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Abstract

We study e+−H(n) and Ps(n)− p collisions near the three-body breakup threshold and thresh-

olds for the charge-transfer processes. We show that classical trajectory Monte Carlo (CTMC)

simulations for the three-body breakup agree reasonably well in this energy region with quantum-

mechanical convergent close-coupling (CCC) calculations even if the initial hydrogen atom or

positronium atom is in the ground state. The threshold behavior of the three-body breakup

cross section in e+−H(1s) and Ps(1s) − p collisions agrees with the Wannier law with the Klar’s

exponent and obeys the classical scaling laws, although some deviation from the Klar-Wannier

behavior is observed in the CCC results. Below the threshold the agreement between CTMC and

CCC disappears. In particular CTMC method fails completely for the processes of H formation

in Ps(1s) − p collisions and Ps formation in e+−H collisions well below the three-body breakup

threshold. For higher initial states the CTMC results below the threshold improve substantially,

in accordance with the correspondence principle. This is explained by comparing the quantum-

mechanical threshold laws with the classical laws.
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I. INTRODUCTION

The threshold laws are ubiquitous in collision processes [1]. It is important to under-

stand the role of quantum effects in these laws. In particular, the Wigner threshold law

[2] is purely quantum-mechanical. For an endothermic reaction it appears as a manifes-

tation of quantum suppression [3]. In contrast, the Wannier law [4] for electron-impact

ionization of atoms was derived within the framework of classical mechanics and confirmed

by the quasiclassical theory [5, 6]. Although there is no formal proof of this law within

the framework of quantum-mechanical three-body problem, there is a strong evidence that

the three-body physics of particles interacting by the Coulomb force, near the threshold of

the three-body breakup, is described adequately by classical mechanics. This is not sur-

prising since low-energy Coulomb scattering is essentially classical [4, 7]. However, until

recently, the absence of accurate quantum calculations in the challenging near-threshold re-

gion prevented rigorous tests of Wannier physics. Recent convergent close-coupling (CCC)

calculations of e+−H and Ps−p collisions [8–12] are attempting to overcome this obstacle

and allow a detailed verification of the classical approach. On the other hand, with the

increasing degree of excitation of reactants, quantum calculations become very challenging

computationally whereas classical calculations can be extended for higher states with the

same computational efficiency. Moreover, due to the classical scaling laws the volume of

the classical trajectory Monte Carlo (CTMC) calculations can be substantially reduced by

rescaling results obtained for the ground target state. Note, however, that if the cross section

is small, the number of trajectories in the CTMC method should be substantially increased

in order to keep the relative error small. It is important therefore to investigate the validity

of the classical methods in the near-threshold regions.

In the present paper we investigate the threshold behavior of several processes involving

three particles interacting by the Coulomb law

Ps(n) + p → e− + e+ + p (1)

Ps(n) + p → e+ +H(n′) (2)

e+ +H(n) → e+ + e− + p (3)

e+ +H(n) → Ps(n′) + p, (4)
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where n is the principal quantum number, by using the CTMC method [13] and comparing

results with quantum CCC calculations. A more detailed investigation involving analysis of

initial and final angular momentum states of H and Ps are also possible [11, 12], but the

major physics is captured by looking at the n dependence. Therefore we will be considering

cross sections averaged over initial and summed over final angular momentum states. As

a rule, we will also sum the cross sections over the final discrete n′ states. Note that

the charge-conjugated reactions, which have the same cross sections, are important for the

antihydrogen formation, and they were studied in this context [10, 11]. Here we will be

discussing reactions involving p and H, but the same conclusions will be applicable to the

charge-conjugated reactions involving p̄ and H̄.

Reactions (3) and (4) near the three-body breakup threshold were studied by the CTMC

method in [14, 15], and more recently in [16]. Klar [17] obtained an extension of the Wannier

law with e−, e+ and p in the final state, this includes reactions (1) and (3). The cross section

for these reactions behaves as

σ = C(∆E)µ (5)

where C is a constant, ∆E is the energy relative to the threshold, and µ = 2.65. This result

was confirmed by semiclassical theories [18, 19]. Moreover, Ihra et al. [19] and Jansen et al.

[20], using the hyperspherical hidden-crossing theory, obtained an exponential correction to

Eq. (5) which slows down the growth of the ionization cross section well above the threshold.

Quantum CCC calculations [21] confirm the Klar prediction and the correction obtained in

[19]. Measurements of positron-impact ionization of hydrogen [22] do not go close enough

to the threshold to verify the Klar-Wannier law. Experimental data on positron-impact

ionization of He [23] confirm the Klar-Wannier law with the exponent close to that predicted

by Klar, although more recent measurements with the argon atom [24] produced much lower

exponent µ = 1.05± 0.14. The authors [24] suggested that their measurements, performed

above ∆E = 0.2 eV were not close enough to the threshold to reproduce the Klar-Wannier

law for Ar. However, for atomic hydrogen, as will be shown below, the range of validity of

the Klar-Wannier law extends up to ∆E = 10 eV.

The threshold behavior of the reactions (2) and (4) depends on their threshold energies

and the initial principal quantum number n. Reaction (2) (summed over all final states) is
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always exothermic, and for n = 1 obeys the Bethe-Wigner threshold law [2, 25]

σ ∝ E−1/2, (6)

where E is the incident center-of mass energy. However, for n > 1 the hydrogen atom, due

to the degeneracy of its excited states, possesses an effective dipole moment which makes

the cross section for H formation to diverge as E−1 [26, 27], i.e.

σ ∝ E−1. (7)

In addition, partial cross sections exhibit Gailitis-Damburg oscillations [26, 28] as functions

of lnE. However, these oscillations are not detectable in total cross sections, summed over

angular momentum for the relative motion [28]. The dipole threshold law is valid as long

as we neglect the relativistic splitting between the excited states. Within the energy region

where this splitting cannot be ignored the Bethe-Wigner law is restored. In the present

paper we consider the energies which are well beyond this region, therefore we neglect the

relativistic splitting.

The Ps formation reaction (4) is endothermic for n = 1, therefore it obeys the Wigner

law [2]

σ ∝ (E − Et)
1/2 (8)

where Et = 0.25 a.u. is the threshold energy. For n > 1 it becomes exothermic, and obeys

the dipole threshold law for an exothermic reaction, Eq. (7). Note that for partial n → n′

cases the reaction can be endothermic, if n′ > n
√
2 for reaction (2), and for n′ > n/

√
2 for

reaction (4). In this case the quantum cross section, similar to the classical cross section,

becomes finite at the threshold [26] if n′ > 1. However, the threshold law, both its classical

and quantum versions, does not say anything about the threshold value of the cross section

which depends on the interaction in the reaction zone, therefore the threshold value of the

cross section can be substantially different in classical and quantum theories. Similar, the

coefficient of proportionality in the threshold law for the exothermic case, Eq. (7), as well

as the range of validity of the threshold law, can be substantially different in classical and

quantum theories.

Our goal is to perform detail studies of classical and quantum threshold behavior for

reactions (1)-(4) for the ground and a first few excited states. For highly excited states, as

was shown by previous studies [11, 12, 29–31], quantum and classical cross sections converge
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fast, according to the generalized correspondence principle [32]. Although the principle was

originally applied to ion-atom collisions, it works rather well even for collisions involving an

excited state Ps. The reason for this is that Ps in excited states interacts with the proton

by effectively dipolar force, and the scattering laws involving dipolar interactions are similar

in quantum and classical mechanics [31].

Atomic units are used throughout unless stated otherwise.

II. THE CTMC METHOD

The CTMC theory for a three-body system consisting of charged particles where two of

them are bound is described in refs. [13, 33]. The CTMC approach has been applied before

in the case of a Ps atom interacting with a proton with no external field [11, 29–31], and

recently extended to the laser-assisted case [34]. The theory is described in brief as follows.

For a given impact parameter and the principal quantum number nPs of the projectile Ps

atom, an ensemble of initial states is prepared by a random selection of the eccentricity, the

orientation of the mutual motion (Kepler orbits) of the e− − e+ pair, and the position of e−

on the orbit. A classical trajectory for each random state is then propagated towards the

proton which is stationary at the origin of the configurations space. A similar procedure is

performed for e+−H collisions.

The Hamilton equations of motion are solved using the regularization method described

in [35, 36]. The solutions are propagated giving sufficient time for the interaction of the

projectile (Ps or e+) with the target (p or H). At the end of the propagation, the final

energies and the angular momenta of the trajectories are checked to generate the statistics

in different final channels to calculate the probabilities and cross sections. For example, the

charge-transfer probability P (b) as a function of the impact parameter b is computed as a

ratio between the number of trajectories leading to the formation of the final atom and the

total number of sampled trajectories. The charge-transfer cross section σCT is then given by

the integral
∫
2πP (b)bdb. The total number of trajectories for each energy point was varied

between 6× 104 and 106 to make sure that a typical statistical error for the cross section is

less than 2%. However, when the cross section is small, particularly for ionization near the

threshold, the error can significantly exceed this limit reaching sometimes 30%.

In the process of our calculations we have found that the charge-transfer cross section ex-
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hibits regular oscillations with small amplitudes which are beyond the statistical uncertainty

of the CTMC method. We found out that these are an artefact of classical calculations which

start with a fixed position of the projectile in the configuration space. These oscillations

and the process of their elimination are discussed in the Appendix.

III. CONVERGENT CLOSE-COUPLING METHOD

The two-center convergent close-coupling method for positron-hydrogen scattering was

developed by Kadyrov and Bray [8]. It explicitly incorporates Ps formation with convergence

against basis size having to be checked for both the H and Ps centers. As a truncated

complete Laguerre basis is used for both centers, the two non-orthogonal expansions lead to

highly ill-conditioned system of linear equations. This manifests itself as numerical problems

when large expansions are used, see near-threshold regions in Charlton et al. [12] for

example. Generally, the smaller the required cross sections the larger the expansions are

necessary to obtain convergence. However, if the larger expansions lead to particularly ill-

conditioned linear equations then obtaining accurate results for the smaller cross sections

can become problematic. In part, the motivation for the present CCC calculations is to

obtain, as accurately as possible, near-threshold cross sections for excitation of states with

principal quantum number n ≤ 3.

The CCC calculations are parametrized by the Laguerre basis orbital angular momentum

quantum number l ≤ lmax, basis size Nl and exponential fall-off λl. In the case of two-center

calculations these are independent for the two centers. For simplicity, we take Nl = N0 − l

and λl = λ. The CCC calculations of Charlton et al. [12] had lmax = 9 and N0 = 30 for

both centers, with 2λPs = λH = 0.5. Here we take lmax = 4 and N0 = 25 for both centers,

with 2λPs = λH = 1.

The two-center CCC calculations of the underlying matrix elements rely on analytical

expansions for their sufficiently rapid computational evaluation, which has only been im-

plemented for N0 ≤ 30. Owing to potential precision loss associated with such expansions,

presently we have utilized calculations with N0 = 25. This limitation is unfortunate as

in the near-threshold region for breakup we require large basis sizes in order to have suffi-

ciently many open positive-energy pseudostates which represent the breakup. This shall be

discussed further below when considering the corresponding breakup by electrons.
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IV. CLASSICAL SCALING LAWS

The classical motion in a system of charged particles is invariant under the following

scaling rules [13, 37, 38]

r′ = α2r, t′ = α3t. (9)

Consider a collision characterized by the center-of-mass energy E and impact parameter b

involving a hydrogenlike system (target) with the initial energy ϵ and angular momentum

L. Then the following scaling law for the collision probability can be obtained from (9)

PϵL(E, b) = Pϵ/α2,αL(E/α2, α2b). (10)

For the cross section integrated over impact parameter we obtain

σϵL(E) = α−4σϵ/α2,αL(E/α2). (11)

Choosing α = 1/n where n is the principal quantum number of the target, we have

PnL(E, b) = P1,L/n(n
2E, b/n2) (12)

and

σnL(E) = n4σ1,L/n(n
2E). (13)

This result was obtained by using the classical density of states of the target corresponding

to a fixed energy E and angular momentum L. Allowing L (or eccentricity of the target

orbit) to be randomly distributed, we obtain similar results for the probability and cross

section averaged over L:

Pn(E, b) = P1(n
2E, b/n2) (14)

and

σn(E) = n4σ1(n
2E). (15)

Apply now the classical scaling to the Klar-Wannier law

σ1 = C(E − Et)
µ, (16)

where µ = 2.65 is the Klar’s exponent for the process with e−e+p in the final state [17].

For positron impact ionization of the H(1s) atom Et = 0.5 a.u., and for the Ps(1s) breakup

process Et = 0.25 a.u. For an arbitrary n we obtain

σn = Cn4+2µ(∆E)µ, (17)
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where

∆E = E − Et

n2
. (18)

It is important to note [32] that the classical scaling laws do not apply rigorously to quantal

scattering because of the dimension of h̄. In addition, in quantum theory the average over

angular momentum of the target is carried out by using the equation

σn =
1

n2

∑
l

(2l + 1)σnl (19)

where l is the orbital angular momentum quantum number of the target. It is obvious

therefore that the classical approach is less accurate for small n when the number of possible

values of l, which is equal to n, is low.

V. RESULTS AND DISCUSSION

A. Ps-p collisions

In Fig. 1 we present cross sections for Ps breakup in collisions with protons, reaction (1).

Cross section σ1 obeys the Klar-Wannier law, Eq. (16), for energy up to 10 eV above the

threshold energy, Et = 6.8 eV. Such a wide range of validity of the threshold law follows

from the Wannier’s derivation [4] based on the smallness of the parameter (Gaussian units)

β =
∆Ea

e2
(20)

where a is the reaction zone radius which for the e+e−p system is of the order of the Bohr

radius, and e is the elementary charge. Therefore we should expect the threshold law to

be valid for ∆E smaller than 1 a.u.=27.2 eV. These considerations could also explain the

relatively narrow range of validity of the Klar-Wannier law in the process of positron-impact

ionization of Ar [24] since the reaction radius is much larger in this case as compared to that

for the process of ionization of hydrogen.

The quantum cross section for the Ps(n = 1) breakup, although qualitatively agrees with

the CTMC result, is substantially higher near the threshold and peaks at a lower energy

than the CTMC cross section. For the Ps(n = 2) breakup the agreement is much better.

We will address this issue in more detail in the next subsection on e+−H collisions.

The classical scaling, Eq. (9), describes very well the results of ab initio CTMC cal-

culations. A similar picture is observed in Fig. 2 for n = 3 and 4. The scaled results are
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FIG. 1. Ps breakup in Ps(n)+p collisions. The Klar-Wannier fit is shown by short-dashed lines.

Dashed line: the n = 2 results obtained from scaling of the n = 1 data. Stars: CTMC results for

n = 2. Both sets of data for n = 2 are divided by 24 = 16.

somewhat different from the ab initio results reflecting statistical uncertainties of the CTMC

calculations. The range of the validity of the Klar-Wannier law squeezes according to the

scaling law as 1/n2 being about 2.5, 1.0 and 0.65 eV above the threshold for n = 2, 3 and 4

respectively.

In Fig. 3 we present the cross section for the exothermic process of H formation in the

same collision, reaction (2). Comparison with CCC results [9] shows strong disagreement

at low energies for n = 1 where the classical cross section is very high and diverges as

1/E, in contrast to the quantum result which obeys the quantum Bethe-Wigner law for

the exothermic reaction, Eq. (6), and whose absolute value is two orders of magnitude

9



 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  2  4  6  8  10

n=3

n=4

(c
ro

ss
 s

ec
tio

n)
/n

4  (
a.

u.
)

Ps energy (eV)

Ps(n=3) CTMC scaled
Ps(n=4) CTMC scaled

Ps(n=3) CTMC ab initio

Ps(n=4) CTMC ab initio

Ps(n=3) CCC
Ps(n=4) CCC

Wannier fit

Ps(n) + p → e- + e+ + p

FIG. 2. Cross section for Ps breakup in Ps(n)+p collisions for n = 3 and 4, comparison of the

CTMC results with the CCC data.

lower at E below 0.1 eV. It is apparent that the low-energy region in this case is a pure

quantum domain since the Ps wavelength in this region is much longer than the range of

Ps−p interaction. Note also that the scaled cross sections, σ̃ = σ/n4, exhibit different n

dependence in the low-energy region: whereas σ̃ produced by CCC calculations grows with

n, σ̃ produced by CTMC decreases with n. However, near the three-body breakup threshold

classical and quantum cross sections start to agree, and this agreement continues for higher

energies. This observation confirms that in the Wannier region the classical approach is valid

for the charge-transfer process. This means that the three-body dynamics in this energy

region is described very well by classical mechanics. With the increase of the principal

quantum number agreement between classical and quantum results spreads down to low

energies [11]. This is consistent with the generalized correspondence principle [32] as well as
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FIG. 3. H formation in Ps+p collisions for n(Ps)=1, 2 and 3, comparison of CTMC and CCC [9]

calculations.

with the quantum threshold law for collisions involving interaction of charged particle with

excited hydrogenlike systems, Eq. (7) [26, 27]. Note that for n = 2, although both classical

and quantum cross sections behave as C/E, the coefficient C is substantially different in

two theories, and the range of validity of this dependence is very different as well. However,

already for n = 3 agreement is excellent. This reflects the fast growth of the Ps dipole

moment with n.

B. e+−H collisions

Another confirmation of the validity of classical mechanics near the three-body breakup

threshold is the results for reactions (3), (4) involving e++H collisions.
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In Fig. 4 we present Ps formation and positron-impact ionization cross sections for

positron collisions with the hydrogen atom in the ground state, reactions (3), (4). The

Wannier threshold law with the Klar’s exponent µ = 2.65 is reproduced quite well, taking

into account that the number of trajectories near the threshold should be enormous (about

two orders of magnitude higher than in the region far from the threshold) due to the instabil-

ity of the “Wannier ridge” trajectories near the three-body breakup threshold [4]. However,

the extension [20] of the Klar-Wannier law does not show an improvement. To show the
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statistical uncertainty near the threshold, two points on the graph are shown with error bars,

estimated by standard root-mean square deviation, although the actual uncertainty can be

larger. By varying the exponent µ while fitting the cross section to the Klar-Wannier law,

we were able to estimate its uncertainty as ∆µ = ±0.06.

Near the three-body breakup threshold (Et = 13.6 eV) contribution of excited Ps states

to charge transfer, reaction (4), is very insignificant: the channel

e+ +H(n = 1) → Ps(n′ = 2) + p

contributes only 0.13 a.u., and higher n′ give virtually nothing. Agreement with CCC

calculations [39] is very good for the Ps formation process, but some differences can be seen

when the cross sections are plotted on the linear scale, see below Fig. 6. However, for

the ionization process disagreement is increasing with decreasing energy. We note that in

the near-threshold region (∆E < 3 eV) both classical and quantum methods suffer from

substantial uncertainties. The CTMC method for breakup cross sections in this region

requires very large number of trajectories, and the CCC results are affected by a poor

convergence when the cross section becomes very small [39]. Still, it is observed that whereas

both CTMC and CCC results obey the Klar-Wannier law, the CCC results for the ionization

are systematically higher near the threshold so that the coefficient C in the Klar-Wannier

law, Eq. (16), obtained from the CCC calculations, exceeds the CTMC result by a factor

3.25.

At this point it is unclear if disagreement between CTMC and CCC is due to numerical

uncertainties or due to some inherent defects of the classical theory. To shed more light on

this issue, in Fig. 5 we present comparison of cross section for electron-impact ionization

of H. CTMC results are taken from Vrinceanu [38] using the classical parameter l/n = 0.1,

and the CCC results have been obtained using Laguerre bases having Nl = 25 − l and

Nl = 60 − l, with λl = 1 for l ≤ lmax = 6. Both CCC calculations agree with experiment

[40] where available. However, the larger CCC results converge to the Wannier law, with

the Wannier exponent µ = 1.127, better than the smaller ones, indicating the importance

of large expansions when studying near-threshold breakup. The same energy-dependence

is observed for the CTMC results, but again, the absolute values are somewhat different

with the CTMC results exceeding those of CCC. We note that the classical microcanonical

distribution cannot properly describe the probability density in s states, and this is the most

13



10-2

10-1

100

101

 0.001  0.01  0.1  1

cr
os

s 
se

ct
io

n 
(a

.u
.)

electron energy relative to the ionization threshold (a.u.)

experiment

CTMC

CCC, N0=25

CCC, N0=60

e- + H(n=1) → e- + e- + p
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experiment [40]. Note that the experimental error bars are too small to be visible on the scale of

drawing.

probable reason for the difference [38]. However, we expect that with the growth of n, when

states with more orbital angular momenta appear, classical l-averaged cross section should

approach the quantum-calculated one.

Overall, comparison of CTMC with CCC results allows us to conclude that the three-

body dynamics in this energy region is described reasonably well by classical mechanics.

Above the threshold our CTMC results also agree with the earlier calculations of Ohsaki et

al. [14], and near the threshold with recent calculations of Liu et al. [16].

The CTMC calculations by [16] employ the so-called Heisenberg correction [41] to the
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Coulomb potential to incorporate the Heisenberg uncertainty principle in treatment of col-

lisional process. The present results show that this procedure is unnecessary in the Wannier

region where classical treatment works fine. The Heisenberg correction has been shown

to stabilize bound states when they are calculated by classical mechanics [41]. For systems

containing more than one electron the energy-bound correction was proposed [42] to prevent

autoionization forbidden by quantum mechanics. However, at low collision energies, when

one of the reactants is a neutral particle, the classical mechanics fails completely, and it is

unlikely that its deficiency could be fixed with the Heisenberg potential or the energy-bound

potential.

We will next continue the discussion of the Ps formation process (4) by extending the

energy range below the three-body breakup threshold. In Fig. 6 we present the Ps formation

results in the near-threshold region and compare with CCC calculations [39] and experimen-

tal data [43]. The CTMC cross sections have been averaged over artificial oscillations as

discussed in the Appendix. The failure of the classical theory in this region is apparent:

while classical cross section is finite at the threshold, quantum cross section starts from the

zero value at the threshold, according to the Wigner law. This is a typical case of the quan-

tum suppression [3]. Moreover, classically the process of Ps formation can occur below the

actual threshold because the energy of the Ps (1s) state is not bounded from below. This

unphysical behavior is indicated in Fig. 6 by the dash-dotted red line whereas the vertical

threshold onset at E = 6.8 eV is artificial from the classical point of view.

We have attempted to fit the CCC cross section near the threshold by the function

C(E − Et)
1/2, in accordance with the Wigner law, where C was chosen to reproduce the

CCC cross section at E −Et = 0.2 eV. It is apparent from Fig. 6 that the range of validity

of the Wigner law is much narrower than that for the Klar-Wannier law. This can be

understood from the basic physics of the ionization process versus the Ps formation process.

In the first (classical) case the range of validity follows from β ≪ 1 [4] where β is given

by Eq. (20) which leads to ∆E ≪ 1 a.u.=27.2 eV. In contrast, the quantum-mechanical

Wigner law is based on the assumption that the wavelength of the outgoing particle is much

greater than the reaction radius a, or k < 1/a. The reaction radius for Ps formation can be

estimated as a = 4 a.u. Then we get ∆E < 1/(2ma2) = 1/64 a.u.=0.42 eV where m = 2

a.u. is the Ps mass.

In Fig. 7 we present cross sections for Ps formation in collisions of e+ with excited
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and experiment [43]. Dotted line is the Wigner law dependence with the proportionality constant

1.08 a.u./(eV)1/2. Dash-dotted red line is the unphysical CTMC cross section below the actual

threshold, see text.

hydrogen calculated by the CTMC and CCC methods. The CTMC data are in agreement

with the classical scaling laws. The process is exothermic for both n = 2 and n = 3.

For n = 2 disagreement between CTMC and CCC is very large in the low-energy region,

although at n = 3 agreement is much better. Because of the nonzero dipole moment of the

H atom in the excited state, the quantum cross section diverges as 1/E even for n = 2,

however its absolute value is very different from the classical in this case. This is in sharp

contrast with the three-body breakup behavior. Also, the n = 2 quantum cross section

exhibits a step-wise structure at the threshold for Ps formation in the excited n′ = 2 state.

16



 0

 50

 100

 150

 200

 250

 300

 350

 0  2  4  6  8  10

n=2

n=3

cr
os

s 
se

ct
io

n 
(a

.u
.)

positron energy (eV)

CTMC n=2

CTMC n=3

CCC n=2

CCC n=3

e+ + H(n) → Ps + p

FIG. 7. e+−H(n) →Ps+p cross sections for n = 2, 3, comparison of CTMC and CCC calculations.

The onset is in accord with the Gailitis-Damburg threshold law [26] which predicts that

reactions, leading to formation of a charged fragment and a hydrogenlike fragment in an

excited state, have finite cross section at the threshold. This structure is absent in the

classical cross section since the energy levels in these calculations are not quantized.

In Fig. 8 we present the positron-impact ionization of H from the excited states, reaction

(3). the CTMC results near threshold can be fitted by the Klar-Wannier law as shown in

the figure. The fit works for n = 2 for energies of about 3.5 eV above the threshold whereas

for n = 3 the range of validity of the Klar-Wannier law narrows down to about 1 eV above

the threshold. As in the case of n = 1, the CCC cross sections are somewhat higher than

the CTMC ones. More of a concern is that the CCC cross section cannot be fit by the Klar-

Wannier law. A similar discrepancy was found in the Ps breakup cross sections in Ps-p/p̄
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collisions [12]. To investigate the matter further we have plotted the classical probability

for ionization of H(n = 2) as a function of impact parameter b and compared it with its

quantum analogue calculated from the CCC cross sections as

Pquant =
σLk

2πb

where b is determined from the angular momentum as

b =
(
L+

1

2

)
/k. (21)

Since we use the classical relation between b and L, L in Eq. (21) should be understood

as the angular momentum of the incident e+. On the other hand, in CCC calculations

L is the total orbital angular momentum of the system which creates some uncertainty in
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CTMC-CCC comparison which decreases with increasing L. In Fig. 9 we present probability

comparison for three selected energies close to the ionization threshold, Et = 3.40 eV. For the

lowest considered energy, E = 4.19 eV, the statistical uncertainty of the CTMC calculations

is quite large, but it is decreasing from about 30% at E = 4.19 eV to about 5% at E = 5.79

eV whereas the error caused by treating the collision angular momentum as a continuous

quantity remains about 30% for all depicted curves. The latter error was estimated as

due to uncertainty in b calculated as ∆b = .5/k, and the actual error might be somewhat

lower. Nevertheless disagreement between CCC and CTMC calculations certainly exceeds

both errors. Whereas at large impact parameters the disagreement can be explained by

the neglect of tunneling in classical calculations, the reason for strong disagreement at the
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position of the peak is unclear. It is interesting that the effect is opposite to quantum

suppression found in cross sections for hydrogen formation in Ps−p collisions [31]. In that

case quantum-mechanical probability is substantially lower than the classical at low impact

parameters which results in the lower integrated cross section.

Farther away from the threshold the classical and quantum probabilities start to converge,

except at larger impact parameters where quantum P (b) continues to be higher. However,

the relative difference in integrated cross sections becomes small.

VI. CONCLUSION

While in general classical and quantum cross sections for reactions involving three-body

system e+e−p are convergent at high principal quantum number n of the reactant (Ps or H),

the near-threshold region is of a special interest. In the present paper we have shown that

near the three-body breakup threshold classical and quantum results for three-body breakup

and charge transfer agree, reasonably well even for n = 1, both in energy dependence and

absolute values, although some disagreement in the absolute value of the near-threshold

positron-impact ionization cross section is observed. For scattering from the ground state

disagreement is likely due to inability of classical microcanonical distribution to reproduce

the quantum probability density. However, in general the classical mechanics works reason-

ably well in the Wannier region. In contrast, the threshold behavior of the charge transfer

reaction in Ps-p and e+−H collisions is very different in the classical and quantum theories.

For n = 1 the classical results fail completely both in energy dependence and the abso-

lute value. For n = 2, although both classical and quantum functional behavior for the

exothermic charge transfer is similar, the quantitative disagreement is still very large. For

higher n the classical and quantum versions converge fast. Since classical calculations are

computationally less expensive than quantum, these conclusions are providing a useful guide

for future calculations of reactions involving three particles interacting by the Coulomb law.

The unresolved question deals with the near-threshold behavior of the CCC e+-impact ion-

ization cross section from excited states. For n > 1 the present N0 = 25 CCC calculations

do not obey the Klar-Wannier law, similar to what has been observed in Ps-breakup cross

sections [12]. This problem requires further investigation, but is most likely to be due to

numerical limitations associated with having a too small Laguerre basis for the problem of
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APPENDIX: OSCILLATIONS IN CLASSICAL PS FORMATION CROSS SEC-

TIONS

Cross sections for charge transfer plotted as a function of the projectile energy on a

finer energy scale exhibit oscillations. For example cross sections for Ps formation in e+−H

collisions oscillate with a period which varies between 0.5 and 0.8 eV in the energy range

between the threshold and 20 eV, as shown in Fig. 10. These oscillations are regular, and

cannot be attributed to statistical uncertainties. However, this is an artificial effect caused

by a fixed starting point for running trajectory. To show this, consider a positron incident

on H atom with the zero impact parameter and initial velocity v. Consider for simplicity a

circular electron trajectory and neglect the e+−H interaction. Then the electron trajectory

is described by the equations

x− = r cos(ωt− ϕ), y− = r sin(ωt− ϕ)

where r is the radius of the trajectory, ω the angular frequency, and −ϕ is a random initial

phase. The positron trajectory is described by the equations

x+ = x0 − vt, y+ = 0

where x0 is the positron’s initial position. For the effective charge transfer we require r− =

r+. Then we obtain

sin(ωt− ϕ) = 0, t = (π + πk + ϕ)/ω
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where k is an integer. Solving now

r cos(ωt− ϕ) = x0 − vt

we obtain

vk =
x0 − r cos(ωt− ϕ)

t
=

ω[x0 + (−1)kr]

π(k + 1) + ϕ
(22)

These values of velocity correspond to events when the charge transfer is most likely.

Although vk depends on the random quantity ϕ, this dependence is weak since k should be

large for moderate values of vk. Indeed, for the ground state ω = 1 a.u., and x0 is typically

several hundred a.u., therefore k should be of the order of 100. Averaging (22) over ϕ, we
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obtain

⟨vk⟩ =
1

2π

∫ 2π

0
vk(ϕ)dϕ = ω

[x0 + (−1)kr]

2π
ln

k + 3

k + 1
.

Using r ≪ x0 and k ≫ 1, we obtain

vk =
x0ω

πk
,

and the corresponding values of energy are

Ek =
1

2

(
x0ω

πk

)2

.

The value of k corresponding to the peak at E = Ek is

k = (2Ek)
−1/2x0ω

π
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and the distance between peaks is

∆Ek =
2Ek

k
.

With the increase of Ek, the distance between peaks grows as (2E)3/2 which is in agreement

with the numerical results. Furthermore, for x0 = 300 a.u., Ek = 13.6 eV, for example, we

obtain k = 95 and ∆Ek=0.28 eV, compared to the computed ∆Ek =0.5-0.6 eV. Agreement

is reasonable for such a simplistic estimate. The discussed effects can also be observed for

the probability as a function of E for a fixed impact parameter b. In Fig. 11 we plot the

probability for b = 2 a.u. and compare it with the cross section (divided by 40 for a better

view). The probability exhibits some statistical uncertainties, but it is clear that its maxima

match maxima in the cross section. Since a similar dependence is observed for other impact

parameters, the oscillations do not disappear after integration over b.

For a given energy E the oscillation frequency grows with the growth of x0, and for

x0 → ∞ it becomes indefinitely large whereby the average over an arbitrarily small interval

of energies gives the physical value of the probability and the cross section. In fact there

is no need to go to very large values of x0. Even for the x0 values of about 300 a.u. the

average over oscillation period gives accurate enough values of physical cross sections. We

demonstrate this by presenting in Fig. 10 cross sections averaged over oscillations which

give physically meaningful values. Since the average of oscillations over E is equivalent to

the average over x0, the oscillations should not appear in quantum-mechanical calculations

where the plane wave has an infinite uncertainty in x0.
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