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Electronic excited states of molecules are central to many physical and chemical processes, and
yet they are typically more difficult to compute than ground states. In this paper we leverage the
advantages of quantum computers to develop an algorithm for the highly accurate calculation of
excited states. We solve a contracted Schrödinger equation (CSE)—a contraction (projection) of
the Schrödinger equation onto the space of two electrons—whose solutions correspond identically
to the ground and excited states of the Schrödinger equation. While recent quantum algorithms for
solving the CSE, known as contracted quantum eigensolvers (CQE), have focused on ground states,
we develop a CQE based on the variance that is designed to optimize rapidly to a ground or excited
state. We apply the algorithm to compute the ground and excited states of H2, H4, and BH.

I. INTRODUCTION

Electronic excited states of molecules are critically im-
portant in any physical or chemical process that is not
confined to the ground state such as photoabsorption
and emission [1], non-adiabatic dynamics [2, 3], and elec-
tron scattering and transport [4, 5]. Despite their central
importance excited states are more difficult to compute
than ground states [6, 7]. Typical approaches compute
the excited states as a response to the ground state [8–12],
which has limitations whenever excited states differ sub-
stantially from the ground state, e.g. in double-or multi-
excitation processes [13], charge-transfer states [14, 15],
core excitations [16], Rydberg states [17], as well as con-
ical intersections [18, 19].

One promising direction is to harness the potential ad-
vantages of quantum computers [20, 21]. In the absence
of noise quantum computers can prepare and measure
quantum states whose wave functions are challenging to
represent and manipulate on classical devices, potentially
realizing significant advantages relative to classical de-
vices [22]. While recent molecular algorithms have pri-
marily focused on computing ground states [21] or ob-
taining multiple excited states at once from response the-
ory [23–28] or a Krylov expansion [23, 29–45], quantum
computers may be particularly well suited to realizing
more accurate and direct calculations of excited states.
The possible advantages for ground states are in princi-
ple amplified for excited states, which are often formed
from excitations to degenerate orbitals that produce sig-
nificant multireference correlation even when the ground
state is minimally correlated.

In this paper we develop an algorithm for the highly ac-
curate state-specific calculation of excited states on quan-
tum devices. Consider the contraction of the Schrödinger
equation onto the space of two electrons, known as the
contracted Schrödinger equation (CSE) [46–50]. The
CSE has two significant properties: (i) its solutions cor-
respond identically to the ground-and excited-state solu-
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tions of the Schrödinger equation [46, 47] and (ii) its com-
pact structure reveals an exact two-body exponential pa-
rameterization of both ground and excited states [51, 52].
Recent quantum-computing algorithms for solving the
CSE or a part of the CSE, known as contracted quan-
tum eigensolvers (CQEs) [53–58], have mainly focused
on the ground state. We develop a CQE based on the
energy variance that is designed to optimize rapidly to a
ground or excited state. Using the CSE has a potential
advantage over other variance-based approaches [59–64]
because considering the CSE in addition to the variance
provides a compact, exact ansatz for the wave function
as a product of two-body transformations [51, 52]. More-
over, the product form of this ansatz allows us to ob-
tain exact results in the absence of noise from optimiz-
ing only the parameters introduced in the current itera-
tion while variational methods—even those that use an
ACSE-like ansatz such as the adaptive variational quan-
tum eigensolver—require optimization of all parameters
in the calculation. To demonstrate, we apply the algo-
rithm to computing the ground and excited states of H2,
H4, and BH.

II. THEORY

For a many-electron system consider the Schrödinger
equation

(Ĥ − En)|Ψn⟩ = 0 (1)

in which Ĥ is the Hamiltonian operator and |Ψn⟩ is the
N -electron wave function for the nth state. The CSE
projects the Schrödinger equation onto all two-electron
transitions [46–50, 53]

⟨Ψn|â†i â
†
j âlâk(Ĥ − En)|Ψn⟩ = 0 (2)

where â†i and âi are the creation and the annihilation op-
erators for the ith orbital. As proved by Nakatsuji [65]
in first quantization and one of the authors [46] in sec-
ond quantization, the CSE is satisfied by a wave function
|Ψn⟩ if and only if it satisfies the Schrödinger equation.
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The proofs show that the CSE implies the energy vari-
ance which implies the Schrödinger equation. Hence, the
CSE determines a set of ground and excited states that
is identical to that of the Schrödinger equation.

As shown previously, the CSE can be solved for the
ground-state wave function by minimizing the following
energy functional iteratively on a quantum computer [53–
58]

min
2Fm

E[2Fm] (3)

where

E[2Fm] = ⟨Ψm|Ĥ|Ψm⟩ (4)

in which

|Ψm⟩ = eF̂m |Ψm−1⟩ (5)

and

F̂m =
∑
pqst

2F pq;st
m â†pâ

†
qâtâs. (6)

The F̂m is the two-body operator in the exponential
transformation of the wave function at the mth iteration,
and 2Fm is the two-body transformation matrix, defining
F̂m in Eq. (6) where its elements are explicitly denoted
by 2F pq;st

m . This wave function is the CSE ansatz with
the special property that its iterative minimization with
respect to each two-body operator F̂m converges to an
exact solution of the CSE and hence, an exact solution
of the Schrödinger equation within a given finite basis
set [51, 52]. The gradient of the energy with respect to
the latest 2Fm is the residual of the CSE. Hence, the
gradient vanishes if and only if the CSE is satisfied. We
can also implement subsets of the CSE ansatz on a quan-
tum computer. For example, we have restricted the two-
body operators F̂m to be anti-Hermitian which generates
strictly unitary transformations [53–57]. In this case the
vanishing of the gradient causes the anti-Hermitian part
of the CSE, known as the ACSE [49, 50, 66–69], to be
satisfied.

To extend to excited states, we replace the iterative
minimization of the energy by an iterative minimization
of the energy variance

min
2Fm

Var[2Fm] (7)

where

Var[2Fm] = ⟨Ψm|(Ĥ − Em)2|Ψm⟩ (8)

in which

Em = ⟨Ψm|Ĥ|Ψm⟩ (9)

with the wave function given by the CSE ansatz in Eq. (5)

and the two-body operator F̂m and transformation ma-
trix 2Fm are defined in Eq. (6). Throughout we assume

that the wave function |Ψm⟩ has been renormalized to
one if necessary. While the excited states are saddle
points of the energy, they are minima of the variance.
Moreover, any minimum is an exact stationary-state so-
lution of the Schrödinger equation (and the CSE) if the
variance vanishes. The variance has recently been applied
for excited states in the context of the variational quan-
tum eigensolver [59–64]; however, in these studies the
variance is not used to determine the variational ansatz
for the wave function. Here we use the CSE, which im-
plies the variance [46, 65], to not only perform the op-
timization but also to determine the iterative structure
of the wave function via Eq. (5). The CSE ansatz is for-
mally exact with the important property that it remains
exact even without reoptimization of the 2Fm−q for q > 0
from previous iterations. Assuming that the Hamiltonian
and wave function are real, the gradient of the variance
with respect to 2Fm evaluated in the limit that 2Fm = 0
can be computed as follows:

∂Var

∂
(
2F st;pq

m

) = 2⟨Ψm−1|(Γ̂pq
st − 2Dpq

st )(Ĥ−Em−1)
2|Ψm−1⟩,

(10)

in which Γ̂pq
st = â†pâ

†
qâtâs and the elements of the 2-RDM

are

2Dpq
st = ⟨Ψm−1|Γ̂pq

st |Ψm−1⟩. (11)

Practically, we can approximate the minimization of the
variance at the mth iteration by selecting 2Fm to be pro-
portional to the direction of the gradient or a related
search direction from any gradient-descent method with
the proportionality constant (or step size) being deter-
mined by a line search. Other related generalizations of
the variational principle in the CQE can also be consid-
ered. For example, we can: (1) solve the CSE or ACSE
directly for the wave function, (2) minimize the least-
squares norm of the CSE or ACSE, or (3) augment the
variance functional with an additional functional such as
a small amount of the energy functional.
Optimizing the energy variance is ideal for a quantum

computer. While computing the variance requires not
only the two-particle reduced density matrix (2-RDM)
but also the four-particle RDM on a classical computer,
we can readily compute it at the mth iteration on a quan-
tum computer by introducing an ancillary qubit to gen-
erate an extra wave function

|Ψ̃m⟩ = eiδ(Ĥ−Em)|Ψm⟩ (12)

such that

⟨Ψm|(Ĥ − Em)2|Ψm⟩ ≈ 1−ℜ⟨Ψm|Ψ̃m⟩
δ2/2

(13)

where ℜ(z) returns the real part of z, the approximation
is accurate to O(δ2), and δ is a small parameter. The
schematic circuit diagram in Fig. 1 shows how we can
use the ancillary qubit to prepare an entangled state of
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FIG. 1. We first prepare the initial state |Ψm⟩ on the main
qubits and apply the Hadamard gate to the ancillary qubit
to generate (|0⟩ ⊗ |Ψ⟩ + |1⟩ ⊗ |Ψ⟩)/

√
2. We then apply a

controlled unitary operation that generates the extra wave
function |Ψ̃m⟩ in Eq. (12) when the ancillary qubit is 1 to

produce (|0⟩ ⊗ |Ψm⟩ + |1⟩ ⊗ |Ψ̃m⟩)/
√
2. Applying a second

Hadamard gate to the ancillary qubit yields (|0⟩ ⊗ |Ψm +

Ψ̃m⟩+ |1⟩ ⊗ |Ψm − Ψ̃m⟩)/2. Measuring the ancillary qubit in

the z basis ⟨σz⟩ gives the real part of the overlap ℜ(⟨Ψm|Ψ̃m⟩)
that allows us to compute the variance as in Eq. (13) [72].

the two wave functions whose tomography can yield the
overlap between the two states. This formula is an exten-
sion of the difference formulas employed in previous CQE
algorithms [53] as well as in the context of open quantum
systems [70]. As shown in previous work, the limit of δ
approaching zero can be computed by using Richardson’s
extrapolation from a series of δ values [70, 71].

Recently we have shown how the residuals of both
the CSE and ACSE can be efficiently calculated on a
quantum computer from only a 2-RDM-like tomogra-
phy [53, 58]. Similarly, the key term in the gradient of
the variance with respect to 2F in the CSE wave-function
ansatz can be computed from a 2-RDM-like tomography

⟨Ψm|Γ̂pq
st (Ĥ − Em)2|Ψm⟩ ≈

2Dpq
st −ℜ⟨Ψm|Γ̂pq

st |Ψ̃m⟩
δ2/2

(14)
where the approximation is accurate to O(δ2). While the
left side formally depends upon the six-particle RDM,
through a combination of state preparation and tomog-
raphy, we can obtain the gradient of the variance with
the CSE ansatz from only the measurement of the two-
particle reduced transition matrix between the states
|Ψm⟩ and |Ψ̃m⟩. Because of the ancillary qubit, the to-
mography of the 2-RDMs of each state as well as their
two-particle reduced transition matrix can be performed
by standard techniques—measuring the two-particle ex-
pectation values expressed as Pauli strings, as discussed
in previous work [53, 58], although more advanced sam-
pling techniques like shadow tomography [73] could also
be employed. The circuit to generate the state for mea-
suring the two-particle reduced density transition matrix
is similar to that given in Fig. 1 for the transition overlap
in the variance. Formulas in Eqs. (13) and (14) assume
that the Hamiltonian and wave function are real, but as
in Refs. [53, 70], they can be readily generalized through
additional measurements to treat complex Hamiltonians
and wave functions as well as to realize higher-order ap-
proximations. The algorithm for the variance-based CQE
for excited states is summarized in Table I. In Step 5 we

TABLE I. Variance-based CQE algorithm.

Algorithm: Variance-based CQE
Given m = 0 and convergence tolerance ϵ.
Choose initial wave function |Ψ0⟩.
Repeat until the energy variance is less than ϵ.

Step 1: Prepare |Ψ̃m⟩ = eiδ(Ĥ−Em)|Ψm⟩
Step 2: Measure variance using Eq. (13)

Step 3: Measure ⟨Ψm|â†
pâ

†
qâtâs|Ψ̃m⟩ in Eq. (14)

Step 4: Compute gradient from Eqs. (10) and (14)

Step 5: Compute gradient-descent search direction F̂m+1

Step 6: Prepare |Ψm+1⟩ = eF̂m+1 |Ψm⟩
Step 7: Optimize magnitude of F̂m+1 via Steps 1, 2, and 6
Step 8: Set m = m+ 1.

compute the gradient descent direction F̂m+1 which can
be the gradient, as in Eq. (14), or a second-order update
from a conjugate gradient or quasi-Newton method [74];

in Step 7 we optimize the magnitude of F̂m+1 by per-
forming a line search along the descent direction.

III. APPLICATIONS

After a discussion of the methodology in Section IIIA,
we present the results from the excited-state CQE algo-
rithm in Section III B.

A. Methodology

To demonstrate, we apply the variance-based CQE al-
gorithm to computing the excited states of the molecules
H4, BH, and H2. Both BH and H4 are solved classically
with all unitary transformations performed with respect
to a wave function that is represented by a vector. These
calculations demonstrate the algorithm in the absence of
either noise or sampling errors. We also compute the
excited states of H2 which is simulated in Qiskit [75] us-
ing both a state-vector simulator without noise or sam-
pling errors as well as a simulator with a Qiskit noise
model that reproduces the errors of the IBM quantum
computer Lagos. We encode the fermionic molecular
H2 Hamiltonian onto four qubits through the Jordan-
Wigner mapping [76]. After decomposing the operators
in the Pauli basis, we implement the unitary propaga-
tors by first-order Trotter expansions. The addition of
a fifth, ancillary qubit allows us to measure the tran-
sition overlap and the two-particle transition matrix in
Eqs. (13) and (14), respectively. We measure the 2-
RDM and two-particle transition matrix by standard
techniques where the fermionic operators are expressed
as Pauli strings [53, 58]. The fake-Lagos simulator em-
ploys 8,192 shots for its measurements.
The H4 molecule is treated in its linear conforma-

tion with adjacent hydrogen atoms separated by 1 Å.
We use a minimal Slater-type orbital (STO-3G) basis
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TABLE II. The energy, energy error, variance, and least-squares CSE norm of the ground state and each of the first
15 excited states of linear H4 from the variance-based CQE are shown. Energies are given in hartrees.

State 2S + 1 ⟨Ŝz⟩ Energy Iterations Energy Error Variance CSE Norm
0 1 0 -2.18096569 20 6.6× 10−7 8.0× 10−7 4.3× 10−8

1 3 -1 -1.95019088 8 4.0× 10−7 4.1× 10−7 3.4× 10−8

2 3 0 -1.95019089 7 3.9× 10−7 5.2× 10−7 2.3× 10−8

3 3 1 -1.95019088 8 4.0× 10−7 4.1× 10−7 3.4× 10−8

4 3 -1 -1.73654645 13 6.4× 10−7 3.7× 10−7 3.9× 10−8

5 3 0 -1.73654543 9 1.7× 10−6 7.8× 10−7 3.9× 10−8

6 3 1 -1.73654645 13 6.4× 10−6 3.7× 10−7 3.9× 10−8

7 1 0 -1.66711063 17 8.6× 10−7 9.8× 10−7 6.5× 10−8

8 1 0 -1.63892631 9 4.1× 10−7 3.3× 10−7 2.0× 10−8

9 3 -1 -1.45713377 17 7.9× 10−7 6.0× 10−7 7.1× 10−8

10 3 0 -1.45713448 21 7.7× 10−8 9.5× 10−7 7.6× 10−8

11 3 1 -1.45713377 17 7.9× 10−7 6.0× 10−7 7.1× 10−8

12 1 0 -1.34940100 37 9.1× 10−7 8.6× 10−7 5.4× 10−8

13 3 -1 -1.30397495 37 9.8× 10−6 7.3× 10−7 6.4× 10−8

14 3 0 -1.30398443 11 2.8× 10−7 3.7× 10−7 2.2× 10−8

15 3 1 -1.30397102 39 1.4× 10−5 9.6× 10−7 1.0× 10−7

set [77] for H2 and an STO-6G basis set for H4 and
BH as well as a frozen 1s core for the boron atom in
BH. Molecular orbitals from the Hartree-Fock method
and one-and two-electron integrals are obtained with the
Quantum Chemistry Package in Maple [78]. In imple-

menting the algorithm in Table I, we restrict the F̂ op-
erators to be anti-Hermitian, making the two-body ex-
ponential transformations unitary. For H2 we use the
gradient for the gradient-descent direction in Step 5 and
determine the magnitude of the F̂m+1 in Step 7 from
a fixed step ϵ along the gradient with ϵ = 0.15 for
the state-vector and fake-Lagos simulators, but for H4

and BH we compute a quasi-second-order gradient de-
scent direction in Step 5 from a limited-memory Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) method [74] and

determine the magnitude of the F̂m+1 in Step 7 from
an exact line search. The δ parameter in Step 1 and
Eqs. (13) and (14) is taken in the infinitesimal limits for
the classical and state-vector simulations while it is set
to a finite value δ = 0.01 for the fake-Lagos simulator to
distinguish the measured change from the noise.

Initial guesses for the wave function are the Slater de-
terminants from the Hartree-Fock orbitals; when ⟨Ŝz⟩ =
±1, we use a single high-spin Slater determinant, but
when ⟨Ŝz⟩ = 0, unless noted otherwise, we use an equal
linear combination of two determinants that are related
by switching the α (spin up) and β (spin down) orbitals
with the relative phases being +1 for a singlet and -1 for
a triplet. Specific excited states are targeted by selecting
particle-hole excitations from the Hartree-Fock ground
state and, if necessary, spin adapting the excitations.
Further control on the target states can be obtained by
adding a second objective function to the optimization
that biases the energy landscape towards a specific en-
ergy or energy range.

B. Results

The ground state and the first 15 excited states of lin-
ear H4 as computed from the variance-based CQE are
shown in Table II. The algorithm is performed itera-
tively until the energy variance is less than 10−6 a.u.
The number of iterations required for convergence varies
from 7 for the second excited state to 39 for the fifteen
excited state. At convergence the energy error is also less
than 10−6 hartrees except for the fifth, thirteenth, and
fifteenth excited states. Even though the energies of the
excited states need not be upper bounds to the energies
from exact diagonalization, we find that all excited-state
energies are strictly above those from diagonalization.
We also compute the least-squares error in the CSE—
the sum of the squares of the errors in the CSE, which is
approximately an order of magnitude less than the energy
variance for each state. For the fifth excited state Fig. 2
shows the convergence of the energy error, variance, and
least-squares CSE norm. We observe superlinear conver-
gence towards zero in all three metrics for the error.

The energies of the ground state and the first three
excited states of BH are shown as functions of the bond
distance in Fig. 3. The solid lines denote the ground- and
excited-state energies from exact diagonalization while
the symbols denote the energies from the variance-based
CQE. In each case the energy variance in the CQE is
converged to less than 10−5 a.u. We observe that the
CQE reproduces the potential energy curves with max-
imum energy errors of 0.00001, 0.00008, 0.00004, and
0.00024 hartrees for the ground and first three excited
states, respectively. Additions results from the BH cal-
culations are available in the Supplemental Material [79].

The ground and first-three excited states of H2 with
⟨Ŝz⟩ = 0 are computed. The five-qubit experiment
were conducted with and without noise on fake-Lagos
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FIG. 2. Superlinear convergence of the energy error, variance,
and least-squares CSE norm is shown for the fifth excited state
of linear H4.

FIG. 3. Energies of the ground state and the first three excited
states of BH are shown as functions of the bond distance.
Symbols represent variance-based CQE energies while solid
lines represent energies from exact diagonalization.

and state-vector quantum simulators in Qiskit, respec-
tively. To demonstrate convergence, we consider the
H2 molecule at an internuclear separation of 2.0 bohr.
As shown in Fig. 4, using the state-vector simulator,
we converge to the exact excited-state energy within
10−6 hartrees in less than 10 iterations; using the fake-
Lagos simulator, we obtain the exact excited-state en-
ergy with an error of about 0.03 hartrees in about 8 it-
erations. For the first and second excited states we use
single particle-hole excitations of the Hartree-Fock Slater
determinant as initial guesses while for the third excited
state we use a doubly excited Hartree-Fock Slater de-

FIG. 4. The convergence of an excited-state energy of H2

at 2.0 bohr on a quantum simulator with (fake-Lagos) and
without (state-vector) noise.

FIG. 5. The dissociation curves for the ground and first-three
singlet excited states of H2 are shown with (fake-Lagos) and
without noise (state-vector).

terminant. The dissociation curves of H2 are shown in
Fig. 5 with and without noise. The errors do not show
significant differences for the various states, and they are
also quite uniform throughout the dissociation. Addi-
tions results from the H2 calculations are available in the
Supplemental Material [79].

IV. CONCLUSIONS

Here we present a variance-based CQE for computing
highly accurate molecular excited states on quantum
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computers. The CQE is a family of algorithms in which
a contraction of the Schrödinger equation to the space
of two particles (CSE) is solved for stationary-state
energies and their 2-RDMs. The structure of the CSE
implies an exact ansatz for any ground- or excited-
state wave function in which a two-body exponential
transformation is iteratively applied and optimized
to update a trial wave function. Importantly, unlike
iterative variational quantum eigensolvers, the CQE
does not need to reoptimize previous transformations
to satisfy the CSE and thereby solve the Schrödinger
equation. While recent work with CQE has focused
on the ground state, here we present a CQE algorithm
for excited states in which we iteratively minimize the
energy variance with respect to the CSE (or ACSE)
ansatz. We show that the variance-based CQE yields
highly accurate ground-and excited-state energies for the

example cases of H4 and BH in the absence of noise and
H2 in the presence of noise. Future work will examine
the application of the variance-based CQE on noisy
intermediate-scale quantum (NISQ) computers. The
present approach represents an important step towards
the accurate modeling of molecular excited states on
NISQ and fault-tolerant quantum computers.

Code Availability: Example notebooks of the code and
calculations are available on Github [80].
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