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We investigate the dynamical spreading of spatial correlations after a quantum quench starting
from a magnetically disordered state in the transverse-field Ising model at one (1D) and two spa-
tial dimensions (2D). We analyze specifically the longitudinal and transverse spin-spin correlation
functions at equal time with use of several methods. From the comparison of the results in 1D
obtained by the linear spin-wave approximation (LSWA) and those obtained by the rigorous ana-
lytical approach, we show that the LSWA can asymptotically reproduce the exact group velocity
in the limit of strong transverse fields while it fails to capture the detailed time dependence of the
correlation functions. By applying the LSWA to the 2D case, in which the rigorous analytical ap-
proach is unavailable, we estimate the propagation velocity to be Ja/(2ℏ) at the strong-field limit,
where J is the Ising interaction and a is the lattice spacing. We also utilize the tensor-network
method based on the projected-entangled pair states for 2D and quantitatively compute the time
evolution of the correlation functions for a relatively short time. Our findings provide useful bench-
marks for quantum simulation experiments of correlation spreading and theoretical refinement of
the Lieb-Robinson bound in the future.

I. INTRODUCTION

Neutral atoms trapped in optical-tweezer arrays are
promising platforms for analog quantum simulations [1–
3]. The controllability of individual atoms with laser
pulses and of interatomic interactions via Rydberg ex-
citations enables one to realize fast and high-fidelity
quantum operations. Recent rapid technological devel-
opments allow for manipulating many Rydberg atoms
in large arrays [4–6] and investigating the ground state
of quantum lattice systems experimentally [7–15]. Such
experiments have also stimulated theoretical research on
fundamental quantum many-body systems. For instance,
the ground-state phase diagrams of the transverse-field
Ising model and those of its strong Ising interaction limit,
the PXP model, have been intensively examined using
the quantum Monte Carlo method [16–19].

Rydberg-atom arrays have also given the opportunity
to study the nonequilibrium dynamics of isolated quan-
tum many-body systems, which are hard to simulate nu-
merically with classical computers. In particular, the
correlation-spreading dynamics of quantum Ising mod-
els [16, 20] is one of the intriguing topics that is likely
to be further addressed. At present, experiments with
more than 200 Rydberg atoms are feasible [4–6], allow-
ing one to study unprecedentedly large lattice systems in
one (1D) and two spatial dimensions (2D).

These recent experiments on long-time dynamics in
quantum many-body systems have motivated us to quan-
titatively calculate the velocity of the correlation prop-
agation, which will serve as useful references for future
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experiments. In general, there are two kinds of propa-
gation velocities for correlation spreading dynamics; one
is the phase velocity and the other is the group velocity.
The former can be captured by the first peak of the wave
packet, whereas the latter can be extracted by the enve-
lope of the wave packet. The group velocity is bounded
from above in non-relativistic quantum systems, and this
upper limit is known as the Lieb-Robinson bound [21, 22].

While significant progress has been made concerning
rigorous inequalities related to the Lieb-Robinson bound,
such inequalities do not necessarily offer practical refer-
ence values for experiments. Usually, the Lieb-Robinson
bound is intended to provide general conditions for ar-
bitrary correlations. Consequently, the bound can be
too loose and sometimes meaningless when examining
the propagation velocity of particular correlation func-
tions that are measurable in experiments. With this in
mind, the Lieb-Robinson bound has been improved very
recently [23]; however, their method still gives a looser
bound than the exact solution if it is available.

In some cases, direct numerical simulations on classi-
cal computers would give much more detailed informa-
tion about correlation spreading than rigorous inequali-
ties for the Lieb-Robinson bound. Such numerical data
would also strengthen the validity of experimental find-
ings through cross-checking experimental and theoreti-
cal results. Indeed, many numerical efforts have been
made to calculate the quench or sweep dynamics in 1D
and 2D. These attempts include the time-dependent vari-
ational Monte Carlo method with the Slater-Jastrow
wave function [24] and with more sophisticated neural-
network wave functions [25–31], the form factor expan-
sions [32], the numerical linked-cluster expansion [33–
35], the tensor-network method based on matrix prod-
uct states (MPS) [36–39], and that based on projected
entangled pair states (PEPS) [28, 40–45].

In this paper, we study quench dynamics in the
transverse-field Ising model on a chain in 1D and that
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on a square lattice in 2D by using several methods, in-
cluding the tensor-network method based on PEPS and
the linear spin-wave approximation (LSWA). We take
the initial state to be the magnetically disordered prod-
uct state, which is the ground state in the strong-field
limit, and calculate time evolution of spin-spin correla-
tions at equal time after a sudden quench of the trans-
verse field. We focus on the quench within a parameter
region where the ground state is magnetically disordered.
We extract the group velocity of the correlation propa-
gation from the spin-spin correlations for several values
of the transverse field. In the 1D case, we show that the
group velocity extracted from the LSWA results asymp-
totically approaches that extracted from the rigorous an-
alytical results with increasing the transverse field, while
the agreement in the time dependence of the correlation
functions is limited to a short time before the first peak
appears. Our results indicate that the LSWA can quan-
titatively predict the propagation velocity as long as the
final transverse field is sufficiently strong. In the 2D case,
using the LSWA, we estimate the group velocity to be
Ja/(2ℏ), where J is the Ising interaction and a is the
lattice spacing. We use the PEPS method in a comple-
mentary way to perform more quantitative calculations
on the time evolution of the correlation functions for a
relatively short time.

This paper is organized as follows: In Sec. II, we in-
troduce the model and all the analytical and numerical
methods used in the present study. In Secs. III and IV,
we present the time-dependent spin-spin correlation func-
tions and extract the corresponding group velocity in 1D
and 2D, respectively. We discuss the relation between
our propagation velocity and the Lieb-Robinson bound
proposed recently, and draw our conclusions in Sec. V.
For simplicity, we set ℏ = 1 throughout this paper.

II. MODEL AND METHODS

We consider the transverse-field Ising model with the
periodic boundary condition defined as

Ĥ = −J
∑
⟨i,j⟩

Ŝz
i Ŝ

z
j − Γ

∑
i

Ŝx
i , (1)

where Ŝz
i and Ŝx

i correspond to the z and x components
of the S = 1/2 Pauli spin, J represents the strength of the
spin exchange interaction, and Γ represents the strength
of the transverse field. The symbol ⟨i, j⟩ means that the
sum is taken over nearest-neighbor sites. We focus on
the ferromagnetic spin exchange interaction (J > 0) on a
chain in 1D and that on a square lattice in 2D. Both fer-
romagnetic and antiferromagnetic models are equivalent
under appropriate unitary transformations for bipartite
lattices. The ground state is ordered (disordered) for
Γ < Γc (Γ > Γc), where Γc is the transition point given
as Γc/J = 1/2 [46] in 1D and Γc/J ≈ 1.522 [17, 47, 48]
in 2D. Hereafter we take J as the unit of energy. We

also take the lattice constant to be unity throughout this
paper.
We investigate the quench dynamic starting from the

disordered state |ψ0⟩ = ⊗i |→⟩i at Γ → ∞ to the dis-
ordered parameter region Γ ∈ (Γc,∞). We study the
equal-time longitudinal and connected transverse corre-
lation functions at distance r, which are defined as

Czz(r, t) = ⟨ψ(t)|Ŝz
r Ŝ

z
0|ψ(t)⟩, (2)

Cxx
connected(r, t) = ⟨ψ(t)|Ŝx

r Ŝ
x
0 |ψ(t)⟩

− ⟨ψ(t)|Ŝx
r |ψ(t)⟩⟨ψ(t)|Ŝx

0 |ψ(t)⟩ (3)

with |ψ(t)⟩ = e−iĤt|ψ0⟩, respectively. Hereafter, we
take the lattice spacing to be unity (a = 1). In
1D, we obtain them by the exact calculations via the
Jordan-Wigner transformation and by the LSWA via the
Holstein-Primakoff transformation. In 2D, we use the
tensor-network method, the exact diagonalization (ED)
method, and the LSWA. We will summarize each method
below.
We extract the group velocity from the envelope of the

wave packet in the spin-spin correlation functions. Let
us first discuss how the correlation spreading is related to
the Lieb-Robinson bound. In a system with short-range
interaction, a commutator of any operators ÔA and ÔB

in regions A and B satisfies the relation

∥∥[ÔA(t), ÔB]
∥∥ ≤ const.× exp

(
−L− vt

χ

)
, (4)

where ÔA(t) = exp
(
iĤt

)
ÔA exp

(
−iĤt

)
, L is the dis-

tance between the regions A and B, and χ is con-
stant [21, 22]. The velocity v corresponds to the Lieb-
Robinson bound. This relation means that the informa-
tion from the region A is transmitted to the region B up
to a time t ≈ L/v. Then, the inequality of the Lieb-

Robinson bound ensures that, for any operators ÔA and
ÔB in regions A and B having the distance L, the ex-
pectation value for a state |ψ⟩ with a finite correlation
length χ satisfies [49]

|⟨ψ(t)|ÔAÔB|ψ(t)⟩ − ⟨ψ(t)|ÔA|ψ(t)⟩⟨ψ(t)|ÔB|ψ(t)⟩|
≤ const.× e

−L−2vt
χ′ , (5)

where χ′ is a constant that depends on χ. This velocity
2v on the right-hand side corresponds to twice the Lieb-
Robinson bound. When the correlation spreading is well
described by the quasiparticle, the group velocity (vgroup)
of the fastest quasiparticle is often regarded as the Lieb-
Robinson bound [50–53].
To estimate the group velocity of the fastest quasipar-

ticle, we calculate the slope obtained from the peak-time
dependence of the distance. In general, the maximum
group velocity is larger than the velocity associated with
the largest correlation peak location, and they do not
have to be the same. On the other hand, the latter value
is easy to extract and is often regarded as the maximum



3

group velocity (particularly in experiments). They do co-
incide for the quench dynamics in the 1D transverse-field
Ising model, as we will see later. Therefore, we regard
the velocity associated with the largest correlation peak
location as the maximum group velocity and, hereafter,
call it the Lieb-Robinson velocity. To avoid confusion,
we will use the term “Lieb-Robinson bound” to refer to
the actual bound in the inequality and the term “Lieb-
Robinson velocity” to refer to the velocity extracted from
peak positions. The Lieb-Robinson bound is larger than
or equal to the Lieb-Robinson velocity.

Under these circumstances, the Lieb-Robinson veloc-
ity gives twice the group velocity (2vgroup) of a fastest
quasiparticle. Intuitively, the factor two originates from
pairs of quasiparticles moving to the left or right from
a given point. This quasiparticle picture has been dis-
cussed intensively in the dynamics of the Bose-Hubbard
model [51, 54–56]. In the present analysis, we have pre-
sented the group velocity vgroup of a certain single quasi-
particle estimated from one half of the slope obtained
from the peak-time dependence of the distance.

A. Exact calculations in 1D

The analytical form of the time-dependent correla-
tion functions can be obtained rigorously for the 1D
transverse-field Ising model [46, 57–62]. We briefly re-
view the detailed derivation of the time-dependent cor-
relation functions in Appendix A and present the final
results below.

The longitudinal correlation function is represented as
a Pfaffian of a 2r × 2r skew symmetric matrix:

Czz(r, t) = (−1)
r(r−1)

2 · 1
4
pf

(
S G

−GT Q

)
. (6)

Here elements of the matrices S, Q, and G are defined as

si,j =


Si−1,j−1 if i < j

−Sj−1,i−1 if i > j

0 if i = j

, (7)

qi,j =


Qi−1,j−1 if i < j

−Qj−1,i−1 if i > j

0 if i = j

, (8)

gi,j = Gi−1,j , (9)

where the time-dependent correlation functions Si,j , Qi,j ,
and Gi,j are given as

Si,j = − 2

L

∑
k>0

{
cos[k(ri − rj)][|ũk(t)|2 + |ṽk(t)|2]

− i sin[k(ri − rj)][ũk(t)ṽ
∗
k(t) + ṽk(t)ũ

∗
k(t)]

}
, (10)

Qi,j = +
2

L

∑
k>0

{
cos[k(ri − rj)][|ũk(t)|2 + |ṽk(t)|2]

+ i sin[k(ri − rj)][ũk(t)ṽ
∗
k(t) + ṽk(t)ũ

∗
k(t)]

}
, (11)

Gi,j = − 2

L

∑
k>0

{
cos[−k(ri − rj)][|ũk(t)|2 − |ṽk(t)|2]

− i sin[−k(ri − rj)][ũk(t)ṽ
∗
k(t)− ṽk(t)ũ

∗
k(t)]

}
.

(12)

The symbol
∑

k>0 means the sum taken over all k =
2πn/L with n = 1/2, 3/2, . . . , (L − 3)/2, (L − 1)/2 for
even L. For the quench starting from the disordered state
(Γ → ∞), the parameters ũk(t) and ṽk(t) for 0 < k < π
are described as

ũk(t) = i
b̃′k
ω′
k

sin

(
2ω′

k × tJ

4

)
, (13)

ṽk(t) = −i cos
(
2ω′

k × tJ

4

)
− ã′k
ω′
k

sin

(
2ω′

k × tJ

4

)
(14)

with

ã′k =
2Γ

J
+ cos k, (15)

b̃′k = sin k, (16)

ω′
k =

√
4Γ2

J2
+

4Γ

J
cos k + 1, (17)

respectively. Parameters with prime symbols indicate
physical quantities after the quench. On the other hand,
the transverse correlation function is given as

Cxx
connected(r, t) = −1

4
(Q0,rS0,r +Gr,0G0,r). (18)

We numerically evaluate each correlation function for suf-
ficiently large systems. We use the library for Pfaffian
computations [63] in the case of the longitudinal correla-
tion function.

B. Spin-wave approximation

We investigate a small quench starting from the com-
pletely disordered point (Γ → ∞) to the parameter
within a disordered phase (Γclassical

c ≪ Γ < ∞, where
Γclassical
c = JD with D being the spatial dimension). We

focus on small quantum fluctuations around the disor-
dered state and map quantum Ising spins to bosons using
the linearized Holstein-Primakoff transformation [64–68].
The equal-time correlation functions for quantum spins
can be obtained by calculating those for bosons. They
serve as a good approximation as long as the transverse
magnetization is large enough (⟨Sx

i ⟩ ≈ 1/2). We give the
detailed derivation in Appendix B and show the obtained
spin-spin correlation functions below.
The longitudinal correlation function at distance r

(1 ≤ rν ≤ L/2 with ν = 1, 2, . . . , D) is given as

Czz(r, t) =
S

2LD

∑
k

eik·r
B′

k

A′
k +B′

k

(cos 2Ω′
kt− 1), (19)
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Dphys
Dvirt

A
B

FIG. 1. Schematic picture of the iPEPS having a two-site
unit-cell structure. The two sublattice sites are represented
by A and B. Each ball corresponds to a rank-five tensor, which
is located at a lattice site and has four thin sticks and a thick
stick. The thin and thick sticks represent the virtual and
physical degrees of freedom, and the bond dimensions of the
former and the latter are defined as Dvirt and Dphys, respec-
tively.

where S(= 1/2) is the size of spin and other parameters
are defined as

Ω′
k = sgn(A′

k)

√
A′

k
2 −B′

k
2, (20)

A′
k = −z

2
JSγk + Γ, (21)

B′
k = −z

2
JSγk, (22)

γk =
1

D

D∑
ν=1

cos kν (23)

with z = 2D being the coordination number. Parame-
ters with prime symbols correspond to physical quanti-
ties after the quench. On the other hand, the transverse
correlation function at distance r (1 ≤ rν ≤ L/2 with
ν = 1, 2, . . . , D) is given as

Cxx
connected(r, t)

=

∣∣∣∣∣ 1

LD

∑
k

eik·r
B′

k

2Ω′
k

[
A′

k

Ω′
k

(cos 2Ω′
kt− 1) + i sin 2Ω′

kt

]∣∣∣∣∣
2

+

∣∣∣∣∣ 1

LD

∑
k

eik·r
B′

k
2

2Ω′
k
2 (cos 2Ω

′
kt− 1)

∣∣∣∣∣
2

. (24)

We numerically calculate each correlation function for
sufficiently large systems.

C. 2D tensor-network method

We use the infinite projected entangled pair state
(iPEPS) [69–76] or the infinite tensor product state [77–

0.00
0.05
0.10
0.15 Γ/J = 5.0

PEPS, Dvirt = 5, 6, 7, 8

0.00
0.05
0.10
0.15 Γ/J = 6.0

0.00
0.05
0.10
0.15

[e
(t
J

)
−
e(

0)
]/
J

Γ/J = 7.0

0.00
0.05
0.10
0.15 Γ/J = 8.0

0 2 4 6 8
time tJ

0.00
0.05
0.10
0.15 Γ/J = 9.0

FIG. 2. Bond-dimension dependence of energy density ob-
tained by iPEPS simulations. We consider the quench to
Γ/J = 5, 6, 7, 8, and 9 and subtract the energy density
at t = 0. The lines correspond to the time-dependent en-
ergy density for the bond dimensions Dvirt = 5, 6, 7, and 8
(from lighter to darker). The energy is nearly conserved for
Dvirt ≥ 6 in a time frame tJ ∈ [0, 4].

81] to investigate short-time dynamics in the infinite sys-
tem. We choose translationally invariant iPEPS consist-
ing of a two-site unit-cell structure as shown in Fig. 1.
The dimension of the local Hilbert space is Dphys = 2
for spin S = 1/2. The initial state |ψ0⟩ = ⊗i| →⟩i is
the ground state in the limit of Γ/J → ∞, which can be
prepared by the virtual bond dimension Dvirt = 1.

We apply the simple update algorithm [73, 82] to
simulate the real-time dynamics of the transverse-field
Ising model. In this algorithm, we approximate the
real-time evolution operator in a very short-time step
dt using the Suzuki-Trotter decomposition [83–85] and

obtain the two-site gate e−idtĤ ≈ ∏
⟨i,j⟩ e

−idtĤij with

Ĥij = −JŜz
i Ŝ

z
j − Γ(Ŝx

i + Ŝx
j )/z (z = 4) satisfying

Ĥ =
∑

⟨i,j⟩ Ĥij . The gate acts on two neighboring ten-

sors and increases the virtual bond dimensions. We trun-
cate the bond dimensions of the local tensors using the
singular value decomposition so that the bond dimen-
sions of iPEPS remains Dvirt. Note that the decomposi-
tion temporarily breaks the one-site translation symme-
try into a two-site one and calls for at least a two-site
unit-cell structure even when the system is translation
invariant [73, 82]. In the actual calculations, the second-
order Suzuki-Trotter decomposition is used, and the time
step is typically chosen as dtJ = 0.001 for a quench to
a strong field Γ. Simulations using doubled or halved dt
show no significant change in the short-time dynamics as
for the present model.
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We improve the accuracy of time-evolved wave func-
tions by increasing the dimension of the virtual bond
Dvirt and confirm the convergence of physical quanti-
ties. Previous studies [41, 43] suggest that results for
bond dimensions Dvirt ≳ 6 already show good conver-
gence within a short-time frame tJ ≲ 4 even in one of
the most difficult cases, i.e., the quench to the critical
point. (Concerning the unit of time, the energy scale is
four times larger in previous studies [41, 43] because they
used the Pauli spin σz = 2Sz.)

In the present iPEPS simulations, we adopt the tensor-
network library TeNeS [86–88] and increase the virtual
bond dimensions up to Dvirt = 8 for safety. In general,
as for numerical simulations of a quench dynamics, the
obtained correlations would be reliable in a short time
that the energy is conserved. We investigate the time
dependence of the energy density in the unit of Ising
interaction J for different fields Γ/J with increasing the
bond dimensions Dvirt (see Fig. 2). The energy density is
nearly conserved for a short time (tJ ≲ 4) whenDvirt ≥ 6
regardless of the choice of the transverse field.

The corner transfer matrix renormalization group
method [74–76, 78, 89–95] is used to calculate physi-
cal quantities in the thermodynamic limit. We take the
bond dimensions of the environment tensors as χvirt =
2(Dvirt)

2 so that physical quantities are well converged.

D. Exact diagonalization method

The ED method is often used to get insight into the
dynamics of small quantum many-body systems [96–100].
We use the QuSpin library [101, 102] for ED calculations.
We consider the system sizes up to 28 sites under the pe-
riodic boundary condition. In the present setup, both the
Hamiltonian and the initial state are translationally in-
variant, and the total momentum of the initial and time-
evolved states remains zero. We restrict ourselves to the
zero-momentum sector [103] and follow the dynamics of
the state. Instead of generating matrix elements on the
fly to reduce the memory cost, we keep all the elements
of sparse matrices in the compressed sparse row format
to accelerate calculations. To compute the matrix ex-
ponential applied to a vector, we use the Taylor series
expansion with error analysis proposed by Al-Mohy and
Higham [104, 105].

We confirm that the ED results (up to 28 sites) re-
produce the exact analytical results in 1D (not shown).
We mainly show the ED results in 2D (for 5 × 5 sites)
hereafter.

III. RESULTS IN 1D

We first present the time dependence of spin-spin cor-
relations in 1D using the exact analytical approach and
the LSWA. We extract the group velocity after a sudden
quench to a strong field from these data.

0.0

5.0

Czz(r = 1, t)

×10−2

Γ/J = 3.0

0.0

2.0

Czz(r = 2, t)
L = 256

−1.0
0.0
1.0

Czz(r = 3, t)

−1.0
0.0
1.0

Czz(r = 4, t)

−1.0
0.0
1.0

Czz(r = 5, t)

−1.0

0.0

1.0
Czz(r = 6, t)

−1.0

0.0

1.0
Czz(r = 7, t)

−1.0

0.0

1.0

Czz(r = 8, t)

−1.0

0.0

1.0

Czz(r = 9, t)

0 5 10 15 20
time tJ

−1.0

0.0

1.0

Czz(r = 10, t)

FIG. 3. Exact equal-time longitudinal correlation functions
in 1D. We consider the quench to Γ/J = 3 for a system size
L = 256 and show the short-time dynamics for distances r =
1, 2, . . . , and 10. The envelope of each correlation function
is a guide to the eye. The upper (lower) part of the envelope
at each distance is obtained by first searching all the local
maxima (minima) in the correlation and then interpolating
them using a one-dimensional cubic B-spline curve [106].

A. Exact results

We show the exact equal-time longitudinal correlation
functions in Fig. 3. At an early time (tJ ≪ r), the in-
tensity of correlation is nearly zero. On the other hand,
when tJ ≳ r, the correlation starts to develop and ex-
hibits rapid oscillations. For each distance, the earliest
peak in the envelope of the wave packet has the largest
intensity. The peak time of the largest envelope peak
moves almost linearly with the distance, suggesting the
light-cone-like spreading of correlations.
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0.0

5.0Cxx(r = 1, t)

×10−3

Γ/J = 3.0

0.0

1.0
Cxx(r = 2, t)

L = 256

0.0

0.5Cxx(r = 3, t)

0.0

0.5Cxx(r = 4, t)

0.0

0.5
Cxx(r = 5, t)

0.0

0.5
Cxx(r = 6, t)

0.0

0.5
Cxx(r = 7, t)

0.0

0.5
Cxx(r = 8, t)

0.0

0.5
Cxx(r = 9, t)

0 5 10 15 20
time tJ

0.0

0.5

Cxx(r = 10, t)

FIG. 4. Exact equal-time transverse correlation functions in
1D. The parameters are the same as those in Fig. 3.

We also show the exact equal-time transverse correla-
tion functions in Fig. 4. In contrast to the longitudinal
correlations, the rapid oscillations appear only for short
distances (r ≲ 3) and are negligibly small for most of
the distances. Besides, the intensity of the transverse
correlation is much smaller than that of the longitudinal
one. On the other hand, the peak time of the transverse
correlation almost coincides with that of the largest enve-
lope peak in the longitudinal correlation. The transverse
correlation decays rapidly just before and after the peak
time.

To estimate the propagation velocity, we first extract
the peak time of the envelope of correlations as a function
of distance. We show the corresponding time and dis-
tance in Fig. 5. The data for longitudinal and transverse
correlations overlap very well. The distance is nearly
proportional to the peak time for both correlations. For

0 25 50 75 100 125
first peak time tJ

0

50

100

d
is

ta
n

ce
r

Γ/J = 3.0

L = 256

longitudinal

transverse

FIG. 5. First-peak time dependence of distance for exact
correlations in 1D. We show data points when the distance is
a multiple of four. The group velocity is estimated from one
half of the slope.

0 2 4 6 8 10
Γ/J

0.0

0.2

0.4

0.6

0.8

v
gr

ou
p
/J

L = 256
Lieb-Robinson bound

longitudinal

transverse

FIG. 6. Field dependence of the group velocity in 1D. The
exact Lieb-Robinson velocity vLR/J = 1/2 is shown as a refer-
ence. For Γ/J < 3, we only show the group velocity estimated
from the transverse correlations because the envelopes of lon-
gitudinal correlations become unclear for a weaker field.

each field Γ/J and size L, we estimate the group velocity
vgroup from one half of the slope so that it corresponds
directly to the speed of one of quasiparticle pairs moving
to the left or right. Since the data points are slightly
out of the straight line at the very short and long dis-
tances, we discard those for r ≤ 5 and r ≥ L/2− 5 when
extracting the velocity.
To see how the group velocity behaves as a function of

the transverse field, we first examine a sufficiently large
system (L = 256) as shown in Fig. 6. Both velocities
estimated from longitudinal and transverse correlations
are nearly 0.5J for all fields Γ/J ≥ 3. The group ve-
locity of the spin-spin correlations agrees with the exact
Lieb-Robinson velocity in the 1D transverse-field Ising
model (see Appendix A 5 for the derivation of the exact
value). This fact suggests that the quasiparticles with
the fastest propagation velocity among the various corre-
lation functions are directly responsible for the spreading
of spin-spin correlations.
Although the estimated velocity is very close to 0.5J ,

it is slightly smaller than the exact value in finite-size
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FIG. 7. Size scaling of the group velocity in 1D. The group
velocity is well fitted by 1/L2/3 with L being the length of
a chain and is extrapolated to the value of the exact Lieb-
Robinson velocity vLR/J = 1/2.

systems. To check the size dependence and confirm the
convergence, we perform the finite-size scaling of the es-
timated velocity.

For this purpose, let us first discuss how the finite-
size effect appears. The spin-spin correlation functions in
the 1D transverse-field Ising model are described by the
single-particle correlation functions of fermionic quasi-
particles. In the thermodynamic limit, they are given
by the Bessel functions [59]. The size dependence of
the Bessel functions has been carefully investigated in
the case of long-time dynamics of the 1D Bose-Hubbard
model [54], as well as in that of the 1D transverse-field
Ising model [107]. The distance r dependence of the peak
time t is given as

t ≈ 1

v∞
(r + ϵr1/3), (25)

where v∞ is the velocity at large distances, and ϵ is a
constant related to the peak position of the Bessel func-
tion [54]. The instantaneous velocity v(r) = [t(r + 1) −
t(r)]−1 at each time t is independent of distances and
becomes v∞ if ϵ = 0, but it is slightly modified in the
presence of finite ϵ. For ϵ ̸= 0, the instantaneous velocity
is obtained as

v(r) ≈ v∞

(
1− ϵ

3
r−2/3

)
. (26)

Since the farthest distance for a chain of length L is
r = L/2 (∝ L), we may safely assume that the devi-
ation between the finite-size and infinite-size velocities
∆v(L) follows the relation

∆v(L) :=

∣∣∣∣v(L2
)
− lim

L→∞
v

(
L

2

)∣∣∣∣ ∝ L−2/3 (27)

for L≫ 1.
We then extrapolate the finite-size group velocities to

the thermodynamic limit using Eq. (27). We estimate the
error bars using the covariance obtained from weighted
least squares regression. As shown in Fig. 7, all the data

points lie on an expected straight line for both correla-
tions. The extrapolated group velocity at Γ/J = 3 is
vgroup/J = 0.5005(4) [vgroup/J = 0.4999(3)] for the lon-
gitudinal (transverse) correlations and almost converges
to the exact Lieb-Robinson velocity (vLR/J = 0.5) of the
1D transverse field Ising model within the error bar of
the extrapolation. We have also confirmed that the esti-
mated velocity converges to the exact one for all the other
transverse fields that we have studied (Γ/J ≥ 1). There-
fore, the fastest correlation spreading can be measured
by the spin-spin correlations in the 1D transverse-field
Ising model.

B. Results by the LSWA

To examine how good the LSWA is as for the correla-
tion spreading, we calculate the equal-time spin-spin cor-
relation functions by the LSWA and compare the results
with those of the exact analysis. In general, the LSWA
gets better with increasing spatial dimensions [108–110]
because it takes into account a correction to the lead-
ing order of the mean-field approximation. Here we will
demonstrate that the group velocity of the correlation
propagation obtained by the LSWA agrees well with the
exact one even in the lowest 1D.
We show the longitudinal correlation functions in

Fig. 8. As in the case of the exact analysis, the correla-
tions are suppressed for tJ ≲ r and begin to develop for
tJ ≳ r at a given distance r. The LSWA quantitatively
reproduces the period of oscillations and the intensity
of exact correlations up to about tJ ≈ r. In the short
time (tJ ≲ r), a very small number of quasiparticle ex-
citations would come into play, and the LSWA becomes
more accurate in this dilute regime.

On the other hand, the transverse correlation functions
appear to be accurate up to the point where they begin
to increase (see Fig. 9). In contrast to the exact analyti-
cal result, where the earliest peak has the largest inten-
sity, the LSWA predicts that the second earliest peak has
the largest intensity. Nevertheless, the time of maximum
intensity does not differ significantly between the exact
and approximate results. The first-peak time is typically
about 2tJ early, while the time of maximum intensity is
typically about 2tJ late for all distances in the case of
the LSWA. These effects do not change the propagation
velocity significantly. Therefore, the group velocity esti-
mated by the LSWA is expected to be close to the exact
one.

As in the case of exact analysis, we observe the suppres-
sion of rapid oscillations in the transverse correlations
using the LSWA. This phenomenon can be easily un-
derstood in the magnon picture. The original transverse
correlation corresponds to the density-density correlation
of magnons. The density operator is less susceptible to
the effects of phases. On the other hand, the original
longitudinal correlation corresponds to the single-particle
correlation of magnons, which directly feels the effects of
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FIG. 8. Equal-time longitudinal correlation functions ob-
tained by the LSWA in 1D. The parameters are the same
as those in Fig. 3. We show the exact correlations (dashed
line) for comparison.

phases. Therefore, the transverse (longitudinal) correla-
tion tends to exhibit less (more) oscillations. Such effects
have been intensively examined in the correlation spread-
ing of the Bose-Hubbard model [51, 54, 55, 111, 112].

Likewise, the LSWA also predicts that the intensity
of the transverse correlation is smaller than that of
the longitudinal one. They are approximately given as
|Czz(r, t)| = O(J/Γ) and |Cxx

connected(r, t)| = O(J2/Γ2),
respectively (see Appendices B 2 and B3).

Having assessed the accuracy of the LSWA, we extract
the group velocity from the 1D correlations. We first
investigate the distance dependence of peak time for a
sufficiently large system (L = 256), as shown in Fig. 10.
Again, both correlations show almost the same result,
and the distance is nearly proportional to the peak time.
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FIG. 9. Equal-time transverse correlation functions obtained
by the LSWA in 1D. The parameters are the same as those
in Fig. 3. We show the exact correlations (dashed line) for
comparison.

We estimate the velocity using the data for 5 < r <
L/2− 5.

We summarize the field dependence of the group ve-
locity in Fig. 11. Both group velocities estimated from
the longitudinal and transverse correlations are nearly
0.5J irrespective of the choice of the transverse field for
Γ/J ≳ 3. Note that the LSWA group velocity is ex-
pected to deviate from the exact one at Γ/J ≲ 2 because
too many quasiparticles are created due to such a large
quench.

Finally, we have confirmed the size dependence of the
estimated group velocity. As shown in Fig. 12, the LSWA
shows much smaller size dependence than the exact anal-
ysis in Fig. 7. The velocity is nearly converged for L ≥ 48
and is extrapolated to 0.5J , corresponding to the Lieb-
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FIG. 10. First-peak time dependence of distance for corre-
lations obtained by the LSWA in 1D. We show data points
when the distance is a multiple of four.
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FIG. 11. Field dependence of the group velocity obtained
by the LSWA in 1D. The exact Lieb-Robinson velocity
vLR/J = 1/2 and the maximum group velocity vSW/J =

[1+
√

1− (J/Γ)2]−1/2/
√
2 estimated from the spin-wave dis-

persion (see Appendix B 4) are shown as references. For
Γ/J < 3, we only show the group velocity estimated from
the transverse correlations because the envelopes of longitu-
dinal correlations become unclear for a weaker field.

Robinson velocity.

IV. RESULTS IN 2D

Next, we examine the time-dependent correlations in
2D using the ED method, the tensor-network method
based on iPEPS, and the LSWA. As in the case of 1D,
we estimate the group velocity after a sudden quench to
a strong field.

A. Results by the LSWA

We apply the LSWA to calculate the spin-spin cor-
relation functions and to extract the group velocity.
In the case of the 1D transverse-field Ising model, the
LSWA reproduces the exact results to the extent that
the group velocity of the correlation propagation quan-
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FIG. 12. Size dependence of the group velocity estimated by
the LSWA in 1D. The size dependence is smaller than the
exact case (see Fig. 7).
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FIG. 13. Equal-time longitudinal correlation functions ob-
tained by the LSWA, the ED method, and the tensor-network
method in 2D. We consider the quench to Γ/J = 9 for a finite
system of Ns = L2, L = 128 by the LSWA (solid line), for
a finite system of Ns = L2, L = 5 by ED simulations (small
circles), and for the infinite system with the bond dimensions
Dvirt = 8 by iPEPS simulations (dashed line).

titatively agrees at a sufficiently strong field. We will
demonstrate that it reproduces the 2D correlations ob-
tained by the nearly exact simulations much better than
in 1D. It also allows us to estimate the group velocity
from the correlations at farther distances than the ED
and iPEPS simulations, as we will demonstrate below.

We compare the longitudinal correlation functions ob-
tained by the ED method and the LSWA in Fig. 13. The
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FIG. 14. Equal-time transverse correlation functions ob-
tained by the LSWA, the ED method, and the tensor-network
method in 2D. The parameters are the same as those in
Fig. 13.
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FIG. 15. Contour plot of normalized intensity of equal-
time transverse correlation functions as a function of time
and distance obtained by the LSWA in 2D. The parameters
L = 128 and Γ/J = 9 are the same as those in Fig. 13.
We show the normalized correlation function Cxx

norm(r, t) :=
Cxx

connected(r, t)/maxt∈[0,L/(2J)] C
xx
connected(r, t) (∈ [0, 1]) along

the horizontal axis [r = (r, 0)] for each distance up to r = 32.

LSWA well reproduces the correlations obtained by the
ED method up to the point where the second peak of
the envelope appears [see, e.g., Czz(r = 2, t) in Fig. 13].
The period of oscillations almost coincides between the
ED method and the LSWA. As expected in the LSWA
in higher spatial dimensions, the agreement in 2D looks
much better than in 1D (compare Fig. 8 and Fig. 13).
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FIG. 16. Dominant-peak time dependence of distance for cor-
relations obtained by the LSWA in 2D.
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FIG. 17. Field dependence of the group velocity obtained
by the LSWA in 2D. The maximum group velocity vSW/J =

(1−J/Γ+
√

1− 2J/Γ)−1/2/
√
2 estimated from the spin-wave

dispersion (see Appendix B 4) is shown as a reference. For
Γ/J < 3, we only show the group velocity estimated from the
transverse correlations because the envelopes of longitudinal
correlations become unclear for a weaker field.

The longitudinal correlations exhibit rapid oscillations
as in the case of 1D. On the other hand, in contrast to
the 1D case, where the earliest envelope peak has the
largest intensity, it does not always exhibit the largest
intensity in 2D. The order of the envelope peaks with the
largest intensity varies with distance in 2D, which would
make it more difficult to extract the group velocity. This
observation may be ascribed to the complex interference
effects in 2D.
The transverse correlation function obtained by the

LSWA also qualitatively reproduces the ED result (see
Fig. 14). In contrast to the longitudinal correlations, the
rapid oscillations are much weaker for r ≳ 3.
To clarify how the correlation develops for a longer

time and to examine the complex interference effects
in 2D, we depict the normalized intensity of the trans-
verse correlations as a function of time and distance in
Fig. 15. In general, the LSWA performs better in the di-
lute regime, corresponding to the region r ≳ tJ . Within
this range, we observe a stronger intensity near the line
satisfying r ≈ tJ . However, areas of high intensity are
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FIG. 18. Size dependence of the group velocity estimated by
the LSWA in 2D.

not continuously connected and are rather separated in
small pieces. Such pieces are bundled together forming
the boundary of the light cone. When we focus on the
short-time and short-distance region, we can only look
at the first small area of high intensity. If we use such
data, we would incorrectly estimate the group velocity.
Indeed, as we will see later in Sec. IVB, the velocity ob-
tained by the iPEPS method for a relatively short time
has a considerable degree of ambiguity.

To estimate the group velocity in 2D, we collect the
peak times and distances in Fig. 16. Both correlations
exhibit the consistent results. Although the jagged be-
havior caused by the complex interference effects is ob-
served in the data points, the distance becomes nearly
proportional to the peak time for sufficiently large sys-
tems. We extract the group velocity from one half of the
slope so that it corresponds directly to the velocity of one
quasiparticle.

We show the field dependence of the group velocity
along the horizontal axis for a large system (Ns = L2,
L = 128) in Fig. 17. At a very strong transverse
field, the velocity turns out to be nearly 0.5J . The
velocity is likely to increase with decreasing the trans-
verse field. This observation is qualitatively consistent
with the result obtained in perturbation theory (see Ap-
pendix B 4). The velocity estimated from correlations is
basically on the curve represented by vSW/J = (1−J/Γ+√

1− 2J/Γ)−1/2/
√
2, which is determined by the deriva-

tive of the spin-wave dispersion (see Appendix B 4).
We finally check the size dependence of the estimated

group velocity in Fig. 18. As in the case of 1D, the veloc-
ity does not depend on the size significantly for L ≳ 48
and converges to the value close to 0.5J . Therefore, the
LSWA predicts that the speed of spin-spin correlation
spreading is vgroup ≈ 0.5J for a small quench to Γ ≫ J
in the 2D transverse-field Ising model.

B. Tensor-network results

As a complementary method to the LSWA, we use the
tensor-network method based on the iPEPS to calculate
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FIG. 19. Equal-time longitudinal correlation functions in 2D.
We consider the quench to Γ/J = 9 for the infinite system
with the bond dimensions Dvirt = 5, 6, 7, and 8 (solid lines
from lighter to darker) by iPEPS simulations and for a finite
system of Ns = L2, L = 5 (small circles) by ED simulations.
We show the short-time dynamics for distances r = 1, 2, . . . ,
5, and

√
2. Both data agree very well for t/J ≲ 4.

the spin-spin correlation functions. We will see that the
tensor-network method has an advantage in calculating
the time dependence of correlations more accurately than
the LSWA.

Before presenting the correlations obtained by the
iPEPS simulations, let us comment on the time range
of the applicability of the method. As we have discussed
in Sec. II C, as for numerical simulations of a quench dy-
namics, the obtained correlations would be reliable in a
short time that the energy is conserved. In our case, the
energy density is found to be nearly conserved for a short
time (tJ ≲ 4) when Dvirt ≥ 6 (see Fig. 2). Therefore,
we will present the correlations within this time frame
hereafter.

We show the longitudinal correlation functions ob-
tained by the ED and iPEPS simulations in Fig. 19. The
ED method can deal with small systems in 2D and gives
the correlations up to r ≈ 2 at the farthest. For these
distances (r ≲ 2) and short times (tJ ≲ 4), the data by
the ED and iPEPS methods completely overlap. Since
the iPEPS method directly handles the infinite system,
the ED method appears to provide the correlations that
can almost be regarded as those at the thermodynamic
limit in this regime. The iPEPS method can predict the
peak positions of correlations at slightly farther distances
and still conserve the energy for tJ ≲ 4. The peak in the
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FIG. 20. Equal-time transverse correlation functions in 2D.
The parameters are the same as those in Fig. 19.
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FIG. 21. Dominant-peak time dependence of distance for cor-
relations obtained by iPEPS simulations (Dvirt = 8) in 2D.
The group velocity is estimated from the value r/[2t(r)] for
distances r = 3, 4, and 5.

envelope of correlation hits tJ ≈ 4 when r = 5, and thus
the correlations up to r = 5 would be reliable for the
velocity estimation.

As in the case of the LSWA, the longitudinal corre-
lations exhibit rapid oscillations. Moreover, in 2D, the
tensor-network method also predicts that the earliest en-
velope peak does not always correspond to the peak hav-
ing the largest intensity (see Fig. 19). This observation
suggests that the complex interference effects in 2D are
not the artifact of the LSWA.

We also examine the transverse correlation functions
in Fig. 20. The ED and iPEPS methods provide almost
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FIG. 22. Field dependence of the group velocity estimated
from iPEPS simulations (Dvirt = 8) in 2D. For Γ/J < 5, we
only show the group velocity estimated from the transverse
correlations because the envelopes of longitudinal correlations
become unclear for a weaker field.

the same correlations for r ≲ 2 and tJ ≲ 4. Again, the
iPEPS method is applicable to farther distances up to
r = 5. The rapid oscillations are quickly suppressed for
r ≳ 3, as in the case of 1D and also as in the LSWA
for 2D. The peak positions of the transverse correlations
are nearly the same as those of the envelope peak in the
longitudinal correlations.
The qualitative behavior of correlations obtained by

the tensor-network method and the LSWA is similar (see
Figs. 13 and 14). The peak time of the correlations does
not differ significantly between the two methods. Al-
though the first-peak time is a little ahead in the LSWA,
the peak-time difference is typically 0.5tJ in 2D, which
is smaller than 2tJ in 1D. Because the LSWA is appli-
cable to a much longer time, it is more suitable for esti-
mating the group velocity. On the other hand, the time
dependences of correlations agree well between the ED
and tensor-network methods, whereas they slightly dif-
fer between the ED method and the LSWA. Therefore,
the tensor-network method is more appropriate to obtain
quantitative data.
To estimate the group velocity, we pick up the peak

time for each distance from these correlations obtained
by iPEPS simulations, as shown in Fig. 21. Since the data
obtained by the bond dimensions Dvirt = 6, 7, and 8 are
well converged, we present the result for the largest bond
dimension Dvirt = 8. Within the range of time where
the iPEPS simulations are considered to be reliable, it
is hard to tell whether the light-cone-like spreading of
correlations exists or not in 2D. However, as we have
shown by the LSWA in Sec. IVA, such behavior is caused
by the complex interference effects in 2D; it is highly
probable that the light cone exists. Therefore, we may
assume that the distance eventually grows linearly with
the peak time also in the iPEPS results. We then extract
the group velocity as vgroup = r/[2t(r)] for each distance
r. We mainly focus on the data for farther distances
(r = 3, 4, and 5) because data for short distances tend
to be off the light-cone behavior in general.
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The field dependence of the group velocities along
the horizontal axis for distances r = 3, 4, and 5 are
given in Fig. 22. They do not vary significantly for
Γ/J ∈ [2, 9]. Since the velocity increases with increas-
ing the distance, we estimate the group velocity as the
average of the smallest and largest values with the am-
biguity given by one half of their difference. It is given
as vgroup/J ∈ [0.43, 0.65] for all transverse fields that we
have studied using the iPEPS method. As we have dis-
cussed in Sec. IVA, the LSWA also predicts the similar
velocity vgroup/J ≈ 0.5. The velocities obtained by the
LSWA and those obtained by the tensor-network method
agree within the ambiguity.

V. DISCUSSION AND SUMMARY

Let us compare our group velocity estimated from
the spin-spin correlations with the recent Lieb-Robinson
bound. In 1D, our estimate of the group velocity is
vgroup = J/2. This is the same as the exact Lieb-
Robinson velocity vLR = J/2 in the 1D transverse-field
Ising model, indicating that the spin-spin correlations
propagate at the speed of fastest quasiparticles. On the
other hand, the recent Lieb-Robinson bound for general
lattice systems provides the speed vrecent = 1.51J [23].
As was already pointed out in Ref. [23], it is approxi-
mately three times as large as the exact Lieb-Robinson
velocity.

In 2D, the group velocity along the horizontal axis is
estimated to be vhorizontal ≈ J/2 as well. We do not
know the exact excitation velocity in the 2D transverse-
field Ising model so far. However, for a small quench
within a disorder phase, we might expect that the fastest
quasiparticles are responsible for spin-correlation spread-
ing also in 2D. We come to this conclusion because the
dispersion corresponding to the fastest quasiparticles ob-
tained in perturbation theory [113] turns out to be the
same as the dispersion estimated in the LSWA (see Ap-
pendix B 4), and the LSWA reproduces the spin-spin
correlations obtained by the exact analysis in 1D and
those obtained by the nearly exact simulations in 2D
fairly well (see Secs. III and IV). Therefore, as for the
transverse-field Ising model, even in 2D, it is natural
to regard the group velocity of the spin-spin correla-
tions obtained by the LSWA as the Lieb-Robinson ve-
locity. From the comparison between this value (the
horizontal vhorizontal ≈ J/2 or the diagonal vdiagonal ≈
J/

√
2 velocity) and the best currently available estimate

(vrecent,horizontal = JXy=2 ≈ 2.836J or vrecent,diagonal =
2JXy=1/2 ≈ 3.787J , where Xy is the solution to the

equation x arcsinhx =
√
x2 + 1+ y) [23], it is likely that

there is still much room for improving the Lieb-Robinson
bound in 2D.

In conclusion, we have studied the correlation-
spreading dynamics in the transverse-field Ising model
on a chain and that on a square lattice. We have calcu-
lated the longitudinal and transverse spin-spin correla-

tion functions after a sudden quench starting from the
disordered state to a strong field within a disordered
phase. We have applied several analytical and numer-
ical methods and crossvalidated all data.
In 1D, we have compared the time-dependent correla-

tions using the exact analytical formulae and the LSWA.
We have found that the group velocity of the correlation
propagation extracted from the LSWA results asymptot-
ically approaches that from the exact analytical formulae
as the transverse field increases. In addition, the trans-
verse correlation tends to exhibit less oscillations than
the longitudinal one. This fact makes it easier to extract
the propagation velocity without drawing the envelope of
the wave packet of the correlation when we measure the
transverse one. Moreover, the 1D spin-spin correlations
are found to propagate at the speed of fastest quasipar-
ticles corresponding to the exact Lieb-Robinson velocity.
In 2D, we have calculated the correlations using the

ED method, the tensor-network method based on iPEPS,
and the LSWA. As in the case of 1D, we have confirmed
that the three methods reproduce nearly the same cor-
relations within a short-time frame. The tensor-network
method and the LSWA allow us to calculate the corre-
lations for much farther distances than the ED method
can deal with. In particular, the LSWA is convenient for
estimating the propagation velocity, whereas the tensor-
network method is advantageous in calculating the time
dependence of correlations accurately. We have extracted
the group velocity by these two methods and obtained the
value which is nearly equal to one half of the magnitude of
the Ising interaction. The group velocity of the spin-spin
correlations in 2D turns out to be much smaller than the
best currently available estimate for the Lieb-Robinson
bound [23].
Our findings on the group velocity would be helpful for

future analog quantum simulations of Rydberg-atom ar-
rays and stimulate further research on the Lieb-Robinson
bound. The present tensor-network method, which can
accurately calculate the dynamics in one of the most fun-
damental two-dimensional quantum many-body systems,
opens the possibility of future applications to other sys-
tems.
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Appendix A: Details of exact calculations in 1D

1. Hamiltonian

We review the derivation of the exact form of two-body
correlation functions after a sudden quench [46, 57–62].
For simplicity, we consider the Hamiltonian

Ĥ = −
∑
i

σ̂z
i σ̂

z
i+1 − g̃

∑
i

σ̂x
i , (A1)

which corresponds to the Hamiltonian in Eq. (1) with
J = 4 and Γ = g̃J/2. To get the correlation functions for
the original Hamiltonian, we have to use g̃ = 2Γ/J and
replace time 4t with tJ .
After the Jordan-Wigner transformation

σ̂x
i = 2ĉ†i ĉi − 1, (A2)

σ̂z
i =

i−1∏
j=1

(1− 2ĉ†j ĉj)(ĉi + ĉ†i ) (A3)

and the Fourier transformation

ĉj =
1√
L

∑
k

e−ikrj ĉk, (A4)

k =
2πn

L
, (A5)

where n = −(L− 1)/2, −(L− 3)/2, . . . , −1/2, 1/2, . . . ,
(L − 3)/2, (L − 1)/2 for even L or n = −(L − 1)/2,
(L− 3)/2, . . . , −2, −1, 0, 1, 2, . . . , (L− 3)/2, (L− 1)/2
for odd L, we obtain

Ĥ =
∑
k

(ĉ†k ĉ−k)

(
ãk −ib̃k
ib̃k −ãk

)(
ĉk
ĉ†−k

)
, (A6)

ãk = g̃ + cos k, (A7)

b̃k = sin k. (A8)

Using the Bogoliubov transformation(
ĉk
ĉ†−k

)
=

(
uk ivk
ivk uk

)(
γ̂k
γ̂†−k

)
(A9)

uk = cos
θk
2
, (A10)

vk = sin
θk
2
, (A11)

tan θk =
sin k

g + cos k
(A12)

satisfying u−k = uk and v−k = −vk, we get

Ĥ = 2
∑
k

ωk

(
γ̂†kγ̂k − 1

2

)
, (A13)

ωk =
√
g̃2 + 2g̃ cos k + 1. (A14)

The coefficients uk and vk can be described by ãk, b̃k,
and ωk as

uk =
ãk − ωk√

2ωk(ωk − ãk)
=

(ãk − ωk)
√
ωk + ãk√

2ωk|b̃k|
, (A15)

vk =
b̃k√

2ωk(ωk − ãk)
=

sgn(b̃k)
√
ωk + ãk√

2ωk
. (A16)

In the present paper, we mainly consider the quantum
quench from g̃ = g0 to g̃ = g < ∞ within the disor-
dered phase. We write the Hamiltonian before (after)

the quench as Ĥ (Ĥ ′). For g̃ → ∞, we have uk → 0 and
vk → sgn(sin k).

2. Longitudinal correlation functions

We evaluate the time-dependent longitudinal correla-
tion functions defined as

C̄zz(r, t) = ⟨ψ0|eiĤ
′tσ̂z

i σ̂
z
i+re

−iĤ′t|ψ0⟩ (A17)

= ⟨ψ0|eiĤ
′t(ĉ†i + ĉi)

i+r−1∏
j=i

(1− 2ĉ†j ĉj)


· (ĉ†i+r + ĉi+r)e

−iĤ′t|ψ0⟩. (A18)

Using the equality 1 − 2ĉ†j ĉj = (ĉ†j + ĉj)(ĉ
†
j − ĉj) and

defining the operators

Âi = ĉ†i + ĉi, B̂i = ĉ†i − ĉi, (A19)

Âi(t) = eiĤ
′tÂie

−iĤ′t, B̂i(t) = eiĤ
′tB̂ie

−iĤ′t, (A20)

we obtain the correlation function

C̄zz(r, t) = ⟨ψ0|B̂i(t)Âi+1(t)B̂i+1(t)Âi+2(t)B̂i+2(t) · · ·
· Âi+r−1(t)B̂i+r−1(t)Âi+r(t)|ψ0⟩. (A21)

It can be evaluated by the Pfaffian of a 2r × 2r skew
symmetric matrix A using the Wick’s theorem:

C̄zz(r, t) = (−1)
r(r−1)

2 · pfA. (A22)

The matrix A is given as

A =

(
S G

−GT Q

)
(A23)

with matrices

S =



0 S0,1 S0,2 · · · S0,r−2 S0,r−1

−S0,1 0 S1,2 · · · S1,r−2 S1,r−1

−S0,2 −S1,2 0 · · · S2,r−2 S2,r−1

...
...

...
. . .

...
...

−S0,r−2 −S1,r−2 −S2,r−2 · · · 0 Sr−2,r−1

−S0,r−1 −S1,r−1 −S2,r−1 · · · −Sr−2,r−1 0


,

(A24)
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Q =



0 Q0,1 Q0,2 · · · Q0,r−2 Q0,r−1

−Q0,1 0 Q1,2 · · · Q1,r−2 Q1,r−1

−Q0,2 −Q1,2 0 · · · Q2,r−2 Q2,r−1

...
...

...
. . .

...
...

−Q0,r−2 −Q1,r−2 −Q2,r−2 · · · 0 Qr−2,r−1

−Q0,r−1 −Q1,r−1 −Q2,r−1 · · · −Qr−2,r−1 0


,

(A25)

G =



G0,1 G0,2 G0,3 · · · G0,r−1 G0,r

G1,1 G1,2 G1,3 · · · G1,r−1 G1,r

G2,1 G2,2 G2,3 · · · G2,r−1 G2,r

...
...

...
. . .

...
...

Gr−2,1 Gr−2,2 Gr−2,3 · · · Gr−2,r−1 Gr−2,r

Gr−1,1 Gr−1,2 Gr−1,3 · · · Gr−1,r−1 Gr−1,r


. (A26)

Here we define time-dependent correlation functions

Si,j = ⟨B̂i(t)B̂j(t)⟩, (A27)

Qi,j = ⟨Âi(t)Âj(t)⟩, (A28)

Gi,j = ⟨B̂i(t)Âj(t)⟩ = −⟨Âj(t)B̂i(t)⟩ (A29)

and use that they are translational invariant. We will
obtain the explicit form of evaluating Si,j , Qi,j , and Gi,j

in Appendix A 4.

3. Transverse correlation functions

We evaluate the time-dependent transverse correlation
functions defined as

C̄xx(r, t) = ⟨ψ0|eiĤ
′tσ̂x

i σ̂
x
i+re

−iĤ′t|ψ0⟩ (A30)

= ⟨ψ0|eiĤ
′t(2ĉ†i ĉi − 1)(2ĉ†i+r ĉi+r − 1)e−iĤ′t|ψ0⟩.

(A31)

Using the equality 1− 2ĉ†j ĉj = (ĉ†j + ĉj)(ĉ
†
j − ĉj) and the

expressions for Âi and B̂i, we obtain

C̄xx(r, t) = ⟨ψ0|Âi(t)B̂i(t)Âi+r(t)B̂i+r(t)|ψ0⟩ (A32)

= G2
i,i −Qi,i+rSi,i+r + (−Gi+r,i)Gi,i+r.

(A33)

Subtracting the correlation of the local trans-
verse magnetization, which is given as ⟨σ̂x

i (t)⟩ =

⟨ψ0|eiĤ
′tσ̂x

i e
−iĤ′t|ψ0⟩ = −⟨ψ0|Âi(t)B̂i(t)|ψ0⟩ = −Gi,i =

−G0,0, we get the connected correlation function

C̄xx
connected(r, t) := C̄xx(r, t)− ⟨σ̂x

i (t)⟩⟨σ̂x
i+r(t)⟩ (A34)

= −Qi,i+rSi,i+r −Gi+r,iGi,i+r. (A35)

The explicit form of evaluating Si,j , Qi,j , and Gi,j will
be given in Appendix A 4.

4. Single-particle correlation functions for fermions

Let us focus on t = 0 operators. For simplicity, we re-
strict ourselves to the case of even L. Using the Fourier

transformation ĉj = 1√
L

∑
k e

−ikrj ĉk and the Bogoli-

ubov transformation ĉk = ukγ̂k + ivkγ̂−k, and then split-
ting the sum

∑
k into the positive and negative parts∑

k>0 +
∑

k<0, we rewrite Âi and B̂i as

Âi = â†i + âi, (A36)

B̂i = b̂†i − b̂i (A37)

with

âi =
1√
L

∑
k>0

[
eikrj (uk − ivk)γ̂k + e−ikrj (uk + ivk)γ̂−k

]
,

(A38)

b̂i =
1√
L

∑
k>0

[
eikrj (uk + ivk)γ̂k + e−ikrj (uk − ivk)γ̂−k

]
.

(A39)

The operators âi and b̂i satisfy

⟨{âi, âj}⟩ = ⟨{b̂i, b̂j}⟩ = ⟨{âi, b̂j}⟩ = 0, (A40)

⟨{âi, â†j}⟩ = ⟨{b̂i, b̂†j}⟩ = δij , (A41)

⟨{âi, b̂†j}⟩ = ⟨{â†i , b̂j}⟩ =: −Gab
i−j (A42)

with

Gab
i−j = − 1√

L

∑
k>0

[
eik(ri−rj)(uk − ivk)

2

+ e−ik(ri−rj)(uk + ivk)
2
]
. (A43)

After the quench, the Heisenberg equation for ĉk(t) is
given as

i
d

dt
ĉk(t) = −2ã′k ĉk(t)− 2ib̃′k ĉ

†
−k(t), (A44)

ã′k = g + cos k, (A45)

b̃′k = sin k, (A46)

where the prime symbols indicate the parameters after
the quench. As in the static case, we can introduce ũk(t)
and ṽk(t) for the Bogoliubov transformation at time t(

ĉk(t)

ĉ†−k(t)

)
=

(
ũk(t) −ṽ∗k(t)
ṽk(t) ũ∗k(t)

)(
γ̂k
γ̂†−k

)
(A47)

satisfying

ũ−k(t) = ũk(t), (A48)

ṽ−k(t) = −ṽk(t), (A49)

|ũk(t)|2 + |ṽk(t)|2 = 1. (A50)

Here γ̂k corresponds to the Bogoliubov excitations before
the quench. From Eqs. (A44) and (A47), ũk(t) and ṽk(t)
should satisfy

i
d

dt

(
ũk(t)
ṽk(t)

)
=

(
−2ã′k −2ib̃′k
2ib̃′k 2ã′k

)(
ũk(t)
ṽk(t)

)
. (A51)
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Then, for the sudden quench (g0 → g), ũk(t) and ṽk(t)
are explicitly given as

(
ũk(t)
ṽk(t)

)
=

 uk cos 2ω
′
kt+ i

ã′
kuk+b̃′kvk

ω′
k

sin 2ω′
kt

−ivk cos 2ω′
kt+

b̃′kuk−ã′
kvk

ω′
k

sin 2ω′
kt

 ,

(A52)

where each variable is represented as

ãk = g0 + cos k, (A53)

b̃k = sin k, (A54)

ωk =
√
g20 + 2g0 cos k + 1, (A55)

ω′
k =

√
g2 + 2g cos k + 1, (A56)

and Eqs. (A45) and (A46). The parameters uk and vk
are defined in Eqs. (A15) and (A16).

As in the case of t = 0, the Heisenberg representation
of each operator satisfies

Âi(t) = â†i (t) + âi(t), (A57)

B̂i(t) = b̂†i (t)− b̂i(t) (A58)

with

âi(t) =
1√
L

∑
k>0

{
eikrj [ũk(t) + ṽk(t)]γ̂k

+ e−ikrj [ũk(t)− ṽk(t)]γ̂−k

}
, (A59)

b̂i(t) =
1√
L

∑
k>0

{
eikrj [ũk(t)− ṽk(t)]γ̂k

+ e−ikrj [ũk(t) + ṽk(t)]γ̂−k

}
. (A60)

Note that âi(t) ̸= eiĤ
′tâie

−iĤ′t and b̂i(t) ̸= eiĤ
′tb̂ie

−iĤ′t

in our notation. Then, the commutation relations for the
operators are

⟨{âi(t), âj(t)}⟩ = ⟨{b̂i(t), b̂j(t)}⟩ = ⟨{âi(t), b̂j(t)}⟩ = 0,

(A61)

⟨{âi(t), â†j(t)}⟩ =: −Gaa
i−j(t), (A62)

⟨{b̂i(t), b̂†j(t)}⟩ =: −Gbb
i−j(t), (A63)

⟨{âi(t), b̂†j(t)}⟩ = ⟨{â†i (t), b̂j(t)}⟩ =: −Gab
i−j(t) (A64)

with

Gaa
i−j(t) = − 2

L

∑
k>0

{
cos[k(ri − rj)][|ũk(t)|2 + |ṽk(t)|2]

+ i sin[k(ri − rj)][ũk(t)ṽ
∗
k(t) + ṽk(t)ũ

∗
k(t)]

}
, (A65)

Gbb
i−j(t) = − 2

L

∑
k>0

{
cos[k(ri − rj)][|ũk(t)|2 + |ṽk(t)|2]

− i sin[k(ri − rj)][ũk(t)ṽ
∗
k(t) + ṽk(t)ũ

∗
k(t)]

}
, (A66)

Gab
i−j(t) = − 2

L

∑
k>0

{
cos[k(ri − rj)][|ũk(t)|2 − |ṽk(t)|2]

− i sin[k(ri − rj)][ũk(t)ṽ
∗
k(t)− ṽk(t)ũ

∗
k(t)]

}
. (A67)

Using these results, we obtain

S0,r = ⟨B̂0(t)B̂r(t)⟩ = −⟨{b̂0(t), b̂†r(t)}⟩ = +Gbb
−r(t),

(A68)

Q0,r = ⟨Â0(t)Âr(t)⟩ = +⟨{â0(t), â†r(t)}⟩ = −Gaa
−r(t),
(A69)

G0,r = ⟨B̂0(t)Âr(t)⟩ = −⟨{b̂0(t), â†r(t)}⟩ = +Gab
+r(t).

(A70)

5. Maximum group velocity

In the 1D transverse-field Ising model, the Lieb-
Robinson velocity is obtained as the maximum group
velocity determined from the derivative of the band dis-
persion [50–53]. It is given as

vLR = max
k

∣∣∣∣dωk

dk

∣∣∣∣ =
{
2g̃ if g̃ ≤ 1

2 if g̃ ≥ 1
(A71)

for the Hamiltonian defined in Eq. (A1), and it is ob-
tained as

vLR =

{
Γ if Γ ≤ J/2

J/2 if Γ ≥ J/2
(A72)

for the original Hamiltonian given in Eq. (1).

Appendix B: Details of the LSWA

1. Bosonic quadratic Hamiltonian

We consider a sudden quench within the disordered
phase for the Hamiltonian in Eq. (1). We investigate
the effect of small quantum fluctuations around the com-
pletely disordered state at Γ → ∞ using a linear spin-
wave expansion [64–68]. As long as we consider a quench
to a strong transverse field so that the transverse mag-
netization is large enough (⟨Sx

i ⟩ ≈ 1/2), this approach
should be a good approximation. We specifically study
the parameter region Γ ∈ (Γclassical

c ,∞), where the clas-
sical transition point obtained by the mean-field approx-
imation [17, 114, 115] is Γclassical

c = JD with D being
the spatial dimension. We review the derivation of the
longitudinal correlation functions [65] and then calculate
the transverse correlation functions, which have not been
investigated in previous studies.
We apply the linearized Holstein-Primakoff transfor-

mation, which is given as

Ŝx
i = S − b̂†i b̂i, Ŝz

i =

√
2S

2
(b̂†i + b̂i) (B1)

before the quench and is represented as

Ŝx
i

′
= S − â†i âi, Ŝz

i

′
=

√
2S

2
(â†i + âi) (B2)
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after the quench. The prime symbols indicate opera-
tors after the quench. After the Fourier transformation

(b̂i = 1√
LD

∑
k e

−ik·ri b̂k, âi = 1√
LD

∑
k e

−ik·ri âk) and

the Bogoliubov transformation, we obtain the Hamilto-
nian for free bosons before the quench (up to constant
terms) as

Ĥ =
∑
k

Ωkβ̂
†
kβ̂k, (B3)

b̂k = skβ̂k + tkβ̂
†
−k, (B4)

and that after the quench (up to constant terms) as

Ĥ ′ =
∑
k

Ω′
kα̂

†
kα̂k, (B5)

âk = s′kα̂k + t′kα̂
†
−k. (B6)

Here the corresponding dispersions and coefficients are
defined as

Ωk = sgn(Ak)
√
A2

k −B2
k, (B7)

sk = sgn(Ak)

√
1

2

( |Ak|
|Ωk|

+ 1

)
, (B8)

tk = −sgn(Bk)

√
1

2

( |Ak|
|Ωk|

− 1

)
, (B9)

Ω′
k = sgn(A′

k)

√
A′

k
2 −B′

k
2, (B10)

s′k = sgn(A′
k)

√
1

2

( |A′
k|

|Ω′
k|

+ 1

)
, (B11)

t′k = −sgn(B′
k)

√
1

2

( |A′
k|

|Ω′
k|

− 1

)
, (B12)

where

Ak = −z
2
JSγk + Γ, Bk = −z

2
JSγk, (B13)

A′
k = −z

2
J ′Sγk + Γ′, B′

k = −z
2
J ′Sγk, (B14)

γk =
1

D

D∑
ν=1

cos kν (B15)

with z = 2D being the coordination number. We add
the prime symbols to distinguish parameters after the
quench.

At t = 0, the vacuum of both Hamiltonians are the
same, and bosons before the Holstein-Primakoff trans-

formation satisfy b̂k = âk. Then, these operators should
fulfill (

b̂k
b̂†−k

)
=

(
sk tk
tk sk

)(
β̂k
β̂†
−k

)
=

(
s′k t′k
t′k s′k

)(
α̂k

α̂†
−k

)
=

(
âk
â†−k

)
. (B16)

This means that Bogoliubov excitations before and after
the quench are connected by(

α̂k

α̂†
−k

)
=

(
s′ksk − t′ktk s′ktk − skt

′
k

s′ktk − skt
′
k s′ksk − t′ktk

)(
β̂k
β̂†
−k

)
=:

(
uk vk
vk uk

)(
β̂k
β̂†
−k

)
, (B17)

where the coefficients satisfy

u2k − v2k = s′k
2 − t′k

2
= s2k − t2k = 1. (B18)

2. Longitudinal correlation functions

We evaluate the time-dependent longitudinal correla-
tion functions defined as

Czz(r, t) = ⟨ψ0|eiĤ
′tŜz

r Ŝ
z
0e

−iĤ′t|ψ0⟩ (B19)

=
S

2
⟨ψ0|eiĤ

′t(b̂†r + b̂r)(b̂
†
0 + b̂0)e

−iĤ′t|ψ0⟩.
(B20)

Writing them in the Fourier space (b̂i =
1√
LD

∑
k e

−ik·ri b̂k) and in the Heisenberg picture,

we obtain

Czz(r, t) =
S

2LD

∑
k

eik·r⟨ψ0|[b̂†k(t)b̂
†
−k(t) + b̂†k(t)b̂k(t)

+ b̂−k(t)b̂
†
−k(t) + b̂−k(t)b̂k(t)]|ψ0⟩. (B21)

We then replace all operators b̂k(t) by β̂k. Because

b̂k(t) = s′kα̂k(t) + t′kα̂
†
−k(t), α̂k(t) = e−iΩ′

ktα̂k, and

α̂k = ukβ̂k + vkβ̂
†
−k, the following relation holds:

b̂k(t) = (e−iΩ′
kts′kuk + e+iΩ′

ktt′kvk)β̂k

+ (e−iΩ′
kts′kvk + e+iΩ′

ktt′kuk)β̂
†
−k. (B22)

After straightforward calculations using β̂k|ψ0⟩ = 0, we
obtain

Czz(r, t) =
S

2LD

∑
k

eik·r(s′k + t′k)
2

· (u2k + v2k + 2ukvk cos 2Ω
′
kt). (B23)

Substituting uk and vk with sk, s
′
k, tk, and t′k using

Eq. (B17), we get

Czz(r, 0) =
S

2LD

∑
k

eik·r(s′k + t′k)
2(uk + vk)

2 (B24)

=
S

2LD

∑
k

eik·r(sk + tk)
2, (B25)

C̃zz(r, t) := Czz(r, t)− Czz(r, 0) (B26)
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=
S

2LD

∑
k

eik·r(s′k + t′k)
22ukvk(cos 2Ω

′
kt− 1)

(B27)

=
S

2LD

∑
k

eik·r(−2)[(s2k + t2k)s
′
kt

′
k

− (s′k
2
+ t′k

2
)sktk](s

′
k + t′k)

2(cos 2Ω′
kt− 1).

(B28)

Using the relations defined in Eqs. (B7-B15), we finally
get [65]

Czz(r, 0) =
S

2LD

∑
k

eik·r
Ωk

Ak +Bk
, (B29)

C̃zz(r, t) =
S

2LD

∑
k

eik·r
AkB

′
k −A′

kBk

Ωk(A′
k +B′

k)
(cos 2Ω′

kt− 1).

(B30)

For Γ → ∞ before the quench, Ωk/(Ak + Bk) = 1 is
satisfied, and hence, Czz(r, 0) = S/2× δr,Lm (mν : inte-
ger, ν = 1, 2, . . . , D) holds. This means that Czz(r, t) =

C̃zz(r, t) for 1 ≤ rν ≤ L/2 (ν = 1, 2, . . . , D). Be-
sides, when J = 0 and J ′ ≪ Γ′ < Γ, the intensity
of the correlation would be approximately |Czz(r, t)| =
O[S/LD ×∑kB

′
k/(A

′
k +B′

k)] = O(zS2J ′/Γ′).

3. Transverse correlation functions

We evaluate the time-dependent transverse correlation
functions defined as

Cxx(r, t) = ⟨ψ0|eiĤ
′tŜx

r Ŝ
x
0e

−iĤ′t|ψ0⟩ (B31)

= ⟨ψ0|eiĤ
′t(S − b̂†r b̂r)(S − b̂†0b̂0)e

−iĤ′t|ψ0⟩
(B32)

and the connected one defined as

Cxx
connected(r, t) = Cxx(r, t)− ⟨ψ0|eiĤ

′tŜx
re

−iĤ′t|ψ0⟩
· ⟨ψ0|eiĤ

′tŜx
0e

−iĤ′t|ψ0⟩. (B33)

Writing them in the Fourier space (b̂i =
1√
LD

∑
k e

−ik·ri b̂k) and in the Heisenberg picture,

we obtain

Cxx(r, t) = S2 − 2S

LD

∑
k

⟨ψ0|b̂†k(t)b̂k(t)|ψ0⟩

+
1

L2D

∑
k,l,p

ei(k−l)·r⟨ψ0|b̂†k(t)b̂l(t)b̂†p(t)b̂k−l+p(t)|ψ0⟩

(B34)

and

Cxx
connected(r, t) = −

[
1

LD

∑
k

⟨ψ0|b̂†k(t)b̂k(t)|ψ0⟩
]2

+
1

L2D

∑
k,l,p

ei(k−l)·r⟨ψ0|b̂†k(t)b̂l(t)b̂†p(t)b̂k−l+p(t)|ψ0⟩.

(B35)

As in the case of longitudinal correlation functions,

we replace b̂k(t) by β̂k and use β̂k|ψ0⟩ = 0. Non-

vanishing terms contain ⟨ψ0|β̂−kβ̂
†
−lβ̂−pβ̂

†
−(k−l+p)|ψ0⟩ =

δk,l, ⟨ψ0|β̂−kβ̂lβ̂
†
pβ̂

†
−(k−l+p)|ψ0⟩ = δk,−p + δl,p, and

⟨ψ0|β̂−kβ̂
†
−k|ψ0⟩ = 1. After straightforward calculations,

we get

1

LD

∑
k

⟨ψ0|b̂†k(t)b̂k(t)|ψ0⟩

=
1

LD

∑
k

(s′k
2
v2k + t′k

2
u2k + 2s′kt

′
kukvk cos 2Ω

′
kt) (B36)

=
1

LD

∑
k

[
t2k + 2s′kt

′
kukvk(cos 2Ω

′
kt− 1)

]
(B37)

and

Cxx
connected(r, t) =

∣∣∣∣∣ 1

LD

∑
k

eik·r
{
[(s′k

2
+ t′k

2
) cos 2Ω′

kt+ i sin 2Ω′
kt]ukvk + s′kt

′
k(u

2
k + v2k)

}∣∣∣∣∣
2

+
1

L2D

∑
k,l

ei(k−l)·r [t2k + 2s′kt
′
kukvk(cos 2Ω

′
kt− 1)

] [
s2l + 2s′lt

′
lulvl(cos 2Ω

′
lt− 1)

]
(B38)

=

∣∣∣∣∣ 1

LD

∑
k

eik·r
{
[(s′k

2
+ t′k

2
) cos 2Ω′

kt+ i sin 2Ω′
kt]ukvk + s′kt

′
k(u

2
k + v2k)

}∣∣∣∣∣
2

+

∣∣∣∣∣ 1

LD

∑
k

eik·r
[
t2k + 2s′kt

′
kukvk(cos 2Ω

′
kt− 1)

]∣∣∣∣∣
2
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+
1

LD

∑
k

[
t2k + 2s′kt

′
kukvk(cos 2Ω

′
kt− 1)

]
× δr,Lm (B39)

withmν (ν = 1, 2, . . . , D) being integer. Substituting the
parameters uk, vk, sk, tk, s

′
k, and t

′
k with the parameters

Ak, Bk, Ωk, A
′
k, B

′
k, and Ω′

k, we finally get

1

LD

∑
k

⟨ψ0|b̂†k(t)b̂k(t)|ψ0⟩

=
1

LD

∑
k

eik·r

[(
A′

k

2

AkA
′
k −BkB

′
k

ΩkΩ′
k
2 − 1

2

)

− B′
k

2

AkB
′
k −A′

kBk

ΩkΩ′
k
2 cos 2Ω′

kt

]
(B40)

=
1

LD

∑
k

eik·r

[
1

2

(
Ak

Ωk
− 1

)

− B′
k

2

AkB
′
k −A′

kBk

ΩkΩ′
k
2 (cos 2Ω′

kt− 1)

]
(B41)

and

Cxx
connected(r, t) =

∣∣∣∣∣ 1

LD

∑
k

eik·r

[
−B

′
k

2

AkA
′
k −BkB

′
k

ΩkΩ′
k
2 +

AkB
′
k −A′

kBk

2ΩkΩ′
k

(
A′

k

Ω′
k

cos 2Ω′
kt+ i sin 2Ω′

kt

)]∣∣∣∣∣
2

+

∣∣∣∣∣ 1

LD

∑
k

eik·r

[(
A′

k

2

AkA
′
k −BkB

′
k

ΩkΩ′
k
2 − 1

2

)
− B′

k

2

AkB
′
k −A′

kBk

ΩkΩ′
k
2 cos 2Ω′

kt

]∣∣∣∣∣
2

+
1

LD

∑
k

[(
A′

k

2

AkA
′
k −BkB

′
k

ΩkΩ′
k
2 − 1

2

)
− B′

k

2

AkB
′
k −A′

kBk

ΩkΩ′
k
2 cos 2Ω′

kt

]
× δr,Lm (B42)

=

∣∣∣∣∣ 1

LD

∑
k

eik·r
{
− Bk

2Ωk
+
AkB

′
k −A′

kBk

2ΩkΩ′
k

[
A′

k

Ω′
k

(cos 2Ω′
kt− 1) + i sin 2Ω′

kt

]}∣∣∣∣∣
2

+

∣∣∣∣∣ 1

LD

∑
k

eik·r

[
1

2

(
Ak

Ωk
− 1

)
− B′

k

2

AkB
′
k −A′

kBk

ΩkΩ′
k
2 (cos 2Ω′

kt− 1)

]∣∣∣∣∣
2

+
1

LD

∑
k

[
1

2

(
Ak

Ωk
− 1

)
− B′

k

2

AkB
′
k −A′

kBk

ΩkΩ′
k
2 (cos 2Ω′

kt− 1)

]
× δr,Lm (B43)

with mν (ν = 1, 2, . . . , D) being integer.

When J = 0 and J ′ ≪ Γ′ < Γ, the intensity of the
correlation would be approximately |Cxx

connected(r, t)| =
O[|1/LD ×∑kB

′
kA

′
k/(Ω

′
k)

2|2] = O(z2S2J ′2/Γ′2).

4. Dispersion relation and maximum group velocity

Within the LSWA, the dispersion relation for S = 1/2
is expressed as

Ωk =

√
Γ2 − z

2
ΓJγk, (B44)

= Γ

{
1− 1

2

zJ

2Γ
γk − 1

8

(
zJ

2Γ

)2

γ2k +O
[(

zJ

2Γ

)3
]}

.

(B45)

This result is consistent with the dispersion relation

Ωperturb
k = Γ

{
1− 1

2

zJ

2Γ
γk − 1

8

(
zJ

2Γ

)2(
γ2k − 2

9

)

− 1

16

(
zJ

2Γ

)3(
γ3k + γk

2− 3z

z2

)
+O

[(
zJ

2Γ

)4
]}
(B46)

obtained by the perturbation calculation [113] up to
O{[(zJ)/(2Γ)]2} terms.

It is widely believed that the Lieb-Robinson velocity
should be the maximum group velocity determined from
the derivative of band dispersion [50–53]. Although the
dispersion obtained by the LSWA does not necessarily
offer the exact Lieb-Robinson velocity, we calculate the
reference value using the dispersion. In 1D, the maximum
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FIG. 23. Field dependence of the group velocity along the
horizontal axis estimated from the dispersion relation ob-
tained by the LSWA and the series expansion up to fourth
order [116–118] in 2D. The group velocity is represented by
the solid (dotted) lines above (below) the critical transverse
field Γc/J ≈ 1.522 [17, 47, 48]. Both velocities increase with
decreasing the transverse field.

group velocity of the spin-wave dispersion is given as

vSW = max
k

∣∣∣∣dΩk

dk

∣∣∣∣ = J√
2

1 +
√
1−

(
J

Γ

)2
−1/2

.

(B47)

For Γ → ∞, the group velocity satisfies vSW → J/2 =
vLR, reproducing the exact maximum group velocity. On
the other hand, for Γ ∈ (Γclassical

c ,∞), the LSWA always
gives vSW > J/2 = vLR. Its worst (largest) estimate

vSW = J/
√
2 ≈ 0.707J at Γ = Γclassical,1D

c (= J) is still
tighter than the recent bound 1.51J obtained by the gen-
eral formula for the Lieb-Robinson bound [23].

In the same manner, we can extract the group velocity
as vSW = maxk ∇k Ωk from the spin-wave dispersion in
higher dimensions. In 2D, the horizontal and diagonal
velocities are given as

vSW,horizontal =
J√
2

(
1− J

Γ
+

√
1− 2J

Γ

)−1/2

, (B48)

vSW,diagonal = J

1 +
√

1−
(
2J

Γ

)2
−1/2

, (B49)

respectively. The maximum velocity along the horizon-
tal (diagonal) axis is estimated to be vSW,horizontal →
J/2 (vSW,diagonal → J/

√
2) for Γ → ∞. On the

other hand, for both axes, it approaches the value J
(vSW,horizontal, vSW,diagonal → J) for Γ → Γclassical,2D

c (=
2J).

The group velocity in 2D obtained by the LSWA in-
creases with decreasing the transverse field (see also
Sec. IVA). As we will see below, this behavior agrees
with that obtained by a high-order series expansion [116–
118]. We extract the group velocity from the dispersion
relation obtained by the series expansion up to fourth
order of λ = J/(2Γ) [116–118]. The dispersion relation
is described as

Ωseries
k = Γ

[
λ · (−2)γk + λ2 · (−2)γ2k + λ3

(
5

2
γk − 4γ3k

)

+ λ4
(
7γ2k − 10γ4k

)
+O(λ5)

]
+ const., (B50)

where the constant term does not depend on k (but de-
pends on λ and Γ). Note that this relation is consistent
with that in Eq. (B46) for z = 4 on a square lattice.
We calculate the velocity vseries = maxk ∇k Ω

series
k nu-

merically and compare it with our result obtained by the
LSWA. As shown in Fig. 23, at a fixed transverse field,
the velocity along the horizontal axis obtained by the
series expansion increases monotonically as higher-order
terms are taken into account. They are always slower
than the velocity obtained by the LSWA. On the other
hand, both velocities obtained by the LSWA and the se-
ries expansion nearly coincide for strong transverse fields.
They increase with decreasing the transverse field.
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Läuchli, Phys. Rev. X 8, 021070 (2018).

[17] R. Kaneko, Y. Douda, S. Goto, and I. Danshita, J. Phys.
Soc. Jpn. 90, 073001 (2021).

[18] M. Yue, Z. Wang, B. Mukherjee, and Z. Cai, Phys. Rev.
B 103, L201113 (2021).

[19] E. Merali, I. J. S. D. Vlugt, and R. G. Melko,
arXiv:2107.00766.

[20] E. Guardado-Sanchez, P. T. Brown, D. Mitra, T. De-
vakul, D. A. Huse, P. Schauß, and W. S. Bakr, Phys.
Rev. X 8, 021069 (2018).

[21] E. H. Lieb and D. W. Robinson, Commun. Math. Phys.
28, 251 (1972).

[22] M. B. Hastings, arXiv:1008.5137.
[23] Z. Wang and K. R. A. Hazzard, PRX Quantum 1,

010303 (2020).
[24] B. Blaß and H. Rieger, Sci. Rep. 6, 38185 (2016).
[25] M. Schmitt and M. Heyl, SciPost Phys. 4, 013 (2018).
[26] M. Schmitt and M. Heyl, Phys. Rev. Lett. 125, 100503

(2020).
[27] I. L. Gutiérrez and C. B. Mendl, Quantum 6, 627 (2022).
[28] M. Schmitt, M. M. Rams, J. Dziarmaga, M. Heyl, and

W. H. Zurek, Sci. Adv. 8, eabl6850 (2022).
[29] M. Schmitt and M. Reh, SciPost Phys. Codebases , 2

(2022).
[30] S.-H. Lin and F. Pollmann, Phys. Status Solidi B 259,

2100172 (2022).
[31] K. Donatella, Z. Denis, A. L. Boité, and C. Ciuti,
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