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An entangled state is said to be m-uniform if the reduced density matrix of any m qubits is
maximally mixed. This is intimately linked to pure quantum error correction codes (QECCs),
which allow not only to correct errors, but also to identify their precise nature and location. Here,
we show how to createm-uniform states using local gates or interactions and elucidate several QECC
applications. We first show that D-dimensional cluster states are m-uniform with m = 2D. This
zero-correlation length cluster state does not have finite size corrections to its m = 2D uniformity,
which is exact both for infinite and for large enough but finite lattices. Yet at some finite value of
the lattice extension in each of the D dimensions, which we bound, the uniformity is degraded due
to finite support operators which wind around the system. We also outline how to achieve larger
m values using quasi-D dimensional cluster states. This opens the possibility to use cluster states
to benchmark errors on quantum computers. We demonstrate this ability on a superconducting
quantum computer, focusing on the 1D cluster state which, we show, allows to detect and identify
1-qubit errors, distinguishing X, Y and Z errors.

I. INTRODUCTION

Bipartite entanglement is a well understood concept,
as it can be clearly quantified by the appropriate reduced
density matrix [1, 2]. Quantifying multipartite entangle-
ment is much more challenging and was studied in the
literature using many distinct measures [3–13]. A com-
mon approach to multipartite entanglement relies on the
entanglement across all possible bipartitions. This ap-
proach was first introduced by Ref. [14] in a study of
the average entanglement of random pure states. Later
studies led to the definition of m-uniformity: multi-qubit
states in which all the reduced density matrices of m
qubits are maximally mixed [15–22].

A simple example of m-uniformity is given by the n-
qubit GHZ state, |ψ⟩GHZ = (|0⟩⊗n

+ |1⟩⊗n
)/
√
2. Any 1-

qubit subsystem A1 corresponds to the reduced density
matrix ρA1 = (|0⟩ ⟨0|+ |1⟩ ⟨1|) /2, which is maximally
mixed, i.e. proportional to the identity operator in the
subsystem. Hence, the GHZ state is at least 1-uniform.
For a subsystem A2 of any two qubits, one has ρA2

=
(|00⟩ ⟨00|+ |11⟩ ⟨11|) /2 which is not maximally mixed.
Therefore, the GHZ state is only 1-uniform [20, 23].

The notion of m-uniformity has deep links to quan-
tum error correction codes (QECC). In the case of quan-
tum states that encode no logical information, Ref. [16]
proved that any m-uniform state has the ability to locate
and identify a quantum error, assuming that it acted at
most on ⌊m/2⌋ qubits [15], or equivalently, a sequence
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of at most ⌊m/2⌋ single-qubits errors. The relation-
ship between m-uniformity and QECC was extended to
states that encode a finite amount of quantum informa-
tion [24], and is related to quantum information scram-
bling [25, 26]. Note that m-uniformity is a sufficient but
not necessary condition for error correction: A known
example is Kitaev’s toric code, which is only 3-uniform,
but can correct an extensive number of errors [27]. This
code is an example of a non-pure QECC, which can cor-
rect errors even without being able to fully identify them.
In contrast, m-uniform states give rise to pure, i.e. non-
degenerate QECCs, where the errors are first fully iden-
tified and only then corrected [2]. Hence, pure codes are
particularly useful in benchmarking noisy quantum com-
puters.

Creating states with large m-uniformity is a key chal-
lenge in quantum information. Earlier studies dis-
cussed how to perform this task using orthogonal ar-
rays [19, 20, 28, 29], numerical methods [17, 30], graph
states [31–33] and other constructions [22, 34–36]. Spe-
cial attention was drawn to n-qubit states that are
⌊n/2⌋-uniform, also known as absolutely maximal entan-
gled (AME), which have important applications in quan-
tum secret sharing and quantum teleportation [34, 37].
Their existence was proven for n = 2, 3, 5, 6 qubits only
[16, 38]. Moreover, using theoretical enumerator tools
from QECC, useful bounds on their existence for qudits
were derived [16, 39]. In general, it is always possible to
construct m-uniform states for a desired m if the num-
ber of qubits is large enough [18, 20], but determining
the minimal number of qubits required for a given m is,
as far as we know, still an open question though some
lower bounds are known [18, 24, 40]. In addition, these
constructed states may be highly non-local and pose a
challenge to prepare them on a quantum computer using
low depth circuits.
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Figure 1. One dimensional cluster chain depicted using
graphical notation of vertices and lines. The vertices rep-
resent the qubits, which are all prepared in the |+⟩ state.
The lines connecting two qubits represent a controlled-Z gate.
We notate a few commuting stabilizer operators appearing in
Eq. (1) on their respective qubits.

In this paper we address this challenge by focusing on
cluster states, which can be realized as ground states
of cluster Hamiltonians, and are sometimes referred to
as graph states [41]. Cluster Hamiltonians can be ex-
pressed as a sum of local terms, known as stabilizers,
and are commonly used to describe condensed matter
systems. As we will explain, the degree of uniformity
of these states are bounded by the support of the sta-
bilizers, i.e. the size of the neighborhood that interacts
with each qubit. The ground state of these Hamiltoni-
ans can be prepared exactly on quantum computers via
shallow circuits of local unitary gates [42–44]. Cluster
states in one and two dimensions have been studied in the
context of symmetry protected topological states of mat-
ter [43, 45, 46], and can be used in measurement based
quantum computation and teleportation [43, 47–50].

We show that the cluster state in D-dimensions is 2D-
uniform. When considering the cluster state as a stabi-
lizer QECC it has no logical qubits encoded. Despite of
not containing a logical space, this state allows for quan-
tum error detection of D individual errors. This ability
of error detection stems from a connection between m-
uniformity and QECCs that allows us to employ these
states for benchmarking errors that may act on up to
⌊m/2⌋ qubits in current noisy-intermediate scale quan-
tum computers [51]. We demonstrate this procedure on
a real quantum computer for D = 1. Finally, we pro-
vide examples of m−uniform subspaces in which a finite
logical space is encoded.

The paper is organized as follows. In Sec. II
we introduce the cluster states and determine their
m−uniformity based on the stabilizer formalism. In
Sec. III we review the connection to QECC and deduce
the quantum error detection ability of cluster states. We
present a demonstration of this application in Sec. IV.
In Sec. V we exemplify how m-uniform spaces, encoding
logical information and also allowing to detect errors, can
be constructed. We conclude in Sec. VI.

II. CLUSTER STATES AND THEIR
MULTIPARTITE ENTANGLEMENT

The D-dimensional cluster Hamiltonian describes n
qubits located on the vertices of a D-dimensional square
lattice with axes lengths L1, L2, . . . , LD, where n =
L1 ·L2 · · ·LD, such that each qubit interacts with exactly

2D neighbours. Unless specified otherwise, we consider
a finite system with periodic boundary conditions (PBC)
in each dimension. The one dimensional (D = 1) cluster
Hamiltonian, which is depicted in Fig. 1, is defined as

H = −
∑
i

Zi−1XiZi+1. (1)

The minus sign is motivated by the ferromagnetic ground
state of the Ising model and its generalizations to the
cluster Ising model [45, 52–56]. In D > 1 dimensions, we
denote the location of each qubit using a lattice vector
v = (i1, i2, . . . , iD), where ik ∈ Z and −Lk/2 < ik ≤
Lk/2 for each dimension 1 ≤ k ≤ D. The basis vec-
tors {ei} of the lattice have 1 in their i’th entry and 0
elsewhere. The cluster Hamiltonian is then defined as

H = −
∑
v

Xv

( D∏
i=1

Zv−ei
Zv+ei

)
= −

∑
v

sv. (2)

Here, each vertex induces an operator sv. The sv’s are
referred to as stabilizers, as they fulfill two special prop-
erties [57]: (i) they square to one, sv

2 = I, because they
correspond to tensor products of Pauli matrices; (ii) they
commute, [sv, sv′ ] = 0. These properties simplify the
problem of finding the groundstate.

These two properties ensure that the Hamiltonian in
Eq. (2) is frustration-free [58], i.e. any ground state
of H is a simultaneous ground state of each sv. In a
more formal way, we note that the set of q stabilizers{
sv

}
generates a Zq

2 group called the stabilizer group
S by considering all their multiplications [59, 60]. To
differentiate between the elements of S and their gener-
ators we notate the generators of the stabilizer group by
{si} (i = 1, . . . , q) and the elements of this group as Si

(i = 1, . . . , 2q). Focusing on the cluster Hamiltonian with
PBC, q equals the number of qubits, q = n. Since the Si’s
commute, they have a common set of eigenvectors and
their eigenvalues are all ±1 as of the first property above.
In this case, where the size of S equals the Hilbert space
dimension one has a basis given by the eigenvectors. Con-
sider the unique eigenvector |cs⟩ such that si|cs⟩ = |cs⟩
for any i. By definition, it is the unique ground state
of the cluster Hamiltonian is the cluster state in D di-
mensions and its ground state energy is −n. For later
reference, we define the support of Si as the number of
non-identity local Pauli matrices of Si. For example, for
the 1-dimensional cluster state the support of each local
term is supp(si) = 3, while for the D-dimensional cluster
state we have supp(si) = 2D + 1.

A. Reduced density matrices and stabilizer
subgroups

The stabilizer formalism leads to an explicit way to
construct reduced density matrices. By definition, the
pure density matrix ρ of the cluster state corresponds to
the projector into the +1 eigenvector of the generators
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of the stabilizer group Pi =
I+si
2 and can be written as

[57]

ρ=

n∏
i=1

Pi =
1

2n

∑
σ∈S

σ. (3)

Using this expression, one can show that the reduced
density matrix over the set of qubits A is [57]

ρA =
1

2|SA|

∑
σ∈SA

σ, (4)

where SA is the subgroup of the stabilizer group S that
has support only on the set of qubits A and |SA| is the
number of elements in SA. For the subsystem A to be
maximally mixed, SA should be the trivial group con-
taining only the identity element I, or

SA =
{
I
}

⇐⇒ ρA ∝ I. (5)

As mentioned, if this property applies to all sets of m
qubits, the state is defined to be m-uniform.
For example, consider the 3-qubit cluster state

in D = 1 with PBC, i.e. the stabilizer state
generated by {si} = {X1Z2Z3, Z1X2Z3, Z1Z2X3},
which is the ground state of H = −

∑
i si. The

eight elements of the stabilizer group S consist of
{si}

⋃
{I, Y1Y2I3, Y1I2Y3, I1Y2Y3,−X1X2X3}. We can

see that while the reduced density matrix over any single
qubit is maximally mixed, the reduced density matrix
over 2 qubits is not proportional to the identity. For
example applying Eq. (4) for A =

{
1, 3

}
we have

ρA =
1

4

(
I + Y1Y3

)
, (6)

as SA contains
{
I, Y1Y3

}
. Hence this state is 1-uniform

but not 2-uniform.

B. The infinite D−dimensional cluster state is
2D-uniform

Proposition 1. For a D-dimensional cluster state on
an infinite lattice, if |A| ≤ 2D then SA is the trivial sub-
group, consisting only of the identity matrix acting in
subsystem A, where |A| is the number of qubits in sub-
system A.

This follows from the intuitive fact that the genera-
tors of the stabilizer group for the cluster states on a
large enough lattice, having support 2D + 1, minimize
the support of the stabilizer group. We provide a proof
of this proposition in Appendix A. To show its gener-
ality, we also consider different lattice structures in Ap-
pendix B. From this proposition, it immediately follows
that the D-dimensional cluster state is 2D-uniform on a
large enough lattice.
The cluster state does not have finite size corrections

to its m = 2D uniformity, which is exact both for infinite
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Figure 2. Extended ZZXZZ cluster state with next nearest
neighbour interactions. In this case, the commuting stabiliz-
ers are supported on 5 sites, e.g. Z1Z2X3Z4Z5, Z2Z3X4Z5Z6.

and for large enough but finite lattices. Yet at a finite
value of the lattice extension the uniformity is degraded
due to finite support operators which wind around the
system. The 4-qubit 1D cluster state, which is not 2-
uniform, exemplifies this point.
This leaves the question of what the lower bound for

the system size in a given dimension D is, in order to
preserve the 2D−uniformity. One can formally ask this
question for a cluster state of LD qubits with PBC. In
Appendix C we demonstrate that Proposition 1 in fact
holds for any dimension, as long as L ≥ 8. This proof
does not saturate the lowest bound. In 1D, 5 qubits with
PBC are sufficient to obtain 2D uniformity [16]. By nu-
merically inspecting the stabilizers and their multiplica-
tions for D = 1, 2, 3, we conjecture that the minimal size
necessary for 2D-uniformity is L = 5 in each direction
with PBC.

C. Extended cluster states

Can uniformity be increased by varying the range or
support of stabilizers? For example, in 1D, rather than
considering the support-3 ZXZ operators in Eq. (1), one
can consider the graph state defined by the stabilizers

s
(p)
i = Zi−p . . . Zi−1XiZi+1 . . . Zi+p. For p = 2, this state
can be created by applying controlled Z (CZ) gates on
a ladder graph, as shown in Fig. 2. While for p = 1
we recover the cluster state which is 2-uniform, it is not
hard to see that all p > 1 states on an infinite lattice are
3-uniform.

We provide a simple argument for the simple case
of p = 2, which can then be easily extended. The
weight of a stabilizer generators sets an upper bound
on the uniformity of a state, m < 5. Is the state 4-
uniform? To show that the uniformity is actually smaller,
one should find operators of a support 4 or less which
acquire a finite expectation. Consider the stabilizer
group element sisi+1 = Zi−p . . . Zi−1XiZi+1 . . . Zi+p ·
Zi−p+1 . . . ZiXi+1Zi+2 . . . Zi+p+1 = Zi−pYiYi+1Zi+1+p.
The weight of this element is 4 for p = 2. It is possi-
ble to check that there are no stabilizer group elements
of a smaller support. Hence the extended 1D cluster state
for p = 2 is at most 3-uniform.
The same result applies to stabilizers of the form
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ZiXi+1 . . . Xi+pZi+p+1, which are related to a family of
topological states [61]. An analogous construction can be
used to create cluster states with larger m-uniformity in
D > 1 dimensions.

III. CLUSTER STATES AS PURE QECCS

In this section, we review basic definitions of QECCs
and explain their connection tom-uniformity. Consider a
logical subspace of dimension 2k, corresponding to k log-
ical qubits out of the Hilbert space of n physical qubits,
and denote its basis states by {|i⟩}. If, for a given pos-
itive integer d, the full set of operators, referred to as
errors, {Ea} with supp(Ea) < d, satisfy

⟨i|Ea|j⟩ = C(Ea)δij , (7)

then we say that the subspace is a QECC with distance
d, and denote it with [[n, k, d]] . Such QECC allows the
correction of errors with support ⌊(d− 1)/2⌋ [2].
For a general stabilizer code with a finite encoded

subspace (k > 0) the distance is given by d =
min[supp (C(S)− S)], where C(S) is the centralizer of
the stabilizer group, i.e. the set of Pauli strings that
commute with all the stabilizers. In other words, d is the
minimal support of operators that commute with S but
not with the logical operators. A stabilizer state with-
out an encoded space (k = 0) is a [[n, 0, d]] QECC with
d = min [supp(S/{I})].

A QECC is said to be pure or non-degenerate if Eq. (7)
is satisfied with C(Ea) = 0 for any Ea other than Ea = I.
Otherwise, the code is called non-pure or degenerate.
Pure codes have the property that every error of sup-
port ⌊(d− 1)/2⌋ corresponds to a distinct syndrome and
allows to identify its location and its type (X, Y , or Z).
Note that in the literature, error detection is referred to
as the possibility to know that an error occurred, but not
to locate nor to identify it. For example the surface code
is a [[2d2, 2, d]] QECC [62]. It allows to detect d−1 errors
and correct up to ⌊(d−1)/2⌋ errors per cycle of stabilizer
measurements [63]. However it only allows to locate and
identify a single 1-qubit error.

According to the above definitions, m-uniformity can
be related to pure QECCs: Ref. [16] showed that any
m−uniform state is a pure [[n, 0,m+1]] QECC. This re-
sult can also be obtained from Sec. IIA, together with
the statement that any stabilizer state is a QECC with
distance d = min[supp(S/{I})], and can be generalized
to states with a finite number of logical qubits k [24]: If
the basis vectors |i⟩ span a m-uniform subspace, which is
a vector space V such that each v ∈ V is m−uniform,
then one obtains a pure [[n, k,m + 1]] QECC, where
k = log2(dim(V)). Then, using our key result in Sec. II B,
we deduce that the D−dimensional cluster state is a
[[n, 0, 2D + 1]] QECC. For example the 1D cluster state
corresponds to a [[n, 0, 3]] QECC, allowing to locate and
identify 1-qubit errors. This case is demonstrated in
the next section. The 2D cluster state corresponds to

Figure 3. Circuit used to benchmark error rates on qubit
3. First, a 1D cluster state is prepared with open-boundary
conditions on the left. Then, during a delay of time t an
error may occur. Finally, the measurements of the stabilizer
generators on the right side are used to identify the error. On
the real machine errors may occur on any qubit, but dealing
with errors on any qubit would require PBCs, i.e. to entangle
qubits 1 and 5, which we avoid due to limitations of the actual
machine.

a [[n, 0, 5]] QECC and allows to detect arbitrary 2-qubit
Pauli errors.

IV. BENCHMARKING ERRORS USING THE
CLUSTER STATE

From the above QECC properties, an m-uniform state
can be used to benchmark errors on a quantum com-
puter that act on at most ⌊m/2⌋ qubits. Since the D-
dimensional cluster state is 2D-uniform, it allows to de-
tect errors that act on D qubits. We now demonstrate
this on the 1D cluster state.
Our noise benchmarking protocol is depicted in Fig. 3.

One first prepares the cluster state from the product
state using the unitary transformation U composed of
Hadamard (H) and controlled-Z gates (CZ), assuming
no errors occur at this stage. During a delay time t,
an error, or multiple errors, may spontaneously occur,
which is depicted as ‘?’ in Fig. 3. To detect this error,
assuming it acted on at most one qubit, one measures
the error syndromes through the stabilizers. Present day
quantum computers do not facilitate direct measurement
of such stabilizers as they involve simultaneous measure-
ments of multiple qubits. Instead, the syndromes can be
measured by reversing U with U†, assuming perfect fi-
delity, followed by single qubit measurements as shown
in Fig. 3. By repeating this process many times one ob-
tains a probability distribution of the errors.
The corresponding error-syndromes detection in a suf-

ficiently long (n ≥ 5 qubits) 1D cluster state with PBC
is as follows: if no errors occurred, we always obtain a
string of 0’s. In the case of one Zi error during the delay,
we get 1 on the i-th qubit, instead of 0. An Xi error
evolves to a 101 pattern on the i − 1, i, i + 1-th qubits.
The error Yi combines the Z and X errors and results in
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Figure 4. (a) Noisy simulator results of the error benchmarking protocol for the cluster state. The errors are calculated from
the measurement results as a function of the delay t as in the main text. Each point is generated from 5 realizations of 20000
shots from which we extract the standard deviation. The slope quantifies the creation of errors by time where the shift from
the origin is the result of the measurement errors. (b) The same for the cluster after X ←→ Z transformation. During the
state preparation (at zero delay) the errors of X and Z are inverted with respect to (a), while during the waiting time (i.e., the
slopes) are the same. (c-d) Quantum computer results for the same circuits.

a 111 pattern.
In the real machine that we use, the qubits 1

and 5 are physically separated and cannot be en-
tangled directly. Hence, we focus on the OBC
cluster Hamiltonian defined by the stabilizers
{X1Z2, Z1X2Z3, Z2X3Z4, Z3X4Z5, Z4X5}. Then,
the 2−uniformity is spoiled near the edges, and for
example, X1 and Z2 errors result in the same syndrome
01000. Thus, we focus on errors that act only on the
middle qubit 3. We added a ? mark in Fig. 3 only on
qubit 3 because this circuit allows us to deal with errors
only at that qubit, despite that in practice errors can
occur on any qubit. Thus, assuming an error may have
occurred only on qubit 3, the error syndromes 00100,
01010 and 01110 allow to determine the probability of
Z, X and Y errors, respectively. We proceed to apply
this protocol on (i) a noisy simulator that mimics the
hardware noise, and (ii) a real quantum computer.

Real quantum computers, and noisy simulators that

mimic their behaviour, experience both relaxation er-
rors, which change gradually |1⟩ to |0⟩, and dephasing
errors, which change gradually |+⟩ to |−⟩ and vice versa.
These processes correspond to X/Y and Z errors, re-
spectively, and their characteristic times are commonly
denoted by T1 and T2. In superconducting circuits, T1
and T2 are generically of the order of 10 − 100µsec and
satisfy T2 < T1. We first consider a noisy simulator with
physical parameters derived from the IBM quantum com-
puter ibmq manila [64], see Appendix D.
Fig. 4(a) shows the probability of finding an X, Y , or

Z error in the middle qubit, as a function of the delay
time (each point refers to the average over 100,000 shots).
We find that the slope, i.e. rate of X and Y errors is
smaller than the slope of Z errors, in agreement with the
expected relation T2 < T1.
In addition to the slopes, we can see that the curves

in Fig. 4(a) are shifted differently from the origin. We
associate this shift with state-preparation and measure-
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ment (SPAM) errors that occur while preparing the clus-
ter state and measuring the stabilizers. These errors oc-
cur with a probability that does not depend on the de-
lay time and correspond to a vertical shift of the error
curves. Let us denote this readout error as Ri for the
i’th qubit and assume that it has probability pi = p≪ 1.
As a result of this error, the pattern 00100 occurs either
as a result of a Z3 error or a R3 error. In contrast, X
and Y error patterns may be created and equivocally de-
tected as a result of two or three Ri errors, respectively,
which have a smaller probability, p3 ≪ p2 ≪ p. Thus
Z errors occur more frequently due to SPAM errors, in
agreement with the observed result. To support this er-
ror model, we consider a transformed cluster state with
X ↔ Z, with stabilizers of the form XZX. This state
can be prepared by simply applying an additional layer of
Hadamard gates before and after the delay. In this case,
the error Z3 has syndrome 01010, which can be mistak-
enly generated by two readout errors. On the other hand,
the X3 error has syndrome 00100 and can occur due to
a single R3 readout error. In Fig. 4(b) we present the re-
sults from the transformed protocol. When normalizing
the readout-errors on the middle qubit (The readout er-
ror in Fig. 4(a) is approximately twice that in Fig. 4(b),
see Appendix. D), we notice that the X error probability
is now shifted by approximately the same amount as the
Z error of Fig. 4(a), and vice-versa. In contrast, we find
that the slopes of the errors in the original and trans-
formed circuits are comparable. This finding confirms
our hypothesis that the shift of the curves are associated
with SPAM errors, while the slopes are due to processes
that occur during the waiting time.

The corresponding results for the real IBM quantum
computer ibmq manila are shown in Figs. 4(c,d). The
observed slopes are higher than in the simulator, indi-
cating that qiskit simulators underestimate the noise in
the hardware. For example, the simulator does not take
into account the crosstalk between neighboring qubits
[64], which negatively affects the evolution of entangled
states. From the slopes we estimate

T1 ≈
(
dpX,Y

dt

)−1

≈ 100µsec, T2 ≈
(
dpZ
dt

)−1

≈ 30µsec.

(8)
We emphasize that while typically longitudinal (T1) and
transversal (T2) error rates are measured using sepa-
rate experiments, our quantum error detection approach
based on m−uniform states involves a single experiment.
Performing this error analysis in longer chains, may al-
low one to quickly find the qubits with the smallest error
rates and improve the computational fidelity.

V. m-UNIFORM LOGICAL SPACES

The cluster state discussed so far does not encode a
logical subspace. Is it possible to supplement its error
detection ability, with an encoded subspace? Here, we

1 2 3 n

ancilla
α|0⟩+ β|1⟩

n-qubit, D-dimensional cluster state

A

Figure 5. To encode information in the cluster state, an an-
cilla qubit is coupled to a subset of qubits, A. The bonds
represent controlled-Z gates.

exemplify this possibility via a measurement based pro-
tocol [57, 65–67].
Consider one ancilla qubit prepared in the desired

state α|0⟩ + β|1⟩, and a 2D−uniform state, i.e. the D-
dimensional cluster state |cs⟩ with n qubits. We couple
the ancilla qubit to an arbitrary set of |A| qubits of the
cluster state via CZ gates, as shown in Fig. 5. By mea-
suring the ancilla in the X basis and post-selecting the
X = +1 outcome, one obtains the state

|ϕ⟩ = α|cs⟩+ β
∏
i∈A

Zi|cs⟩, (9)

(see Appendix E for a derivation). The state |ϕ⟩ encodes
one logical qubit. As shown in Appendix F, the inequality

|A| > 2D(2D + 1) (10)

is a sufficient condition for the encoding in Eq. (9) to be
2D-uniform. Thus, if the ancilla qubit is entangled with
more than 2D(2D + 1) qubits of a 2D-uniform cluster
state, then the resulting logical space is also 2D-uniform.

VI. SUMMARY

In this work we explored m−uniformity, a measure of
multipartite entanglement, in cluster states. m-uniform
states maximize the entanglement between any m qubits
and their surroundings, and can be used for quantum er-
ror detection. In contrast to previous studies that focused
on quantum states that maximize the uniformity, here
we considered the uniformity of cluster states, which are
ground states of local frustration free Hamiltonians and
can be realized on quantum computers with local gates.
Our key result is that D−dimensional cluster states are
2D uniform.
We introduced a novel application of m-uniformity in

benchmarking quantum errors. While the amount of
uniformity can highly underestimate the support of cor-
rectable errors, here we emphasized the observation that
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the uniformity determines the support of identifiable er-
rors distinguishing X, Y and Z errors. TheD-dimensional
cluster states allow to detect errors acting independently
on D qubits. We demonstrated how the 1D cluster state
can be used to benchmark errors on quantum device.
This approach allowed us to clearly observe the domi-
nance of one type of errors (Z) over the others (X and
Y ) on the specific machine explored in this work. Ap-
plications of the 2D cluster state to benchmark 2-qubit
errors and their correlations are left for future study.

An interesting question that deserves further investiga-
tion is whether quantum error detection ability extends
beyond the special cluster states considered here. A nat-
ural candidate for the extension of our work is offered
by symmetry protected topological (SPT) states. These
states include the cluster states as special cases and were
shown to share common properties, for instance as uni-
versal resources of measurement-based quantum compu-
tations [68, 69]. To address the error correction capabil-
ities of SPT states it may be useful to extend the con-
cept of symmetry-resolved entanglement [43, 70–77] to
the multi-partite regime.
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Appendix A: Proof of Proposition 1

We present a proof by contradiction. Consider subsys-
tem A containing |A| ≤ 2D qubits. Let us assume that
the subgroup SA is not the trivial group. That is, there
exists at least one matrix σ ̸= I in SA. Since SA is a
subgroup of S, σ is the product of generators of S,

σ = sv1
sv2

. . . svr
, (A1)

where r > 0. The form of the stabilizer generators of
the cluster state sv is such that there is an X acting on a
qubit at v. TheseX’s cannot turn into the identity in the

(a) (b)

y
yu

x

y

x
Figure 6. Vertices represent qubits and bonds represent
controlled-Z gates as in the main text. (a) Triangular lattice.
The coordination yu is the maximal stabilizer generator y
coordinate, see text. (b) Hexagonal lattice.

product in Eq. (A1), as the X’s for different generators
act on different sites. Hence, the set A contains at least
r non-identity Pauli operators.
From the set

{
v1,v2, . . . ,vr

}
there exists one vh that

has the highest value of the first coordinate. svh
is a

generator of S with support on qubits in
{
vh,vh ± ei

}
,

that is, vh and its nearest neighbours. As we selected
vh to have maximal first coordinate, the element σ must
contain the Pauli operator Zvh+e1

as no other stabilizers
from the product can cancel it. Therefore eh+e1 should
be contained in A as the support of σ is in A.
Similarly, from the set

{
v1,v2, . . . ,vr

}
, there exists

one generator vl whose first coordinate is the minimal
one. Therefore, vl − e1 should also be contained in A.
In 1D we conclude that any non-identity σ in A must

contain at least r+2 Pauli’s. Continuing this argument to
D dimensions, we conclude that supp(σ) ≥ r+2D. This
contradicts our assumption that A consists of less than
2D + 1 qubits. Therefore, if |A| ≤ 2D then SA = {I}.

Appendix B: Uniformity of different 2D lattices

In this appendix we consider the uniformity of different
2D lattices. We focus on the triangular and hexagonal
lattices, see Fig. 6(a-b). Here we consider infinite lattices
only. Our analysis, which is summarized in Table I, can
be generalized further to different types of lattice struc-
tures, such as the 2D Archimedean lattices.
The 2D triangular lattice graph state is generated by

stabilizers sv of 7 support on any vertex v, thus, the uni-
formity is at most 6. As in the proof for the 2D cluster
state on square lattice, we prove that the support of any
stabilizer is at least 7. Let’s focus on stabilizer σ =

∏
v sv.

First, we notice that each vertex v shares at most 2 neigh-
bors with the vertex w ̸= v, thus, each additional stabi-
lizer generator at sv removes at most 2 support from each
other generator. Therefore, as one generator has 7 sup-
port, 2 generators have at least 2(7 − 2) = 10 support,
and k generators have more than k(7 − 2 · [k − 1]) sup-



8

Table I. The uniformity of different 2D lattice structures is
summarized in this table.

Lattice uniformity
Square 4

Triangular 6
Hexagonal 3

port, which is less than 7 only for 4 generators and more.
Hence, we assume from now on that σ has at least 4 gen-
erators, and all left to prove is that σ contains additional
3 Z’s to the existing 4 X/Y ’s at v for each sv.

As in the proof for the square lattice, we focus on the
upper most generators, notating their y coordinate as yu,
see Fig. 6(a). If there is only 1 generator su on y = yu,
it is clear that σ contains two Z’s on y = yu + 1 induced
by su. If there is more than one such vertex, σ still
contains 2 Z’s on y = yu+1 from the right most and left
most generators at y = yu. Similarly, one has the same
analysis from the lower most generators. Therefore, σ
has at least 4 Z’s as required. Thus, we have proved that
the 2D triangular lattice is 6 uniform.

Let us now focus on the graph state of the 2D hexag-
onal lattice, see Fig. 6(b). As one generator has now
4 support, we prove that this lattice is 3-uniform. Pro-
ceeding as in the case of the triangular lattice we focus on
σ =

∏
v sv. Here, each vertex shares at most 1 neighbor

with any other vertex, thus, k generators have more than
m = k(4− [k − 1]) support, which is less than 4 only for
5 generators and more. However, 5 generators trivially,
due to their X/Y ’s, have more than 4 support. Hence,
the 2D hexagonal lattice graph state is 3-uniform.

Appendix C: 2D-uniformity of finite cluster states

In this appendix we prove for PBCs that the clus-
ter state with at least 8 vertices in each dimension is
2D−uniform.

As in Eq. (A1), we consider a subsystem A consisting
of 2D qubits or less, and want to show that no element
of the stabilizer group SA, other than the identity, fits
into it. This follows from claim 1 below.

First, let us define the “distance” on the lattice.

Definition 1. The Hamming distance between two ver-
tices v and w, denoted by |v−w|, is the number of edges
in the shortest path on the graph from v to w.

Equivalently, the Hamming distance between two ver-
tices v and w is equal to the minimum number of basis
vectors (ei) that needs to be added/subtracted to v to
result in w.

Claim 1. Let SA be the stabilizers of the D-dimensional
cluster state within subsystem A such that |A| ≤ 2D. If
sv1sv2sv3 . . . svr ̸= I ∈ SA, then |vi − vj| ≤ 4 for all

vi,vj ∈
{
v1,v2, . . . ,vr

}
.

Before proving claim 1 by introducing two lemmas, let
us draw our main conclusion from it. Consider a specific

vertex vi ∈
{
v1,v2, . . . ,vr

}
. From claim 1, all other

vertices lie within a “sphere” of radius r, and hence, all
of the Pauli operators involved in sv1sv2sv3 . . . svr are lo-
calized within a sphere of radius r+1. Let us use Jung’s
theorem [78, 79], which relates the diameter of a set to
the radius of its bounding sphere, to bound the radius r.

Jung’s theorem states that r ≤ 4
√

D
2(D+1) <

√
8. Hence,

there is a sphere that encloses all the vi’s with diameter
2r < 2

√
8 < 6, which implies that we have at most 6

vertices in each axis in the sphere. To the sphere diame-
ter we add 2 to cover nearest neighbors, which we notate
d∗ = 2(

√
8+1) < 8, as each stabilizer generator has inter-

action with only its nearest neighbors. Since the system
length 8 is greater than d∗, we can apply the proof by
contradiction of the infinite lattice case in Appendix A,
since the definition of the “highest” or “lowest” value of
the D coordinates exists within the sphere.
To prove claim 1, we discuss properties of the stabilizer

generators for the D−dimensional cluster state. The sta-
bilizer generators sv of the cluster state have support over
2D + 1 vertices {

v,v ± ei

}
, (C1)

where
{
v± ei

}
is the neighbourhood of v. The product

of stabilizer generators sv and sw does not have sup-
port over the intersection of their neighbourhoods due to
cancellations of Z’s. We show below how two stabilizer
generators can, at most, intersect at two qubits.

Lemma 1. The neighborhoods of two stabilizer genera-
tors sv and sw overlap at most in two vertices for lattices
with PBC where all axes are of length ≥ 5.

Proof: Eq. (C1) implies that sv has support in a ball
of radius 1 around v. Therefore, sv and sw intersect only
if |v−w| ≤ 2. Let us check the intersection case by case.

• |v −w| = 1: Then there exists an ek, such that

v + ek = w. (C2)

The distance between neighbourhood points of v
and w is

|v ± ei −w ∓ ej| = |ei ∓ ej − ek| ≥ 1. (C3)

This implies that thee neighbourhoods of v and w
are disjoint.

• |v −w| = 2: Then

v + ek1 + ek2 = w, (C4)

for some indices k1, k2. Let us check the intersec-
tion case by case.
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0 1 2 3 4
Figure 7. Qubit scheme of ibmq manila.

• k1 = k2:

v + 2ek1 = w =⇒ v + ek1 = w − ek1 . (C5)

The neighbourhoods intersect at one point v+ ek1

only.

• k1 ̸= k2:

v + ek1 + ek2 = w (C6)

=⇒ v + ek1 = w − ek2 (C7)

and additionally

=⇒ v + ek2 = w − ek1 . (C8)

Therefore, the neighbourhoods intersect at two
points: v + ek1 and v + ek2 .

The fact that the neighbourhoods of two stabilizer gen-
erators intersect at most at two vertices implies the fol-
lowing lemma

Lemma 2. Let σ = sv1
sv2

. . . svr ∈ SA. Then, for any
svi

there is a set of D + 1 points in A that are localized
around vi with at most 2 distance.

Proof: Let us write σ = sv1
sv2

. . . svr ∈ SA. Con-

sider svk
∈

{
sv1

, sv2
, sv3

, . . . , svr

}
. svk

has support

over 2D neighbouring qubits of vk, which we notate
N (vk). As of Lemma. 1, any other stabilizer generator

in
{
sv1

, sv2
, sv3

, . . . , svr

}
/
{
svk

}
intersects at most with

two vertices in N (vk). Then, for vj ∈ N (vk), either
vj ∈ A or it is in the intersection of svk

and another sta-
bilizer generator. As each intersection contains at most
2 points in N (vk), the minimal number of points w ∈ A
that are localized within distance 2 around vk such that
|w − vk| ≤ 2 is D + 1 (including vk itself).

Proof of Claim 1: Consider a D-dimensional clus-
ter Hamiltonian with PBC and a subsystem A. Let
us prove claim 1 by contradiction. Assume that
sv1

sv2
sv3

. . . svr
̸= I ∈ SA and |A| ≤ 2D. For any svi

in {sv1
, sv2

, sv3
, . . . , svr

} we get at least D vertices in A
that are at most 2-distance away from vi as of Lemma 2.
Choosing vi and vj such that |vi − vj| > 4, then the D
extra points from vi and vj cannot overlap and hence
the total number of points in A becomes greater than
2D.

Appendix D: Specifications of the quantum
computer ibmq manila

In this appendix we provide the different parameters of
the quantum computer ibmq manila, see scheme in Fig. 7,
at the running time of the quantum circuits and their
noisy simulations. The noise parameters are extracted
from the last calibration before the circuits run, see Ta-
bles II and III. The noisy simulations were done using
the usual Qiskit software package with the standard noise
model, see List 1 and Ref. [80]. To get the full calibration
properties at the time of running the circuits, see List 1.

Listing 1. Python Code

# Qi s k i t v e r s i on : { ’ q i s k i t −t e r r a ’ : ’ 0 . 23 . 3 ’ , ’ q i s k i t −aer ’ : ’ 0 . 12 . 0 ’ , ’ q i s k i t −i g n i s ’ :
’ 0 . 6 . 0 ’ , ’ q i s k i t −ibmq−prov ide r ’ : ’ 0 . 20 . 2 ’ , ’ q i s k i t ’ : ’ 0 . 42 . 1 ’ , ’ q i s k i t −nature ’ :

None , ’ q i s k i t −f inance ’ : None , ’ q i s k i t −op t im i za t i on ’ : None , ’ q i s k i t −machine−
l e a rn ing ’ : None}

# Extrac t ing c a l i b r a t i o n at the time o f the quantum demonstrat ion
calib props = IBMQ.load account().get backend(’ibmq manila’).properties(datetime=
insert datetime)

# I n i t i a t i n g no i se model
NoiseModel.from backend properties(calib props)

Appendix E: Derivation of Eq. (9)

In this appendix we derive Eq. (9). Connecting the
i-th qubit of the cluster state |cs⟩ with the ancilla (n+1)
qubit yields

CZi,n+1|cs⟩(α|0⟩+ β|1⟩), (E1)

where CZi,n+1 = (1/2)(I + Zi + Zn+1 − ZiZn+1) is the
controlled-Z gate acting on the i-th and n+ 1-th qubits.

Therefore the expression in Eq. (E1) can be expanded as

1

2
(I + Zi + Zn+1 − ZiZn+1)(α|cs⟩|0⟩+ β|cs⟩|1⟩)

= α|cs⟩|0⟩+ βZi|cs⟩|1⟩

=
1√
2

(
(α|cs⟩+ βZi|cs⟩)|+⟩+ (α|cs⟩ − βZi|cs⟩)|−⟩

)
.

(E2)
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Table II. Here we provide all the properties (as of its last calibration with respect to the circuit run) of the IBM quantum
computer ibmq manila which we have used to get the results for the quantum demonstration in Fig. 4(c) at Jan 12, 2023 12:13
PM Pacific standard time

Qubit name Frequency [GHz] T1 [us] T2 [us] Readout error ID error
√
X error Pauli-X error CNOT error

Q0 4.9623 187.8607 99.2866 4.71e-02 2.1453e-04 2.1453e-04 2.1453e-04 6.5306e-03
Q1 4.8379 150.3745 73.712 1.89e-02 2.2034e-04 2.2034e-04 2.2034e-04 [6.5306e-03, 8.5347e-03]
Q2 5.0373 154.846 25.6775 3.35e-02 2.5892e-04 2.5892e-04 2.5892e-04 [8.5347e-03, 6.8509e-03]
Q3 4.951 193.3112 63.4785 2.52e-02 2.0920e-04 2.0920e-04 2.0920e-04 [6.8509e-03, 7.1415e-03]
Q4 5.0651 156.7893 40.7793 3.39e-02 6.3812e-04 6.3812e-04 6.3812e-04 7.1415e-03

Table III. Here we provide all the properties (as of its last calibration with respect to the circuit run) of the IBM quantum
computer ibmq manila which we have used to get the results for the quantum demonstration in Fig. 4(d) at Jan 14, 2023 5:23
PM Pacific standard time

Qubit name Frequency [GHz] T1 [us] T2 [us] Readout error ID error
√
X error Pauli-X error CNOT error

Q0 4.9623 82.21 115.5179 2.20e-02 1.8141e-04 1.8141e-04 1.8141e-04 6.2379e-03
Q1 4.8379 172.9769 72.0529 3.05e-02 2.6893e-04 2.6893e-04 2.6893e-04 [6.2379e-03, 9.5845e-03]
Q2 5.0372 125.2094 28.3401 1.73e-02 2.2990e-04 2.2990e-04 2.2990e-04 [9.5845e-03, 6.4435e-03]
Q3 4.951 156.7664 56.1308 3.12e-02 2.0040e-04 2.0040e-04 2.0040e-04 [6.4435e-03, 6.9814e-03]
Q4 5.0651 141.3944 40.0803 2.98e-02 7.2360e-04 7.2360e-04 7.2360e-04 6.9814e-03

Measuring the n + 1-th qubit in the X basis and post
selecting theX = +1 eigenvector yields the encoded state

α|cs⟩+ βZi|cs⟩. (E3)

This procedure can be generalized to the case where the
ancilla qubit is connected to an arbitrary set A of qubits,
leading to Eq. (9).

Appendix F: 2D-uniform cluster state with a logical
subspace

In this appendix we derive a lower bound for the num-
ber of qubits A of the cluster state that the central qubit
needs to be entangled with in order for the resulting logi-
cal space to retain the 2D-uniformity of the cluster state.

We first denote the encoded state in Eq. (9) as

|ϕ⟩ = α|cs⟩+ βZA|cs⟩ (F1)

where, ZA =
∏

i∈A Zi. Now, |ϕ⟩ is m-uniform iff

⟨ϕ|Ô(m)|ϕ⟩ = 0 for Ô(m) being a string of up to m Pauli
matrices acting non-trivially in A. We will show that
m = 2D.

This leads to the requirement

0 = ⟨ϕ|Ô(m)|ϕ⟩ = |α|2⟨cs|Ô(m)|cs⟩+α∗β⟨cs|Ô(m)ZA|cs⟩
+ αβ∗⟨cs|ZAÔ(m)|cs⟩+ |β|2⟨cs|ZAÔ(m)ZA|cs⟩. (F2)

Since |cs⟩ is 2D-uniform and the operator ZAÔ(m)ZA

acts at most on m qubits, the first and fourth terms of
the right hand side of Eq. (F2) vanish for m = 2D.

We assume that |A| > m. The second term,

⟨cs|Ô(m)ZA|cs⟩ = 0 if Ô(m)ZA is not contained in the
generalized Bloch expansion [81] of |cs⟩. Since |cs⟩ is a
stabilizer state, all of its Bloch expansion terms are gen-
erated by the stabilizers {sv}. Now, Ô(m) contains a

maximum of m-X’s and/or Y ’s. Therefore Ô(m)ZA is
a product of at most m stabilizer generators si’s. Since
each stabilizer generator contributes 2D Z’s, the product
of m such stabilizer generators is an operator with Z’s
acting on a maximum of 2Dm qubits. Also, Ô(m)ZA

contains a minimum of |A| − m Z’s. Therefore, a suf-

ficient condition for Ô(m)ZA to be excluded from the
Bloch expansion of |ϕ⟩ is for the maximum number of
qubits that can be acted upon by Z’s coming from the
stabilizer generators to be lesser than the minimum num-
ber of Z’s possible in Ô(m)ZA. This yields

2Dm < |A| −m =⇒ m(2D + 1) < |A|. (F3)

Substitutingm = 2D we obtain the anticipated condition

2D(2D + 1) < |A|. (F4)

The same argument applies for the third term in
Eq. (F2). In 1D, this lower bound gives |A| ≥ 7.
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einschliesst., Journal für die reine und angewandte Math-
ematik 123, 241 (1901).

[79] B. V. Dekster, An extension of jung’s theorem, Israel
Journal of Mathematics 50, 169 (1985).

[80] qiskit aer.noise.NoiseModel.from backend.html,
https://qiskit.org/ecosystem/aer/stubs/qiskit_

aer.noise.NoiseModel.from_backend.html, accessed
Apr. 30, 2023.

[81] The generalized Bloch expansion of a pure n qubit state
|ψ⟩ is the expansion of |ψ⟩⟨ψ| in the basis of tensor prod-
ucts of Pauli matrices.

https://doi.org/10.1103/PhysRevResearch.4.L022020
https://doi.org/10.1103/PhysRevA.84.022304
https://doi.org/10.1209/0295-5075/95/50001
https://doi.org/10.1209/0295-5075/95/50001
https://doi.org/10.1038/nphys1157
https://doi.org/10.1103/PhysRevLett.122.090501
https://doi.org/https://doi.org/10.1016/S0034-4877(06)80014-5
https://doi.org/https://doi.org/10.1016/S0034-4877(06)80014-5
https://doi.org/10.1103/PhysRevResearch.4.L032013
https://doi.org/10.1103/PhysRevResearch.4.L032013
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1103/PhysRevA.105.053311
https://doi.org/10.1103/PhysRevE.100.042131
https://doi.org/10.1103/PhysRevE.100.042131
https://doi.org/10.1103/PhysRevE.96.020106
https://doi.org/10.1103/PhysRevA.92.012306
https://doi.org/10.1088/1367-2630/16/9/093033
https://doi.org/10.1088/1367-2630/16/9/093033
https://arxiv.org/abs/quant-ph/0602096
https://arxiv.org/abs/quant-ph/0602096
https://doi.org/10.1073/pnas.1519833113
https://doi.org/10.1073/pnas.1519833113
https://arxiv.org/abs/quant-ph/9705052
https://arxiv.org/abs/1508.02595
https://doi.org/10.1209/0295-5075/125/10008
https://doi.org/10.26421/qic16.15-16
https://doi.org/10.26421/qic16.15-16
https://doi.org/10.1038/s41567-020-0920-y
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.1103/PhysRevA.65.012308
https://doi.org/10.1103/PhysRevA.65.012308
https://arxiv.org/abs/quant-ph/0111080
https://doi.org/10.1109/ISIT.2002.1023317
https://doi.org/10.1109/ISIT.2002.1023317
https://doi.org/10.1103/PhysRevLett.108.240505
https://doi.org/10.1103/PhysRevLett.108.240505
https://doi.org/10.1103/PhysRevLett.119.010504
https://doi.org/10.1103/PhysRevLett.119.010504
https://doi.org/10.1103/PhysRevB.81.064439
https://doi.org/10.1103/PhysRevB.102.235157
https://doi.org/10.1103/PhysRevB.102.235157
https://doi.org/10.1103/PhysRevB.99.115429
https://doi.org/10.1103/PhysRevB.99.115429
https://doi.org/10.1103/PhysRevB.104.L220301
https://doi.org/10.1103/PhysRevB.104.L220301
https://doi.org/10.1088/1742-5468/ab7753
https://doi.org/10.1088/1742-5468/ab7753
https://doi.org/10.1088/1742-5468/ab7753
https://doi.org/10.1103/PhysRevB.107.115113
https://doi.org/10.1088/1742-5468/ac7644
https://doi.org/10.1088/1742-5468/ac7644
https://doi.org/10.1103/PhysRevB.107.125108
https://doi.org/10.1103/PhysRevB.107.125108
http://eudml.org/doc/149122
http://eudml.org/doc/149122
https://doi.org/10.1007/BF02761397
https://doi.org/10.1007/BF02761397
https://qiskit.org/ecosystem/aer/stubs/qiskit_aer.noise.NoiseModel.from_backend.html
https://qiskit.org/ecosystem/aer/stubs/qiskit_aer.noise.NoiseModel.from_backend.html

	 Multipartite entanglement and quantum error identification in D-dimensional cluster states
	Abstract
	Introduction
	Cluster states and their multipartite entanglement
	Reduced density matrices and stabilizer subgroups
	The infinite D-dimensional cluster state is 2D-uniform
	Extended cluster states

	Cluster states as pure QECCs
	Benchmarking errors using the cluster state
	m-uniform logical spaces
	Summary
	Acknowledgments
	blueProof of Proposition 1
	Uniformity of different 2D lattices
	blue2D-uniformity of finite cluster states
	blueSpecifications of the quantum computer ibmq_manila
	blueDerivation of Eq. (9)
	blue2D-uniform cluster state with a logical subspace
	References


