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Abstract

We investigate the appearance of a four-boson limit cycle in Hamiltonian systems at the unitar-

ity limit. The model interaction incorporates two-, three-, and four-body short-range potentials,

which allow us to disentangle the interwoven dynamics of three- and four-boson energy levels.

Through numerical evidence, we observe a correlation between the energies of two successive uni-

versal tetramer levels for a fixed weakly bound trimer, which is found to be largely model inde-

pendent. Interestingly, this correlation cycle is consistent with the findings of M. R. Hadizadeh et

al. in Phys. Rev. Lett. 107, 135304 (2011) using a zero-range model.
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I. INTRODUCTION

It is fascinating how bosonic quantum systems behave in the limit of zero range forces,

also known as the scaling limit. Thomas in 1935 [1] gave the first hint of its nontrivial prop-

erties showing the collapse of the three-boson system, meaning the Hamiltonian spectrum is

not bounded from below. Later, Skorniakov and Ter-Matirosyan (STM) in 1956 [2] formu-

lated the three-body integral equations with the zero-range interaction to be solved, which

inspired Faddeev to formulate his famous coupled set of three-body integral equations [3]

that overcame the non-uniqueness problem of the Lippman-Schwinger equations.

However, the solution of the STM equations was plagued by the Thomas collapse, which

was tamed by Danilov in 1961 [4], who found the log-periodic solutions in the ultraviolet

(UV) limit of those equations, as a consequence of its continuous scale invariance. He

recognized the need to introduce a boundary condition to have a unique solution of the

scattering by giving the three-body binding energy as input. Soon after that, Minlos and

Faddeev [5] showed how the route to the Thomas collapse of the bound state proceeds to the

”fall-to-center” [6] by solving the homogeneous form of the STM equation for three bosons

in the UV limit, finding an infinite discrete spectrum of the equation that extends to −∞,

with levels geometrically separated by the factor exp(2π/s0) ≈ 515. This was the first clear

observation of the continuous scale symmetry breaking to a discrete one.

Efimov in 1970 [7, 8] discovered the presence of those infinite number of geometrically

spaced levels when a three-boson system interacts resonantly with any short-range potential,

which has an infinite scattering length. Nowadays this is called the unitarity limit in the

context of Effective Field Theory (EFT) [9] (see also [10]). Furthermore, the existence of this

infinite number of states can be linked to the presence of a renormalization-group limit cycle

within the space of coupling constants, particularly in the space of three-body couplings, as

a function of a momentum cut-off. For a comprehensive discussion, refer to Ref. [9] and the

references therein.

The first experimental evidence of Efimov states came from the Innsbruck experiment,

which used an ultracold gas of cesium atoms [11] near a Feshbach resonance. This discovery

made Efimov states a reality, and since then, many other experiments have observed their

presence. Efimov states have also been observed in mass-imbalanced atomic systems (see

e.g. [12]).
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The Efimov cycle manifests, in practice, through correlations between observables [13]. It

is associated with the three-boson limit cycle found in the context of EFT [14], as well as, in

other works [15]. Moreover, the existence of such correlations is not restricted to zero-range

interactions, but persists in finite-range systems too [16, 17].

However, a question arises: how new cycles in addition to the Efimov one manifest

themselves for a larger number of bosons in the unitarity limit, or in other words, for s-wave

interactions in the zero-range limit?

The first nontrivial step is the four-boson system. It was proposed in Ref. [18], that a

new limit cycle beyond the Efimov one can appear in the four-boson system at the unitarity

limit. Such a result, expressed by a correlation between the energies of consecutive tetramers

for a fixed trimer energy, was obtained by solving a regularized set of Faddeev-Yakubovsky

(FY) equations in the limit of a zero-range interaction. The new cycles were revealed when

a four-boson scale was forced to move independently of the three-body one.

In Ref. [19] it was shown, by an approximate analytic solution of the FY equations,

how the continuous scale symmetry is broken to a discrete one, which is associated with

a log-periodicity different from the Efimov one. Such a qualitative view was confirmed

within a Born-Oppenheimer approximation of the heavy-heavy-light-light system, where it

was shown explicitly that the Efimov periodicity of the heavy-heavy-light system is distinct

from the four-body case [20], indicating that new limit cycles for more than three particles

are different from the Efimov cycle at the unitarity limit.

While the correlation between consecutive tetramers was supported by the just mentioned

calculations, it remains an open question whether or not a four-boson Hamiltonian system,

with short-range forces at the unitarity limit, could exhibit a typical four-boson correlation

cycle independent of the three-boson one. The four-boson cycle was not seen before in

Hamiltonian systems when using two and three-body forces, which exhibited for each Efi-

mov state two tetramers [21–28]. However, an indication that this independent correlation

cycle could exist in Hamiltonian systems comes from the accurate calculations provided in

Ref. [29], which also suggests that the property of the Efimov cycle being interwoven with

the four-boson one is verified as pointed out in [18] and confirmed in Ref. [20] for heavy-

heavy-light-light bosonic systems and beyond, within the Born-Oppenheimer treatment.

A crucial property associated with the independent three and four-boson cycles is the

necessity of the introduction of a four-boson scale unrelated to the three-boson one. Such
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possibility introduced in [30] confronted previous findings within EFT [21] and further ex-

plored in Ref. [22], which by now was understood that at next-to-leading order a four-boson

scale has to be introduced in the EFT approach of the universal system [31]. The appear-

ance of a four-body scale was also confirmed in calculations up to five bosons with van der

Waals interactions [32]. Therefore, it is appealing to study the eigenvalues of a four-boson

Hamiltonian for short-range interactions at the unitarity limit, with two-, three- and four-

body potentials to disentangle the three and four-boson cycles [33] by manipulating the

three and four-boson short-range scales in an independent way, to follow the path of the

recognized two universal tetramer levels attached to an Efimov state found in Hamiltonian

models [21, 22, 24, 25].

Evidence of induced multi-boson interactions [30, 34] may be already found in cold atomic

gases, where the position of three-atom resonances for narrow Feshbach resonances [35] and

also for intermediate ones [36, 37] deviate significantly from the predictions based on the

van der Waals universality (see e.g. [38, 39]).

In this work, we demonstrate correlations between successive energies of universal

tetramers, which are calculated within a Hamiltonian system while keeping the trimer

energy fixed at unitarity. These correlations, when accounting for range corrections, align

with the predictions presented in Ref. [18]. The aforementioned reference relies on the so-

lution of the regularized four-boson Faddeev-Yakubovsky equations to identify a four-body

limit cycle that is independent of the three-body limit cycle underlying the Efimov effect.

The Hamiltonian employed in our investigation incorporates two-, three-, and four-body

short-range potentials. Specifically, the two-body potential is utilized to adjust the energy

of two bosons at the unitarity point. On the other hand, the three- and four-body potentials

are employed to disentangle the intertwined three-boson cycle and the elusive four-boson

cycle, the existence of which has been a topic of debate within the field [18, 21, 22, 30, 31].

II. THE HAMILTONIAN MODEL

We solve variationally the Schrödinger equation for a system of three and four bosons

finding the ground state and several excited states. We develop the states using a set of

correlated Gaussian functions, which were previously optimized using the Stochastic Varia-

tional Method (SVM) [40, 41]. SVM is essential in adapting the basis functions to different
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scales, which is a crucial factor in the calculation of multiple excited states.

As we want to study the behavior of systems interacting via a short-range interaction at

the unitarty limit, we choose the Gaussian potential as a representative of such interactions.

It has been extensively shown that close to the unitarity limit the Gaussian potential gives

a universal representation of the class of short-range potentials [42, 43]. The potential we

use has a two-, three-, and four-particle Gaussian terms. The two-body term reads

V2b(r) = V2 e
−(r/r2)2 , (1)

and depends on the relative distance r between two particles. The range of the force is fixed

to r2 = 1, which it is used as unit of length; in this way the energy unit is ℏ2/mr22. The

two-body strength is set to V2 = −2.684005 ℏ2/mr22 to tune the two-body system as close

to the unitarity limit as possible.

The three-body term is

V3b(r) = V3 e
−(ρ3/r3)2 , (2)

where ρ23 = r212 + r213 + r223 is proportional to the three-body hyper-radius, and r3 is the

potential range in units of r2. In the unitarity limit, as mentioned in the introduction, a

fascinating phenomenon known as the Efimov effect arises, resulting in an infinite tower of

three-body states [7, 8]. For our purposes, we focus solely on the ground-state trimer, as

our objective is to compute bound four-body states rather than resonances. The three-body

force Eq. (2) is employed to modify the value of the ground-state energy for the three-body

system.

To accomplish our goal, we introduce a four-body potential

V4b(r) = V4 e
−(ρ4/r4)2 , (3)

where ρ24 =
∑4

i<j=1 r
2
ij is proportional to the four-body hyper-radius, and r4 is the potential

range in units of r2. We use this four-body force to change the energy of the four-body

states below the three-body threshold. Moreover, it is also used to change the number of

four-body states below the threshold. With the ensemble of these forces, we can address

individuality the two-, three- and four-body energy levels.
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FIG. 1. Top panel: Evolution of the first ten four-bosons energy levels as a function of the strength

of the four-body force V4. The three-boson bound-state energy is B3 = 0.238451 ℏ2/mr22, while

the two-body system is at the unitarity limit. The four-body potential range is r4 = r2. Middle

panel: Zoomed-in view of the region inside the rectangle shown in the top panel. Bottom panel:

The correlation cycles for the four-bosons successive universal levels. We have four cycles that

have been obtained by following the universal states through the avoided crossing. The full points

correspond to the universal prediction of Ref. [18], and the full squares to the separable-potential

calculations of Ref. [29].
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III. RESULTS

Our Hamiltonian model with Gaussian potentials provides compelling evidence of cor-

relations between the energies of consecutive tetramers. These finite-range correlations are

consistent with the ones obtained in Ref. [18] using a zero-range model. We place emphasis

on the significance of recognizing the universal tetramers, which are constructed through

a complex avoided-crossing energy-level structure. This structure arises from the interplay

between the local Gaussian interaction utilized to reveal the underlying dynamics and a

long-range effective potential that gives rise to the universal correlations, similar to the dy-

namics observed in the three-body sector. In the subsequent sections and figures, we present

our findings.

The first set of calculations are shown in Fig. 1, where we set the two-body strength to

V2 = −2.684005 ℏ2/mr22 to ensure B2 = 0, and set the three-body force to zero (V3 = 0).

Using these parameter values, the binding energy of the three-boson bound-state is B3 =

0.238451 ℏ2/mr22.

After fixing the two- and three-body sectors, we utilize the four-body force to manipulate

the four-body spectrum, aiming to identify the universal levels and examine correlations

among these states. Specifically, we vary the parameter V4 while keeping the range of the

four-body force fixed at r4 = r2. We calculate the four-body bound states with zero total

angular momentum and observe the resulting spectrum. In the top panel of Fig. 1, we plot

the ratio B3/B
(N)
4 against V4.

As we increase the strength of V4, more states gradually appear in the spectrum, emerging

from the three-body threshold. Interestingly, we observe two types of states: the first

(N = 1) and second excited states (N = 2) smoothly move to deeper values after emerging

from the threshold. However, there are states like the third excited state (N = 3) that also

emerge smoothly from the threshold, but at a certain point, such as at V4 ≈ −323 ℏ2/mr22 in

this case, they exhibit a strong avoided crossing with other states, for instance, with N = 4,

and N = 5. The state that emerges from the threshold as N = 5 evolves in a much narrower

range of the four-body interaction, first interacting with the N = 4 and N = 6 states and

then with N = 3 and N = 4. During this interaction, there is a role exchange, and we can

still trace the smooth trajectory of the N = 3 state, but now as N = 5. This is just one

example of the avoided-crossing structure of the spectrum, which becomes more evident as
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we increase the strength of the four-body force.

The avoided-crossing structure arises due to the interplay between the long-range effective

(hyper-radial) potential, similar to the three-body system [7], and the short-range nature of

the four-body force used to reveal the universal states and their underlying correlations. This

competition between the short- and long-range interactions results in the avoided-crossing

structure of the spectrum.

The phenomenon of this nature was first observed in a two-body system by Zel’dovich

in 1960. In that study, a variable local potential was added to fixed long-range potential.

As the strength of the local interaction was varied, the spectrum underwent significant

rearrangement, resembling that of the long-range potential. This phenomenon is commonly

referred to as the Zel’dovich phenomenon and has been extensively reviewed and expanded

upon in Ref. [44] in the case of exotic atomes.

In the middle panel of Fig. 1, we present a zoomed-in view of the region inside the

rectangle shown in the top panel. This zoomed-in view allows the reader to better discern

the avoided crossing structure of the energy levels, which might be less evident in the overall

top panel.

In terms of studying correlations, we only consider the energy levels resulting from the

long-range interaction and therefore having universal scaling properties. We use their energy,

denoted as T (N), to construct the correlation, as shown in the bottom panel of Fig. 1. To

clarify, in the case of Fig. 1, we have T (0) = B
(0)
4 , T (1) = B

(1)
4 , and T (2) = B

(2)
4 . However, for

T (3), it is equal to B
(3)
4 only up to V4 ≈ −323ℏ2/mr22, after which it becomes equal to B

(5)
4 .

In the top panel of Fig. 1, these states have been highlighted.

The correlation function between the energies of two consecutive universal tetramers is

plotted in the bottom panel of Fig.1 using the T (N) levels. This function is constructed

as suggested in Ref. [18] by plotting
√

(T (N+1) −B3)/T (N) as a function of
√
B3/T (N).

The resulting plot demonstrates the correlation cycle consistently. We display four such

cycles, and we observe that they exhibit a convergence pattern as a function of N , even if

it is not possible to extrapolate the limit. While the difference between the cycles is more

pronounced for
√
B3/T (N) ≈ 0.25, they collapse to the same curve for

√
B3/T (N) ≈ 0.45,

which corresponds to the point where a new tetramer emerges from the three-body threshold,

and the state with energy T (N) is sufficiently shallow.

For the sake of comparison, in the same plot, we report the zero-range calculation of
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Hadizadeh et al [18], and also the results from Deltuva [29] obtained with separable potentials

for tetramers associated with different trimers at the unitarity limit. The general trend of

the limit cycle obtained with the Gaussian potentials reproduces both the zero-range model

and the separable-potential calculations, which are placed close to the point where one of the

tetramers hits the trimer threshold. We believe that the difference between the zero-range

cycle and the present results is possibly due to range corrections, even in the region where√
B3/T (N) ≈ 0.45 because the Nth tetramer is still compact enough to be influenced by the

potential.

Moreover, we observe another noticeable discrepancy between the zero-range and finite-

range calculations when examining values lower than
√
B3/T (N) ≈ 0.12. Instead of contin-

uing to decrease, the correlation cycles begin to grow in this region, which is covered by the

shadow box. As a result, the T (N) state transitions from the universal window into a very

tight four-body state. The same gray region is depicted in the Fig. 1 top panel.

In Fig. 2, we investigate the influence of the trimer energy on the correlation cycle, which

is one of the components contributing to finite-range effects. To manipulate the trimer

energy, we introduce a non-zero three-body force with a strength of V3 = 30 ℏ2/mr22 and a

range of r3 = r2. This modification shifts the trimer to a weakly bound state with an energy

of B3 = 0.04001 ℏ2/mr22. The four-body range is now r4 = 2r2.

In the top panel of Fig. 2, we display the energy levels, which exhibit the same avoided

crossing pattern observed in the previous case. Additionally, we identify the universal

tetramers T (N), highlighted within the same panel, which display avoided crossings starting

from the third-excited level N = 3.

On the bottom panel of Fig. 2, we illustrate the correlation cycles, alongside the results

from previous studies, specifically Refs. [18] and [29]. Although the correlations are similar

to the case with the tighter trimer, there are differences, such as a lower maximum value,

which can be attributed to the finite-range nature of the interaction. However, the trend of

the correlation cycle obtained with the Gaussian potentials for the universal tetramer levels

is closer to both the zero-range model and the separable potential calculations, which are

located near the point where one of the tetramers hits the trimer threshold. The better

agreement with the zero-range results is evident in the interval where
√

(B3/T (N)) >∼ 0.3,

although range corrections are still present. The gray region in the top and bottom panels

of Fig. 2 represents the strongly bound tetramers, which are outside the ”window” where
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FIG. 2. Top panel: Evolution of the first twelve energy levels as a function of the strength V4,

obtained fixing the two-body system at the unitarity point, B2 = 0. In this case, a three-body force

has been introduced so that the three-body bound state energy is B3 = 0.04001 ℏ2/mr22 and the

four-body potential range is r4 = 2r2. We observe that starting from the third-excited four-boson

state, N = 3, there is the appearance of the avoided crossing, and the evolution of the universal

levels is evidenced by the shadow line. Bottom panel: The correlation cycles for the four-bosons

successive universal levels. We have four cycles that have been obtained by following the universal

states through the avoided crossing. The full points correspond to the universal prediction of

Ref. [18], and the full squares to the separable-potential calculations of Ref. [29].

the universal states are.

In Fig. 3, we investigate the impact of changing the range of the four-body force r4

on the finite-range effects. To maintain a consistent trimer energy, we employ the same

three-body force as in the case of Fig. 2, ensuring that the trimer energy remains fixed at

B3 = 0.04001 ℏ2/mr22.

In the top panel of Fig. 3, we observe that the details of the spectrum change, particularly
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the structure of the avoided crossing levels. However, in the bottom panel, we can see that

the first correlation cycle remains consistent with the cycles observed in Fig. 2. This suggests

that the role of the four-body range is not significantly strong, as it does not significantly

alter the observed correlations.

In the middle panel of Fig. 3, we present the variation of the mean radius ⟨r⟩ of the four-

body states as a function of V4. We specifically aim to highlight the different behavior of

states that undergo significant changes compared to those that exhibit more gradual changes

in response to variations in the four-body strength.

States that undergo rapid changes in the middle panel are characterized by a local nature,

as evidenced by their smaller radii when emerging from the threshold. This observation

suggests that the interplay between the local Gaussian potential and the emerging long-

range hyperradial potential generates small wells from which these local states emerge.

The presence of these small wells is likely responsible for the sensitivity of these states to

variations in the four-body strength.

Despite these finite-range details, we have successfully proven the existence of a universal

tetramer correlation cycle independent of the trimer, which can be related to the universal

four-body limit cycle predicted in Ref. [18]. We leave for future research more refined

Hamiltonian calculations that can control finite range effects.

IV. SUMMARY

We have revealed the unexpected presence of a universal correlation cycle in Hamiltonian

systems, which is compatible with the one predicted in Ref. [18] within a zero-range model.

The observed cycle is independent of the one appearing in the three-boson system and

related to Efimov physics. Our Hamiltonian system consists of two-, three-, and four-body

short-range interactions, tuned to the unitarity limit. We have identified a series of universal

tetramer states that maintain their model-independent properties, including the correlation

between the energies of successive levels that converge toward the cycle. Our results suggest

that the use of Gaussian interactions does not restrict the exploration of these new cycles,

as different parametrizations demonstrate the persistence of the universal levels and the

associated energy correlation.

Our work opens the surprising perspective to search for new interwoven correlation cycles
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FIG. 3. Top panel: Evolution of the first eight energy levels as a function of the strength V4,

obtained fixing the two-body system at the unitarity point, B2 = 0. In this case, a three-body

force has been introduced so that the three-body bound state energy is B3 = 0.04001 ℏ2/mr22 and

the four-body potential range is r4 = 3r2. Middle panel: The average radius ⟨r⟩ for specific states

within a region of V4 where avoided crossings occur. Notably, we observe that the states exhibiting

significant variations in response to the strength V4 emerge from the continuum with relatively

small radii. Bottom panel: The first correlation cycle, solid line, compared with the cycles of

Fig. 2 for the case r4 = 2r2, dashed lines. The full points correspond to the universal prediction of

Ref. [18], and the full squares to the separable-potential calculations of Ref. [29].

12



in the N ≥ 5 boson systems, by exploring the rich pattern arising when moving the universal

levels through the control of many-body potentials. How this can be done in practice, for

instance in cold-atom experiments, is an open question. Recently, the possibility of many-

body forces manifesting themselves near relatively narrow Feshbach resonances has been

suggested, which is attributed to the coupling between the open and closed channels when

the atom-atom interaction is magnetically tuned in cold traps. However, further research is

needed to explore this possibility, as highlighted in recent studies such as [34, 45].
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