Ξ|) and (18), we have

〈Ψ|L(|Ξ|)|Ψ〉 ≤ 〈ΨA| (HA +KA) |ΨA〉 .

Because L is convex, by Jensen’s inequality L(〈Ψ||Ξ||Ψ〉) ≤ 〈Ψ|L(|Ξ|)|Ψ〉. Because L is non-
decreasing and |ΨA〉 can be arbitrarily chosen, we have (22).

Note that the right-hand side of (22) is independent of the subsystem B. This allows us to
bound the mean absolute value of the local quantum number in the lattice models in a way that is
independent of the system size. We will now apply this lemma to the case of gauge theories and the
Hubbard-Holstein model.
First, for U(1) and SU(2) gauge theories with the Hamiltonian defined in (8), we take A to be a

gauge link x. Then we let

HA = gEE
2
x, HAB = gGM (φ†xUxφx+1 + φ†x+1U

†
xφx), HB = H −HA −HB.

A nice feature about this Hamiltonian is that HAB is bounded: ‖HAB‖ ≤ 2|gGM |. Therefore we can
simply choose KA = 2|gGM |. The local quantum number λx in this case is the electric field value in
the U(1) case and the total angular momentum in the SU(2) case. But E2

x = λ2x for U(1) LGT and
E2

x = λx(λx + 1) � λ2x for SU(2) LGT (Also λx � 0 for SU(2) LGT). Therefore we have

HA −KA � gEλ
2
x − 2|gGM |

for both cases. For the right-hand side of (22) we have

min
|ΨA〉∈HA

〈ΨA| (HA +KA) |ΨA〉 = 2|gGM |,

where the minimum is attained by |ΨA〉 = |0〉. Combining the above facts, we apply Lemma 8 to
get:
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Corollary 9. For the U(1) and SU(2) LGTs with the Hamiltonian defined in (8), let λx be the local
quantum number on gauge link x, then 〈|λx|〉 ≤ 2

√

|gGM |/gE, where 〈·〉 denotes the ground state
expectation value.

Then let us consider the Hubbard-Holstein model with the Hamiltonian described in (5). We let
A be a bosonic mode x, and let B be the rest of the system. We have

HA = ω0b
†
xbx, HAB = g(b†x + bx)(nx,↑ + nx,↓ − 1), HB = H −HA −HAB .

Here HAB is no longer bounded, but we can still construct a KA such that |HAB | � KA. To simplify
the discussion we introduce the position and momentum operators X and P :

X =
1√
2
(b†x + bx), P =

i√
2
(b†x − bx).

Then HAB =
√
2gX(nx,↑ + nx,↓ − 1). Because ‖nx,↑ + nx,↓ − 1‖ ≤ 1, we can define

KA =
√
2|g||X |,

which satisfies |HAB| � KA. With this choice of KA we have

HA −KA =
ω0

2
(X2 + P 2 − 1)−

√
2|g||X |

� ω0

2
(X2 + P 2 − 1)− ω0

4
X2 − 2g2

ω0

� ω0

4
(X2 + P 2 − 1)− ω0

4
− 2g2

ω0

=
ω0

2
b†xbx − ω0

4
− 2g2

ω0
.

The local quantum number here is the bosonic occupation number, which has to be non-negative.
Therefore

HA −KA � ω0

2
|λx| −

ω0

4
− 2g2

ω0
.

For the right-hand side of (22), we have

min
|ΨA〉∈HA

〈ΨA| (HA +KA) |ΨA〉 ≤ 〈0|
(

ω0b
†
xbx + 2|g||X |

)

|0〉 = 2|g|√
π
,

where we have used the analytic solution of the ground state of the harmonic oscillator in deriving
the equality. Combining these results with Lemma 8 we have:

Corollary 10. For the Hubbard-Holstein model with the Hamiltonian defined in (5), let λx be the
local quantum number on site x, then

〈|λx|〉 ≤
1

2
+

4|g|
ω0

√
π
+

4g2

ω2
0

,

where 〈·〉 denotes the ground state expectation value.
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ROBUSTNESS OF THE GROUND STATE TO TRUNCATION

In this section, we show that the ground state, the ground state energy, and the spectral gap are
all robust to the truncation of the Hamiltonian, in a way that we will specify later. Following [7] we
focus on the s sites from ℓ+1 to ℓ+ s. For convenience we relabel the sites so that the original site
x is now labelled x− ℓ. The Hamiltonian can be rewritten as

H = HL +H1 + · · ·+Hs +HR, (23)

where HL =
∑

x≤0Hx and HR =
∑

x≥s+1Hx. We need to shift each Hamiltonian term (HL, H1,
H2, . . . , Hs, HR) by a constant to ensure that they are all positive semi-definite. As in [7] we look at
the entanglement entropy across a cut between sites s/2 and s/2+ 1. If ‖Hx‖ ≤ 1, the local Hilbert
space dimension is d and the spectral gap is ∆, then it is known that the entanglement entropy
scales as O(log3(d)/∆) [7, Theorem 6.2].
Now we want to consider the case where the local Hilbert space dimension is infinite. This compels

us to truncate the local Hilbert space, and consequently the local Hamiltonian terms Hi as well.
We denote the truncation threshold, defined according to the local quantum number introduced in
the main text, by Λ, and correspondingly the truncated Hamiltonian term by H ′

x. The truncated
Hilbert space dimension is d(Λ) and the truncated local term has a norm that is upper bounded by
N (Λ).

The two truncations

We first clarify in more detail what we mean by truncating the local Hilbert space. The original
Hilbert space isH = HL⊗H1⊗· · ·Hs⊗HR. We consider a subspaceH′ = HL⊗H′

1⊗· · ·H′
s⊗HR ⊆ H,

where each Hx has dimension d(Λ). We denote by Π′
x the projection operator onto H′

x, and define

Π′ = IL ⊗Π′
1 ⊗ · · ·Π′

s ⊗ IR,

which is the projection operator onto H′. IL and IR are the identity operators on HL and HR

respectively. The truncated Hamiltonian is a Hermitian operator H ′ defined to be the restriction of
Π′HΠ′ to the subspace H′, by which we mean that H ′ maps elements from H′ to H′. We do not
directly define H ′ to be Π′HΠ′ because that would introduce an artificial eigenvalue 0 corresponding
to the part of the Hilbert space that is truncated out. We can write H ′ out as

H ′ = H ′
L +H ′

1 + · · ·+H ′
s +H ′

R, (24)

where each H ′
x is the restriction of Π′HxΠ

′ to the subspace H′, and the same is true for H ′
L and

H ′
R. Locality is preserved in this truncation as H ′

x still acts non-trivially on sites x and x + 1, H ′
L

on sites to the left of and including site 1, and H ′
R on sites to the right of site s.

The second truncation we consider comes from Ref. [7]. We adopt the definition in [7], for a
Hermitian operator A,

A≤t = APt + ‖APt‖(I − Pt), (25)

where Pt is the projection operator onto the subspace spanned by eigenvectors of A with eigenvalues
at most t. Then the second truncation yields the Hamiltonian

H ′′ = (H ′
L +H ′

1)
≤t +H ′

2 + · · ·+H ′
s−1 + (H ′

s +H ′
R)

≤t. (26)

The goal here is to show that these two truncations (i) preserve the spectral gap up to a constant
factor, and (ii) preserve the ground state up to an error exponentially small in Λ and t.
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Truncation robustness of the ground state and energy

Definition 11. For a self-adjoint operator A bounded from below, define the sequence ǫ0(A) ≤
ǫ1(A) ≤ . . . as follows. Let σess(A) be its (closed) essential spectrum and let K ∈ N0 ∪ {∞} be
the number of eigenvalues in [−∞,minσess(A)), including multiplicity. For k < K, let ǫk(A) be
the k-th eigenvalue with multiplicity (K eigenvalues as we start from k = 0), and for k ≥ K let
ǫk(A) = minσess(A).

Each ǫk(A) is in the spectrum[34] of A but is not necessarily an eigenvalue when ǫk(A) =
minσess(A). The min-max principle [40, Theorem 4.10] states that for k ∈ N0,

ǫk(A) = inf
φ0,...,φk∈D(A)

sup
{

〈ψ|A|ψ〉
∣

∣

∣
|ψ〉 ∈ span{φ0, . . . , φk}, ‖ |ψ〉 ‖ = 1

}

, (27)

where D is the domain of A.
Writing ǫk = ǫk(H), recall that we assume that the Hamiltonian H has a non-degenerate lowest

eigenvalue ǫ0 (the ground state energy), with a unique ground state |ψ0〉. We also assume that ǫ0 is
separated from the rest of the spectrum by a gap ∆ = ǫ1 − ǫ0.
For truncated Hamiltonians H ′ and H ′′, we will prove that there exist unique ground states

|ψ′
0〉 and |ψ′′

0 〉, corresponding to non-degenerate lowest eigenvalues ǫ′0 and ǫ′′0 , for the two truncated
Hamiltonians respectively. Write ǫk = ǫk(H), ǫ′k = ǫk(H

′), and ǫ′′k = ǫk(H
′′) and ∆′ = ǫ′1 − ǫ′0,

∆′′ = ǫ′′1 − ǫ′′0 .

Theorem 12 (Robustness to truncations). Let Π′ be the projection operator onto H′. Let δ1 =
‖(I −Π′) |ψ0〉 ‖, δ2 = ‖Π′H(I −Π′) |ψ0〉 ‖, and

δ2
1− δ21

≤ ∆

18
, (28)

then for every cutoff of the local quantum number Λ > 0 there exists

T = ǫ0 +O(N (Λ)2/∆), (29)

such that for all t ≥ T ,

(i) For H ′′, there exists a non-degenerate ground state |ψ′′
0 〉 corresponding to the lowest eigenvalue

ǫ′′0 .

(ii) ∆′′ = Ω(∆);

(iii) The trace distance between |ψ0〉 and |ψ′′
0 〉 can be bounded as follows:

D(|ψ′′
0 〉 , |ψ0〉) ≤

√

2δ2
∆(1− δ21)

+ e−Ω(t/N (Λ)). (30)

We note that in the above theorem we require the eigenvalue cutoff t for HL and HR to be above
a certain T , due to a similar requirement in [7, Theorem 6.1]. The scaling of T has later been
improved in Ref. [28].
Before we proceed with the proof we establish the following lemma, which follows from a similar

reasoning as in [7, Lemma 6.4].
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Lemma 13 (Markov). Let H be a Hamiltonian with the lowest eigenvalue ǫ0 and all other eigen-
values at least ǫ1 > ǫ0, and assume |ψ0〉 is its unique ground state. Given a quantum state |φ〉 with
expectation value 〈φ|H |φ〉 = E, we have

| 〈φ|ψ0〉 |2 ≥ ǫ1 − E

ǫ1 − ǫ0
. (31)

Proof. Since the eigenstate |ψ0〉 is the unique ground state, the expectation value of H in any other
eigenstate must be at least ǫ1 by assumption. Using the fact that ǫ1−ǫ0 > 0, we have from Markov’s
inequality

E = 〈φ|H |φ〉 ≥ ǫ0| 〈φ|ψ0〉 |2 + ǫ1(1− | 〈φ|ψ0〉 |2). (32)

The result then follows by re-arranging the above expression.

The proof of Theorem 12 proceeds as follows: we first show that when we go from H to H ′, the
spectral gap is preserved and the ground state is changed by a small amount, and then show the
same is true when we go from H ′ to H ′′. In the first step we obtain:

Lemma 14. Let Π′ be the projection operator onto H′. Let δ1 = ‖(I − Π′) |ψ0〉 ‖, δ2 = ‖Π′H(I −
Π′) |ψ0〉 ‖. Then if δ1 < 1 and

δ2
1− δ21

≤ ∆

4
, (33)

we have the following

(i) For H ′, there exists a non-degenerate ground state |ψ′
0〉 corresponding to the lowest eigenvalue

ǫ′0.

(ii) ∆′ = Ω(∆).

(iii) The trace distance between |ψ0〉 and |ψ′
0〉 can be bounded as

D(|ψ′
0〉 , |ψ0〉) ≤

√

2δ2
∆(1 − δ21)

. (34)

(iv) ǫ0 ≤ ǫ′0 ≤ ǫ0 +
2δ2
1−δ2

1

.

Here D(·, ·) denotes the trace distance.

Proof. By the min-max theorem (Equation 27), we have for k ∈ N0

ǫk = inf
φ0,...,φk∈H

sup
{

〈ψ|H |ψ〉
∣

∣

∣
|ψ〉 ∈ span{φ0, . . . , φk}, ‖ |ψ〉 ‖ = 1

}

≤ inf
φ0,...,φk∈H′

sup
{

〈ψ|H |ψ〉
∣

∣

∣
|ψ〉 ∈ span{φ0, . . . , φk}, ‖ |ψ〉 ‖ = 1

}

= ǫ′k ≤ minσess(H
′).

(35)

In particular we have ǫ1 ≤ ǫ′1 ≤ minσess(H
′). To establish a gap ∆′ we need an upper bound on ǫ′0:

ǫ0 = 〈ψ0|H |ψ0〉
= 〈ψ0|Π′HΠ′|ψ0〉+ 〈ψ0|(I −Π′)HΠ′|ψ0〉
+ 〈ψ0|Π′H(I −Π′)|ψ0〉+ 〈ψ0|(I −Π′)H(I −Π′)|ψ0〉

≥ ǫ′0‖Π′ |ψ0〉 ‖2 − 2‖Π′H(I −Π′) |ψ0〉 ‖+ ǫ0‖(I −Π′) |ψ0〉 ‖2

= ǫ′0(1− δ21)− 2δ2 + ǫ0δ
2
1 .

(36)
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As a result,

ǫ′0 ≤ ǫ0 +
2δ2

1− δ21
. (37)

The bound ǫ0 ≤ ǫ′0 is immediate from the variational principle (or (35)), so (iv) is established. The
assumption (33) then yields

ǫ′0 ≤ ǫ0 +∆/2 ≤ ǫ1 −∆/2 ≤ ǫ′1 −∆/2,

which implies ∆′ ≥ ∆/2, hence (ii). In particular it implies (i), that ǫ′0 is a simple eigenvalue with
eigenvector |ψ′

0〉.
To establish closeness between |ψ′

0〉 and |ψ0〉 we apply Lemma 13,

〈ψ′
0|ψ0〉2 ≥ ǫ1 − 〈ψ′

0|H |ψ′
0〉

ǫ1 − ǫ0
=
ǫ1 − ǫ′0

∆
= 1− ǫ′0 − ǫ0

∆
≥ 1− 1

∆

2δ2
1− δ21

,

where the last inequality follows from (37). Claim (iii) follows since D(|ψ′
1〉 , |ψ0〉) ≤

√

1− | 〈ψ′
1|ψ0〉 |2.

Proof of Theorem 12. The existence and uniqueness of the lowest eigenvalue ǫ′′0 and the ground state
|ψ′′

0 〉 in (i) can be proved similarly to the proof of Lemma 14 (i). We rescale the Hamiltonian H ′

by a factor N (Λ) and then apply [7, Theorem 6.1]. That theorem tells us that ∆′′ = Ω(∆′).
Combining this fact with Lemma 14 (ii), we have (ii). We may assume without loss of generality
that ǫ0 = 0. Indeed, otherwise we replace Hi with 1

2 (Hi − ǫ0/N) from the beginning (we just
need to add the shift ǫ0 back in the end). [7, Theorem 6.1] then tells us that there exists T =
O(N (Λ)2/∆′) = O(N (Λ)2/∆) such that D(|ψ′

0〉 , |ψ′′
0 〉) = e−Ω(t/N (Λ)) for t ≥ T , where N (Λ) comes

from the rescaling. Here we have used Lemma 14 (iv). Combining with Lemma 14 (iii) and the
triangle inequality, we have proved (iii).

Now we can use Corollaries 5 and 6 to bound δ1 and δ2 in Theorem 12, which leads to the following
robustness result:

Corollary 15 (Robustness to truncations). Assume that the Hamiltonian satisfies Assumptions 2
and 3 in the main text, and let λ̄ = max1≤x≤s 〈|λx|〉 . Then the truncated Hamiltonian H ′′ has a
lowest eigenvalue ǫ′′0 corresponding to a non-degenerate ground state |ψ′′

0 〉. And there exist constants
C1 and C2 such that for any Λ and t satisfying

Λ1−r ≥ (2λ̄)1−r + C1∆
−1polylog(s,∆−1), t ≥ C2N (Λ)2

∆2
, (38)

we have

(i) ∆′′ = Ω(∆);

(ii) The trace distance between |ψ0〉 and |ψ′′
0 〉 can be bounded as follows:

D(|ψ′′
0 〉 , |ψ0〉) = poly(s,∆−1,Λ)e

−Ω
(√

∆(Λ1−r−(2λ̄)1−r)
)

+ e−Ω(t/N (Λ)). (39)

We recall that r is the exponent involved in Eq. (2c) in the main text, and that r = 0 for LGTs,
r = 1/2 for the Hubbard-Holstein model. ∆ here is the spectral gap, and s is the size of the region
around the cut that we want to pay special attention to in (23).



18

If we assume λ̄ = O(1), which we proved for the Hubbard-Holstein model and U(1) and SU(2)
LGTs in Section , then to achieve D(|ψ′′

0 〉 , |ψ〉)2 ≤ δ, it suffices to require, for some constant C,

√

∆(Λ1−r − C) ≥ C log
sΛ

δ∆
and T ≥ CN (Λ) log(1/δ) ∨ CN (Λ)2

∆
,

where ∨ denotes the maximum, which can be satisfied by choosing

Λ = poly(∆−1)polylog(s/δ), (40)

and, since N (Λ) = poly(Λ),

T = Θ(N (Λ) log(1/δ) ∨ N (Λ)2/∆) = poly(∆−1)polylog(s/δ). (41)

APPROXIMATE GROUND STATE PROJECTORS

In this section, we establish our main result of an entanglement area law for unbounded quantum
systems. We first recall the notion of AGSP from [7, Definition 2.1].

Definition 16. K is a (σ,R)-AGSP of a Hamiltonian H on a bipartite system consisting of two
parts A and B that has a non-degenerate ground state, if

1. K |Ψ〉 = |Ψ〉, where |Ψ〉 is the ground state of H.

2. ‖K |Φ〉 ‖ ≤ σ for any |Φ〉 such that 〈Φ|Ψ〉 = 0.

3. There exist operators KA
j and KB

j , acting on A and B respectively, j = 1, 2, . . . , R, such that

K =
∑R

j=1K
A
j ⊗KB

j .

An AGSP preserves the ground state, suppresses the excited states, and increases the entanglement
by a finite amount. The existence of an AGSP onto the exact ground state is known to imply a
bound on the entanglement of ground state. More precisely, Corollary III.4 of [6] states that if
σR ≤ 1/2 where σ is the shrinking factor and R is the entanglement rank of the AGSP, then the
entanglement entropy of the ground state satisfies a bound of order logR. For frustrated systems the
target space of the AGSP becomes perturbed away from the exact ground state(s) as its construction
involves spectral truncations. Analyses of such a situation are undertaken in [7] and [8]. These tools
were simplified in [2], where an “off-the-shelf” lemma was stated which generalizes the one of [6] to
perturbed and degenerate target spaces.
Here we make a further improvement to [2] to obtain the cleaner and slightly stronger statement

of Lemma 17 below. For two subspaces Y,Z ⊂ H, we say Y is δ-viable for Z if 〈z|PY⊥ |z〉 ≤ δ for
all unit vectors |z〉 ∈ Z, where PY⊥ is the projection onto the orthogonal complement of subspace
Y. We write Y ≈δ Z if 〈z|PY⊥ |z〉 ≤ δ and 〈y|PZ⊥ |y〉 ≤ δ for unit vectors |y〉 ∈ Y and |z〉 ∈ Z
respectively.

Lemma 17. Let Z be a subspace of bipartite space H = H1⊗H2. Let Z̃n be a sequence of subspaces
of H such that Z̃n ≈δn Z where δn is a sequence such that

∑∞
n=0 nδn = O(1).

Suppose there exist K1,K2, . . . such that Kn is an (σn, Rn)-AGSP with target space Z̃n where
σ = 1

2R . Then the entanglement entropy of any state in Z is O(logR+ log dimZ).

Proof. This follows from the proof of [2, Lemma 4.7] and the following strengthening of [2, Lemma
4.6].
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Lemma 18. Let Z be a subspace of H1 ⊗ H2 and suppose there exists a subspace V ⊂ H1 with
dim(V) = V which is δ-viable for Z. Pick any normalized state |ψ〉 ∈ Z and write the Schmidt
decomposition

∑

i

√
λi |xi〉 |yi〉 with nonincreasing Schmidt coefficients. Then we have the tail bound

∑

i>V λi ≤ δ.

Proof. By the definition of δ-viability, we have

〈z′|(PV⊥ ⊗ I)|z′〉 ≤ δ (42)

for all normalized state |z′〉 in Z. In particular, this implies

〈z|(PV⊥ ⊗ I)|z〉 =
∑

i

λi〈xi|PV⊥ |xi〉 = tr

(

PV⊥

∑

i

λi|xi〉〈xi|
)

≤ δ. (43)

Here, PV⊥ projects onto V⊥ with dim(V⊥) = dim(H1) − V . Now use Poincaré’s inequalities [27,
Corollary 4.3.39] to conclude that

tr

(

PV⊥

∑

i

λi|xi〉〈xi|
)

≥
dim(H1)
∑

i=dim(H1)−dim(V⊥)+1

λi =

dim(H1)
∑

i=V +1

λi. (44)

This establishes the claimed bound.

We apply Lemma 17 to the case of a simple ground state. Since span |ψ1〉 ≈δ span |ψ2〉 where
δ = D(|ψ1〉 , |ψ2〉)2 we obtain

Corollary 19. Suppose there exist K1,K2, . . . such that Kn is an (σn, Rn)-AGSP with target state
|ψn〉 where σ = 1

2R . If
∑∞

n=0 nD(|ψn〉 , |ψ〉)2 = O(1) then the entanglement entropy of |ψ〉 is
O(logR).

The following lemma summarizes the AGSP construction [6, 7] using a Chebyshev polynomial of
a Hamiltonian with local interactions near the cut of interest:

Lemma 20. There exists a function l(d, γ, r) = Õ((log d)3(r2/3γ−1/3+1/γ)) such that the following
holds:
Let γ, r > 0 and let H̃ be a Hamiltonian whose interactions H̃i are local (nearest-neighbor) with

rank H̃i = d within a linear segment of s = ω(r2/3(log d)2/γ) qudits around the cut and whose
spectral gap satisfies the lower bound

∆̃/‖H̃‖ = γ/s.

Then there exists a (R, σ)-AGSPs for the ground state of H̃ where

logR ≤ l(d, γ, r) and log σ ≤ −l(d, γ, r)− r. (45)

Proof. The amortization bound from the proof of [7, Lemma 4.2] yields that degree-ℓ polynomials in
H̃ have entanglement rank R = (ℓd)O(ℓ/s+s), so one relates ℓ = s2 to balance the terms and obtain
R = (sd)O(s) or

logR = O(s log(sd)). (46)

The Chebyshev polynomial of degree ℓ is bounded by 1 on the unit interval but satisfies Tℓ(1 + t) ≥
1
2 (1 +

√
2t)ℓ = 1

2 exp(Ω(ℓ
√
t)), so composing it with linear transformations yields a polynomial f
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with fℓ(0) = 1 and |fℓ(λ)| ≤ 2 exp(−Ω(ℓ
√

t/M)) for λ ∈ [t,M ]. Picking M = ‖H̃‖ one obtains that

K = fℓ(H̃ − λ0) is an AGSP with shrinking factor σ satisfying

log σ = −Ω
(

ℓ

√

∆̃/‖H̃‖
)

= −Ω(ℓ
√

γ/s) = −Ω(
√
γs3/2). (47)

We will ensure that log(1/σ) ≥ max{2r, 2l} ≥ l + r.
To get log(1/σ) ≥ 2r it suffices to take large enough s = O(r2/3γ−1/3).
To get log(1/σ) ≥ 2l ≥ 2 logR we use (46) to take l = O(s log(sd)). By (47) it then suffices that

log(sd) ≤ √
γs, which we ensure with a choice s = O(log(d/γ)2/γ). So we take s = O(r2/3γ−1/3 +

log(d/γ)2/γ). Substitute s back into l = O(s log(sd)) to get the bound on l(d, γ, r).

AREA LAW

Theorem 21 (Area law). Under Assumptions 2 and 3 in the main text with λ̄ = O(1), the ground
state of H satisfies an area law with entanglement entropy bounded by poly(∆−1).

We remark that λ̄ = O(1) is proved for the U(1) and SU(2) LGTs (Corollary 9), as well as for the
Hubbard-Holstein model (Corollary 10), in Section .

Proof. Under our condition λ̄ = O(1) we may pick parameters as in Eq. eqs. (40) and (41) so that
D(|ψ′′

0 〉 , |ψ0〉)2 ≤ δ = 1/n3. By eqs. (40) and (41), we may choose

Λ, d(Λ),N (Λ), T (Λ) = poly(∆−1)polylog(ns). (48)

The Hamiltonian H ′′ of (26) has spectral norm O(sN (Λ) + T (Λ)). Under the conditions of
Corollary 15, H ′′ has a spectral gap ∆′′ = Ω(∆), so we have

∆′′/‖H ′′‖ = Ω
( ∆

sN (Λ) + T (Λ)

)

= γ/s, where γ = (∆/ log(ns))O(1). (49)

Define the sequence sn = Õ(n2/3poly(1/∆)) large enough that sn = Õ(n2/3(log d)2poly(1/∆))
(this can be achieved because log d = Õ(log(1/∆) log logn)), and apply lemma 20 with r = n.
Substitute d(Λ) and γ from (48) and (49) into l(d, γ, n) to define ln = l(d(Λ(sn)), γ(sn), n) =
Õ(n2/3poly(1/∆)) ≤ an where a = poly(1/∆). By lemma 20 there exist (Rn, σn)-AGSPs Kn for H ′′

with Rn ≤ 2ln ≤ 2an and σ ≤ 2−ln−n ≤ 2−n−an. Let R = 2a. Then Kn is a (Rn, (2R)−n)-AGSP
with target vector |ψn〉 such that D(|ψn〉 , |ψ〉)2 ≤ 1/n3, so by corollary 19, the entanglement entropy
of |ψ〉 is O(logR) = O(a) = poly(1/∆).


