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We consider collective motion and damping of dipolar Fermi gases in the hydrodynamic regime.
We investigate the trajectories of collective oscillations – here dubbed “weltering” motions – in
cross-dimensional rethermalization experiments via Monte Carlo simulations, where we find stark
differences from the dilute regime. These observations are interpreted within a semi-empirical the-
ory of viscous hydrodynamics for gases confined to anisotropic harmonic potentials. The derived
equations of motion provide a simple effective theory that show favorable agreement with full nu-
merical solutions. To do so, the theory must carefully account for the size and shape of the effective
volume within which the gas’ behavior is hydrodynamic. Although formulated for close-to-threshold
dipolar collisions, our theoretical framework can be repurposed for other elastic cross sections in
future studies.

I. INTRODUCTION

Suppression of two-body collisional losses has been cru-
cial for achieving stable samples of molecular quantum
gases. Within the last decade, theoretical and experi-
mental advances have brought to fruition the electric field
shielding of polar molecules against chemical reaction
and complex formation [1–10], permitting the production
of degenerate bulk molecular samples [11, 12]. But even
before the onset of quantum degeneracy, these shielded
molecules present a long-lived versatile platform for ex-
ploring dipolar physics [13–15]. For instance, dipole-
dipole interactions lead to highly anisotropic two-body
collision cross sections [16] and observable anisotropy in
the collective dynamics of thermal gases [17–21]. For
these nondegenerate bulk gases, thermalization is an es-
sential mechanism with great utility in applications such
as evaporative cooling [22–29] and scattering length mea-
surements [30–34]. The accuracy and efficacy of both
these applications, in turn, rely on a deep understanding
of thermalization in such systems.

The difference between dilute and hydrodynamic lim-
its is revealed clearly in a gas’ response to perturbation.
In particular, in a cross-dimensional rethermalization ex-
periment, an initially equilibrated gas is preferentially
heated along a particular axis, then allowed to rethermal-
ize back to equilibrium [30]. Thermalization in the dilute
regime is closely related to the collision rate [21, 30, 35],
while the hydrodynamic regime sees similarly extracted
relaxation rates close to the trapping frequency instead
[12, 25, 36]. The difference between the two regimes
is illustrated in Fig. 1. In both panels, a collection of
23Na40K molecules is subjected to the same harmonic
trapping potential

V (r) =
1

2
m
∑
i

ω2
i r

2
i . (1)

and subsequently excited along the z axis. The only dif-
ference is the molecule number: for fewer molecules in
the upper panel (a), the dynamics is dilute, while for a
greater number of molecules in the lower panel (b), it is

hydrodynamic.

FIG. 1. Pseudotemperatures (2) obtained from Monte Carlo
simulations in the dilute (upper panel, a) and hydrodynamic
(lower panel, b) regimes. The gas consists of microwave
shielded 23Na40K molecules with dipole moment d = 0.75
D, oriented along x̂, at temperature T = 700 nK. The gas is
initially excited along z by an instantaneous trap frequency
ramp to ωz = 2π × 147 Hz, while ωx = ωy = 2π × 82.5 Hz
remain constant. The regimes are differentiated by the num-
ber of molecules N , which are N = 104 in panel (a), and
N = 2× 105 in panel (b).

In both cases, the behavior is tracked using time trace
plots of the pseudotemperatures Ti(t), shown in Fig. 1.
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A pseudotemperature is defined along axis i as [19]

kBTi(t) ≡
1

2
mω2

i {r2i }(t) +
1

2
m{v2i }(t). (2)

where {. . .}(t) denotes the time varying ensemble aver-
age over molecular positions r and velocities v, m is the
molecular mass, kB is Boltzmann’s constant. Details of
the calculation that produced this figure are provided be-
low.

The dilute regime is characterized by collision rates
small compared to the trap frequencies. Hence in this
case, pseudotemperature in the warm, z direction gradu-
ally diminishes, while that in the other, cooler directions
gradually increases, until the gas equilibrates on the time
scale shown. The hydrodynamic gas, by contrast, be-
haves like a somewhat compressible fluid; excitation ini-
tially in the z direction is distributed almost immediately
into the other directions, and the resulting dynamics is
more like the irregular flow to and fro of this liquid. The
fluid expands sometimes in the radial direction, some-
times in the axial direction, with irregularly varying am-
plitudes, reminiscent of waves on an unquiet ocean. To
encapsulate such motion and differentiate it from center
of mass “sloshing” [37], we refer to this form of collec-
tive fluid excitation as weltering [38]. Notably, present
examples consider essentially perturbative quenching of
the trapping potential, where motion is well described,
as in Fig. 1, by tracking the widths along each axis. We
anticipate, however, future investigations in which this is
not so, for instance, where the radial width at a given
instant may vary with the axial one. These more intri-
cate scenarios will fully exemplify the weltering motion
we envision, making it worthwhile to coin the term now
for future use.

In the dilute gas case, the primary response of the gas
is to come to thermal equilibrium, whereby its dynam-
ics is largely summarized in a single, density-normalized
equilibration rate, whose inverse defines the “number of
collisions per rethermalization” [30]. For dipolar gases,
this quantity can depend on the orientation of the dipoles
relative to the excitation axis [16, 21]. Vice versa, the
complex dynamics of the hydrodynamic fluid requires a
more complete theoretical description.

The purpose of this paper is to provide such a descrip-
tion. We will base full dynamics on a Monte Carlo simu-
lation, to further elaborate the difference between dilute
and hydrodynamic regimes. Further, we will develop a
simplified formulation based on a Gaussian ansatz for the
width of a gas, which semi-empirically reproduces the
numerics. Key to this model is the realization that the
periphery of a harmonically trapped gas is always dilute
[39, 40], which necessitates defining an effective volume
inside which hydrodynamics is a good idea. We iden-
tify the dependence of this volume on the anisotropy of
the trap and of the collision cross section among polar-
ized dipoles. Our theory is also presented in a manner
where analyses can be repeated to accommodate other
cross sections, opening its applicability to a broader va-

riety of ultracold molecular gas experiments with far from
threshold collisions [41].

The remainder of this paper is organized as follows:
In Sec. II, we describe the numerical tools adopted to
study trapped hydrodynamic gases, and present notable
differences from the dilute limit. We then introduce the
equations of motion employed to model a nondegener-
ate hydrodynamic dipolar gas in Sec. IV, with the as-
sumption of threshold scattering. A variational ansatz
is employed in Sec. IVA, to derive effective dynamical
equations governing weltering oscillations in a harmonic
trap. A comparison of our theory to full numerical so-
lutions is presented in Sec. IVC, from which we purport
several considerations about the hydrodynamic extent of
gases in traps. Finally, conclusion are drawn in Sec. V,
along with possible extensions of this current work.

II. NUMERICAL METHOD

A gas is said to be hydrodynamic when the molecular
mean-free path is much smaller than the characteristic
length over which fluid flow occurs [42]. The ratio of
these scales is given by the Knudsen number Kn. For
a harmonically trapped gas with mean density ⟨n⟩ =
1
N

∫
n2(r)d3r and molecules with total cross section σcoll,

the mean-free path is given by L = (⟨n⟩σcoll)
−1. With

a given geometric mean frequency ω and temperature T ,

the thermal width of the gas is Rth =
√

kBT/mω2.

Alternatively, the Knudsen number can also be writ-
ten as the ratio of mean trapping frequency over the
collision rate γcoll = ⟨n⟩σcoll⟨vcoll⟩, where ⟨vcoll⟩ =√
16kBT/(πm) is the mean collision velocity. Explicitly,

these relations are summarized as

Kn =
L

Rth
=

4 ω

π1/2γcoll
=

8π
3/2kBT

Nmω2σcoll
. (3)

A trapped gas is said to be hydrodynamic if Kn ≪ 1. The
relations above provide an approximate mean Knudsen
number. In practice, the thermal width can differ in di-
rections with different trap frequencies, while the cross
section, for dipolar scattering, can depend on the direc-
tion of the collisions axis. Thus the boundary between
hydrodynamic and dilute flow can be anisotropic, a topic
to be dealt with below.

To compute dynamics in either regime, we utilize the
direct simulation Monte Carlo (DSMC) method [43] to
obtain numerical solutions to the Boltzmann equation.
In doing so, these numerical simulations allow for ex-
plorations of hydrodynamic phenomena, while later also
serving as a benchmark for our semi-empirical theory.

The DSMC implementation we adopt for this work fol-
lows very closely that described in Refs. [19, 20], which
study similar systems but in the dilute regime. Described
briefly, the Boltzmann equation is solved by approximat-
ing the phase space distribution with a discrete ensemble
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of N molecules

f(r,v) ≈
N∑

k=1

δ3(r − rk)δ
3(v − vk). (4)

Most crucial to an accurate hydrodynamic simulation is
that collisions are handled adequately. The DSMC does
so by constructing a discrete spatial grid within the simu-
lation volume, binning particles into each grid cell based
on their positions, then sampling their collisional inter-
actions from a probability distribution derived from the
differential cross section [19].

Choosing a uniform grid that is appropriate for main-
taining accuracy and computational efficiency becomes
tricky at large collision rates, so we utilize a locally adap-
tive discretization scheme instead. At every numerical
time step, the locally adaptive grid is built in two phases.
Phase one constructs a master grid, consisting of uniform
volume cells that span the simulation volume. The res-
olution of the grid is then refined in phase two, with an
octree algorithm [44]. The octree algorithm further dis-
cretizes the simulation volume by recursively subdividing
cells into eight octants, terminating when each cell has
at most Nmax

cell particles. The parameter Nmax
cell , is initial-

ized at the start of the simulation, which we optimize for
stochastic convergence.

III. NUMERICAL RESULTS

TABLE I. Table of parameter values utilized in the Monte
Carlo simulation for fermionic 23Na40K molecules. Da =
1.661 × 10−27 kg stands for Dalton (atomic mass unit) and
D = 3.33564× 10−30 C·m is a Debye.

Parameter Symbol Value Unit
Relative molecular mass Mr 63 Da
Electric dipole moment d 0.75 D
Initial gas temperature T (0) 700 nK
Trap frequency geometric mean ω 2π100 Hz

For our numerical experiments, we envision an ultra-
cold gas of microwave shielded 23Na40K molecules with
the parameters in Tab. I. The initial temperature is cho-
sen such that the gas remains nondegenerate with T >
TF [45] for all values of Kn in consideration, and the trap
is assumed cylindrically symmetric with ωx = ωy ≡ ω⊥
but ω⊥ ̸= ωz. Key variables of interest to this study
will be: a) the number of molecules N , which affects
Kn and therefore how hydrodynamic the gas is; b) the
trap anisotropy λ = (ωz/ω⊥)

2; c) and the dipole orien-

tation Ê. For the sake of illustration, collision cross sec-
tions are described by the analytical formulas for point
dipoles given in Ref. [16], although at sufficient temper-
ature, realistic cross sections may differ from these. For
convenience, we only allow Ê to tilt within the x, z-plane,

allowing us to define a dipole tilt angle Θ = cos−1 Ê · ẑ,
that parameterizes the collisional anisotropy.
The behavior of the fluid after excitation in the z direc-

tion is shown in Fig. 2. This is done in a prolate (cigar)
trap with λ = 0.2, containing N = 5 × 105 molecules,
with Knudsen number Kn ≈ 0.04. This figure plots the
separated position and momentum space pseudotempera-
tures Tri(t) = mω2

i {r2i }(t)/kB and Tvi(t) = m{v2i }(t)/kB
respectively. The position space time trace shows the
clear out-of-phase oscillations between the widths in the
radial and axial directions, expected for a weltering fluid.
The momentum space time trace has oscillations of con-
siderably smaller magnitude than Tri , and also shows a
phasing in oscillations amongst the different Tvi traces.
These observations showcase how large collision rates di-
minish the effect of out-of-equilibrium thermodynamics
on the hydrodynamic welter of the gas.

FIG. 2. Plots of the Tri (upper panel a) and Tvi (lower
panel b) vs time from a cross-dimensional rethermalization
experiment, with excitation along z. The gas is hydrodynamic
with N = 5 × 105 (Kn ≈ 0.04), λ = 0.2 and the parameters
in Tab. I.

The difference between dilute and hydrodynamic
regimes is sharpened by comparing the dependence of
dynamics on the tilt angle Θ of the dipoles. To this
end, Fig. 3 plots the three components of pseudotemper-
ature Ti for the dilute (upper row) and hydrodynamic
(lower row) gases, at the 3 different dipole tilt angles
Θ = 0◦, 45◦, 90◦.
As anticipated in Fig. 1, the dilute gas responds to the

excitation primarily by melting back to thermal equilib-



4

rium while the hydrodynamic gas exhibits radial welter-
ing motion, resulting from oscillating fluid flow toward
and away from the trap center. In Fig. 3 a second dra-
matic difference appears. For the dilute gas, with the
dipoles tilted away from the axis of trap symmetry (z),
the rates of warming of the gas in the x and y directions
differ, as a consequence of the anisotropic scattering cross
section [16, 19, 21]. By contrast, the excitations in the x
and y directions in the hydrodynamic regime are nearly

equal. In the hydrodynamic regime, relatively rapid col-
lisions scramble memory of the dipole orientation. Note
that a slight difference in x and y motions occurs, due to
a residual anisotropy of the viscosity tensor, described in
the next section. Nevertheless, this anisotropy is not a
main driving force in the dynamics. It is true, however,
that the overall damping rate of the weltering excitations
does depend on the dipole tilt angle, as will be elaborated
upon in Sec. IVC below.

FIG. 3. Pseudotemperature times traces Tx(t) (solid green curves), Ty(t) (dashed blue curves) and Tz(t) (dotted red curves)
for 3 values of Θ = 0◦, 45◦, 90◦, in subplots (a, d), (b, e) and (c, f) respectively. The 2 rows are differentiated by the number of
molecules, with the upper row (subplots a, b, c) having N = 2 × 103 (Kn ≈ 11.10), while the lower row (subplots d, e, f) has
N = 3× 105 (Kn ≈ 0.07). The experimental parameters are those in Tab. I with λ = 0.2. Note that the simulation times are
different between the upper (t = 0 to 0.1s) and lower (t = 0 to 0.04s) rows.

IV. HYDRODYNAMIC FORMULATION

The Monte Carlo simulation, while accurate, is nev-
ertheless somewhat cumbersome for calculating the re-
sponse of the gas. For this reason, in the hydrodynamic
regime, it is useful to formulate the fluid’s motion directly
in terms of hydrodynamics. When hydrodynamic, a non-
degenerate gas behaves as a thermoviscous fluid [46–48]
with thermal conductivity κij , and viscosity µijkℓ, which
are, in general, coordinate dependent and formulated as
rank-2 and rank-4 tensors respectively [49]. The equa-
tions of motion of the fluid are [50]:

∂ρ

∂t
+
∑
j

∂j (ρUj) = 0, (5a)

∂

∂t
(ρUi) +

∑
j

∂j (ρUjUi) = −∂i (nkBT )− n∂iV (r)

+
∑
j,k,ℓ

∂j (µijkℓ∂ℓUk) , (5b)

∂

∂t
(ρT ) +

∑
j

∂j (ρTUj) = −2

3
ρT
∑
i

∂iUi

+
2m

3kB

∑
i,j,k,ℓ

(∂jUi)µijkℓ(∂ℓUk)

+
2m

3kB

∑
i,j

∂i (κij∂jT ) . (5c)

These equations govern the dynamics of the velocity av-
eraged field variables of mass density, flow velocity and
temperature:

ρ(r, t) = mn(r, t) =

∫
d3vf(r,v, t)m, (6a)
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U(r, t) =
1

n(r, t)

∫
d3vf(r,v, t)v, (6b)

T (r, t) =
2

3n(r, t)kB

∫
d3vf(r,v, t)

1

2
mu2, (6c)

where f(r,v, t) denotes the phase space distribution of
the molecules and u(r) = v − U(r) is the comoving
molecular velocity, relative to the frame of fluid flow.

It is worth pointing out that the local fluid kinetic
temperature is related to the flow velocity via

3

2
n(r, t)kBT (r, t) =

∫
d3vf(r,v, t)

1

2
mv2

− 1

2
ρU(r, t)2, (7)

where the integral term is the local kinetic energy density.
This relation emphasizes a central difference between di-
lute and hydrodynamic trapped gases: temperature, in
the sense of equilibrium thermodynamics, is well defined
throughout the entire dynamical evolution when hydro-
dynamic, but only upon global equilibration when dilute.
Such a distinction identifies time-of-flight imaging, com-
mon to ultracold gas experiments, as an indirect form of
thermometry to hydrodynamic gases, that probes an en-
semble averaged sum of both the fluid local temperature
and mechanical energy from flow.

In this work, we assume that the transport tensors
arise from two-body collisions with elastic differential
cross section dσ/dΩ, as derived with the first-order
Chapman-Enskog method [51–53]. We shall later see that
only viscosity is relevant to this work, so we omit further
details of the thermal conductivity. At this level of ap-
proximation, the anisotropic viscosity tensor for arbitrary
dσ/dΩ works out to be density independent, and is given
as [53, 54]

µ = − 2

β

(
n

mβ

)2(∫
d3uW (u)⊗ C[f0W ]

)−1

, (8)

where β = (kBT )
−1 is the usual inverse temperature,

W = uuT − 1

3
u2I, (9)

is a rank-2 comoving velocity tensor, and I is the identity
matrix. The collision integrals

C[f0W ] =

∫
d3u1|u− u1|f0(u)f0(u1)

∫
dΩ′ dσ

dΩ′∆W ,

(10)

with ∆W = W ′ +W ′
1 −W −W1 and primes denoting

post-collision quantities, are evaluated with the Maxwell-
Boltzmann equilibrium phase space distribution function
f0(u) [55]. The symbol⊗ denotes a dyadic product which
takes two tensors of rank N1 and N2, and forms a tensor
of rank N1 + N2 (e.g. Aij ⊗ Bkℓ = Cijkℓ). Of interest
here is the anisotropic cross section resultant from close-
to-threshold scattering [56] between ultracold fermionic

polar molecules or dipolar atoms [7, 12, 33, 34]. At low
enough temperatures with electric fields that align the
dipoles along Ê, dipolar scattering is energy independent
and permits the viscosity tensor to be computed analyt-
ically [54]. It is this analytic viscosity tensor that we use
below.

A. Viscous damping of a trapped fluid

The fluid equations in (5) are highly nonlinear and, in
general, require numerical methods to obtain solutions.
For our purposes, we instead adopt a variational ansatz
approach to solving these partial differential equations
[57]. External confinement from a harmonic potential re-
sults in the equilibrium (denoted by subscript 0) density
distribution following

ρ0(r) =
mN

Z
exp

(
−V (r)

kBT0

)
, (11)

where Z =
∫
d3re

− V (r)
kBT0 gives the appropriate normaliza-

tion and N is the number of molecules. If we were then
only to consider collective oscillations and damping from
long wavelength excitations that do not induce center-of-
mass sloshing, Eq. (11), motivates a Gaussian variational
ansatz for the local density:

ρ(r, t) = mN

3∏
i=1

1√
2πσ2

i (t)
exp

(
− r2i
2σ2

i (t)

)
, (12)

where σi(t) is the distribution widths along each axis i
that we allow to vary in time (depicted in Fig. 4).

FIG. 4. Cartoon of a density slice along axis ri, through the
Gaussian ansatz for ρ(r, t) with time varying widths σi(t).

Plugging the ansatz of Eq. (12) into the continuity
equation (5a) gives

3∑
i=1

[
∂iUi(r)− Ui(r)

(
ri

σ2
i (t)

)
+

(
r2i

σ2
i (t)

− 1

)
σ̇i(t)

σi(t)

]
= 0, (13)

which admits the velocity field solution

Ui(r) =

(
σ̇i(t)

σi(t)

)
ri. (14)
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Thus, as expected, the fluid flow vanishes in the trap’s
center for the excitations we consider. These functional
forms for ρ andU then render the Navier-Stokes equation
(5b), of the form

σ̈i(t) + ω2
i σi(t) =

kB
m

(
1

σi(t)
− σi(t)

ri
∂i

)
T (r, t)

+ σi

∑
j,k,ℓ

∂jµijkℓ(T )

riρ(r)
δk,ℓ

σ̇k

σℓ
, (15)

which bears no dependence on the thermal conductiv-
ity. Since σi(t) does not depend on spatial coordinates,
consistency requires that we take a spatial average to
suppress local fluctuations of the temperature field in
Eq. (15). This average is taken by multiplying Eq. (15)
and the temperature balance equation (5c), by n(r, t),
then integrating over d3r. App. A gives further details
of the spatial averaging procedure, which results in

σ̈i(t) + ω2
i σi(t) +

1

3σi(t)

∑
j

[
ω2
jσ

2
j (t) + σ̇2

j (t)
]
− 2kBT0

mσi(t)
≈ −2

5

Vhy

Nm

∑
j

µiijj(T (t))

σi(t)

σ̇j(t)

σj(t)
. (16)

The relevant viscosity matrix elements can be recast in terms of a unit-free matrix

Mij(Θ) ≡ µiijj(T ; Θ)

µ0(T )

=
1

512

117 cos(4Θ) + 84 cos(2Θ) + 415 −28(3 cos(2Θ) + 11) −(117 cos(4Θ) + 107)

−28(3 cos(2Θ) + 11) 616 28(3 cos(2Θ)− 11)

−(117 cos(4Θ) + 107) 28(3 cos(2Θ)− 11) 117 cos(4Θ)− 84 cos(2Θ) + 415

 , (17)

as is taken from Ref. [54], where the isotropic unit-full
viscosity coefficient is given by [51]

µ0(T ) =
5

16a2d

√
mkBT

π
. (18)

With the parameters in Tab. I, the isotropic viscosity has
a value of µ0 ≈ 2.5 × 10−15 Pa·s, which is around 1010

times less than air at room temperature and pressure
[58]. The Mij(Θ) matrix elements are plotted in Fig. 5,
with components coupled to the x and z axes showcasing
a significant variation with Θ. We see in Fig. 5 that the
magnitude of off-diagonal matrix elements M13 = Mxz

and M23 = Myz become maximally separated around
Θ ≈ 45◦, explaining the slight separation of Tx(t) and
Ty(t) in Fig. 3, otherwise negligible when Θ = 0◦, 90◦.
Eq. (16) above treats the temperature field appearing

in µijkℓ(T ) to be spatially uniform over the region where
the gas is hydrodynamic. Such an approximation follows
from the form of collective oscillations implied by the
density (12) and flow velocity fields (14) in an initially
isothermal gas, disallowing a spatial temperature varia-
tion on the order of the gas spatial widths [39, 48]. Hence,
temperature as appears in the viscosity is simply treated
as T ≈ T (t). In doing so, we were required to define an
effective hydrodynamic volume Vhy =

∫
d3r [59]. Proper

identification of this volume, including its dependence on
aspect ratio, density, and dipole tilt, is essential to the
performance of the model, and is our main undertaking
here. We define this volume to be the spheroidal volume
bounded by the outer classical turning radius of the trap,
multiplied by an empirical factor η. The outer turning

FIG. 5. Mij matrix elements as a function of Θ. The diag-
onal elements are plotted on the left in subplot (a), whereas
the negated (multiplied by a minus sign) off-diagonal elements
plotted on the right in subplot (b).

radius is obtained by equating Etotal = V (RHD, θ, ϕ), to
give (see App. A)

R2
HD(θ) =

6kBT (t)

mω2
⊥

[
sin2 θ + λ cos2 θ

]−1
, (19)

where λ = (ωz/ω⊥)
2 quantifies the trapping anisotropy.

The effective hydrodynamic volume is then computed as

Vhy(λ,Kn) =
η(λ,Kn)

3

∫
R3

HD(Ω)dΩ

=
4π

3

(
6kBT (t)

mω2
⊥

)3/2
η(λ,Kn)√

λ
. (20)

As written, we have assumed that η could depend on
the trapping geometry through λ and on the Knudsen
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number, which in turn, also implicitly depends on N and
the dipole angle Θ. These dependencies are addressed
later in the paper. Such generality allows η to act as
a coarse-graining parameter which accounts for all non-
hydrodynamic effects excluded from our current theoret-
ical treatment. Additionally, Eq. (18) implies the tem-

perature dependence of viscosity goes as µiijj(T ) ∝
√
T ,

for which we will simply approximate as T ≈ T0 for all
times [60].

For the relevance of time-of-flight imaging, we point
out that the momentum space temperature, which dif-
fers from the local temperature of Eq. (6c), can also be
obtained from solutions to Eq. (16) via the relation

kBTp(t) =
1

3N

∫
d3rd3vf(r,v, t)mv2

= 2kBT0 −
1

3

∑
i

mω2
i σ

2
i (t), (21)

as follows from Eqs. (7), (14) and (A11).

B. Linear analysis

Some proceeding discussions on collective dynamics are
made more accessible in the language of normal modes,
motivating a linear analysis of Eq. (16). If only taken
perturbatively out-of-equilibrium, we can consider small
deviations away from the equilibrium widths by writing
σi(t) = σ0,i + δσi(t). Then expanding to first-order in
δσi(t), Eq. (16) becomes

δ̈σi(t) + 2
∑
j

Γij
˙δσj(t) +

∑
j

Oijδσj(t) ≈ 0, (22)

with squared-frequency and damping matrices

Oij = 2ω2
i δi,j +

2

3
ωiωj , (23a)

Γij =
µ0Vhy

5NkBT0
ωiMij(Θ)ωj . (23b)

The matrices above encode the anisotropies from both
the trap and anisotropic collisions. A factor 2 multiplies
Γ in Eq. (22) as is convention in damped harmonic os-
cillators. With Γ multiplying the first-order time deriva-
tive terms ˙δσi, it is made clear that damping of weltering
oscillations results from the trap frequency weighted vis-
cosities within the hydrodynamic volume.

Diagonalizing the squared-frequency matrix O gives
the eigenvalues

ω2
0 = 2ω2

⊥, (24a)

ω2
± =

1

3

(
4λ+ 5±

√
16λ2 − 32λ+ 25

)
ω2
⊥, (24b)

which are exactly those obtained for inviscid Euler flow
in Refs. [46, 48], and correspond to the respective eigen-

modes (up to arbitrary normalization)

o0 =

 1
−1
0

 , (25a)

o± =

5− 4λ±
√
25 + 16λ(λ− 2)

5− 4λ±
√
25 + 16λ(λ− 2)

4
√
λ

 . (25b)

The eigenmode o0 is a strictly radial quadrupole mode,
while o− and o+ are 3-dimensional quadrupole and
breathing modes respectively.
Similarly, Γ results in two nontrivial eigenvalues γ±,

that constitute the eigen rates of Γ. Although it is
tempting to assign one of these eigen rates as the overall
relaxation rate, the eigenmodes associated to each γ±,
are in general, not the eigenmodes of O. Consequently,
coupling between the eigenmodes of Γ is inevitable dur-
ing dynamical evolution, enforcing that accurate relax-
ation trajectories are best obtained from full solutions to
Eq. (22).

C. The hydrodynamic volume

Returning to the main argument, Eq. (16) is expected
to be a reasonable representation of dynamics, provided
the shape of the gas remains nearly Gaussian. To employ
these equations, we must establish the value of the effec-
tive hydrodynamic volume. A first guess at this volume
is given in Eq. (20), which left available a free parameter
η, that may depend on λ and Kn. As noted in Sec. IVA,
Kn is implicitly dependent on N and Θ, which are taken
as the relevant independent variables for this study.
To extract η, we perform multiple DSMC runs while

varying λ, N and Θ, which provides us time traces of
Tp(t) (21) for each combination of parameter values. We
then fit Tp(t) as computed from our theory (16) to those
from the DSMC simulations while floating η, such that
it minimizes the relative root-mean-squared error

ε(η) =

√√√√∑
t

(
TDMSC
p (t)− T theory

p (t; η)

TDMSC
p (t)

)2

. (26)

In these numerical experiments, we tune the trap
anisotropy in a manner that does not the affect Kn, by
setting ω⊥ = ω/λ1/6 and ωz = ωλ1/3. This construc-
tion ensures that ω, and therefore Kn, both remain in-
dependent of λ. The dipoles are taken to point along x̂
(Θ = 90◦) for the data shown. Dependence on dipole
orientation will be included below.
Results of several such fits are shown in Fig. 6,

which compares the Tp time traces for a series of cross-
dimensional rethermalization experiments with N = 5×
105 (Kn ≈ 0.04) over a range of λ = 0.13 to 8.0, as ob-
tained from DSMC simulations (solid black curves) and
our fitted theory (dashed red curves). Noticeably, there
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is a clear beating of various modes with different fre-
quencies which our theory is able to describe, showing
favorable agreement in both the amplitude and phase of
oscillations. A representative comparison plot of Tr(t) as
obtained from DSMC and Eq. (16) is also provided in
Fig. 7, with N = 5 × 105 (Kn ≈ 0.04) and λ = 0.32.
Good agreement is seen in all Tri(t) time traces as well.
We note that temperature time traces tend to show bet-
ter agreement to the DSMC ones for excitation along the
long axis of a prolate trap, even for larger Knudsen num-
bers (Kn ≈ 0.1). So, we stick to this excitation geometry
for a more focused study.

For a given orientation of the dipoles, it may be ex-
pected that η depends on both the trap aspect ratio λ
and the number of molecules N . Increasing N , ceteris
paribus, evidently increases the density and hence likely
the hydrodynamic volume. As for aspect ratio, a tenta-
tive λ dependence of Vhy is already taken into account
by (20), whereby the scaling parameter η may depend
only weakly on λ. This hypothesis is supported by the
numerics as shown in Fig. 8, where we find that η is lin-
early dependent on N , but largely independent of λ for
the range of these parameters we explore.

Finally, for a given λ and N , it remains to resolve the
dependence of η on the dipole orientation Ê. In this con-

text, recall that the dilute and hydrodynamic regimes
are distinguished by the Knudsen number, which is in-
versely proportional to the collision cross section, Eq. (3).
We saw in Sec. IVA, that this cross section results in
anisotropic viscosities, that work to bring local thermo-
dynamic fluctuations back to equilibrium. Having ac-
counted for this aspect of differential scattering, we posit
that η should only depend on the post-collision averaged
cross section σcoll =

∫
dΩ′ dσ

dΩ′ , which still preserves an
incoming-collision angle dependence [16]. As to how so,
we present the following argument. Prolate traps have a
weak trapping axis z, along which the gas has a larger
thermal width. As a result, the mean-free path along
that axis is relatively smaller compared to the sample
size, and consequently more hydrodynamic. Collisions
that occur with relative momentum directed along the
long axis, are then most able to keep molecules behav-
ing collectively as hydrodynamic. The bulk total cross
section is, therefore, most simply taken as

σcoll = a2d
π

3

[
3 + 18 cos2(Ê · êhy)− 13 cos4(Ê · êhy)

]
,

(27)

where êhy = ẑ denotes the most hydrodynamic axis

(weakest trap frequency), so that Ê · êhy = Θ.

FIG. 6. Comparison of the momentum space temperature Tp (21) vs time t, obtained from DSMC simulations (black solid
curves) and our theory (red dashed curves) with N = 5× 105 (Kn ≈ 0.04), Θ = 90◦ and parameters in Tab. I. The subplots (a)
to (h) correspond to various values of trapping anisotropy with λ = 0.13 to 8.0 as labeled in the subplot headers. The fitted
values of η are also provided in the subplot headers with their fitting standard uncertainties.

We indeed find that η follows a Θ dependence very
similar to that of Eq. (27), when comparing η as ob-
tained from DSMC experiments, to a fitting function

of the form (σcoll/σcoll)α + β in Fig. 9, where σcoll =∫
σcoll(êhy)dêhy = 32πa2d/15 is the angular averaged to-

tal cross section. The observations above motivate the
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FIG. 7. Comparison of the position space pseudotempera-
tures Tr vs time t, obtained from DSMC simulations (upper
subplot a) and our theory (lower subplot b) with the param-
eters in Tab. I, Θ = 90◦, N = 5 × 105 (Kn ≈ 0.04) and
λ = 0.32.

functional form

η ≈ a+ b

(
N

105

)[
1 + c

(
σcoll

σcoll

)]
, (28)

for some constants a, b and c, which we determine from
fits to be a ≈ 2.21±0.017, b ≈ 0.67±0.020 and c ≈ 0.26±
0.015. See App. C for further details. Our functional
guess for the hydrodynamic volume is therefore

Vhy(λ,N,Θ) ≈ 4π

3

(
6kBT0

mω2
⊥

)3/2

(29)

× 1√
λ

[
2.21 + 0.67

(
1 + 0.26

σcoll(Θ)

σcoll

)
N

105

]
.

This quasi-empirical formula constitutes the main result
of the present paper. Using this parametrization, the
equations of motion (16) can be used to reliably deter-
mine the evolution of a hydrodynamic dipolar Fermi gas
in a prolate trap, subject to excitation along the long axis
of the trap.

V. DISCUSSIONS AND CONCLUSIONS

A trapped gas transitions to one that is hydrodynamic
when the molecular mean-free path is far exceeded by the

FIG. 8. Plot of η vs N for various values of λ =
0.13, 0.20, 0.32, 0.50, all of which are prolate (cigar) geome-
tries. Also plotted is a linear function ansatz in Eq. (28) (gray
dashed line), for comparison with data from DSMC simula-
tions (blue data). Error bars on the DSMC data points denote
standard fit uncertainties.

extent of its thermal cloud. Collisional thermalization is
then a local and rapid process, for which collective dy-
namics becomes likened to that of a fluid. In this work,
we have studied the damping and oscillations of hydro-
dynamic welter in harmonically confined dipolar gases,
with cross-dimensional rethermalization experiments.
Unlike its dilute counterpart, a hydrodynamic dipolar

gas has its distribution width (second moment) dynamics
closely follow the symmetries imposed by the confining
potential. This adherence to the extrinsic trap symmetry
arises from a high frequency of collisions, suppressing the
intrinsic dipolar properties from manifesting on macro-
scopic scales. But since local thermal equilibration is
not truly instantaneous, dipolar collisions still result in
anisotropic viscous shearing between fluid layers, damp-
ing the macroscopic fluid welter. We have constructed
a model to describe such damped weltering dynamics,
presented in Eq. (16). Embedded in this model is a
semi-empirical quantity Vhy, which quantifies the hydro-
dynamic extent of the trapped gas and its consequence
to damping. Through use of numerical experiments, we
obtain a functional form for Vhy in Eq. (29), expected to
work in the range of λ, N and Θ explored here.
Larger Knudsen numbers and trap anisotropies will in-

crease the dilute fraction, requiring more nuanced treat-
ments of the non-hydrodynamic regions. Moreover, the
approximation made in Sec. IV of threshold dipolar scat-
tering, may not be adequate in hydrodynamic samples of
polar molecular gases. Threshold scattering requires that
the collision energies relative to the dipole energy are suf-
ficiently low [61], but there be high enough collision rates
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FIG. 9. Plot of η vs Θ from a cross-dimensional rethermal-
ization experiment. The data points (points with error bars)
are obtained from DSMC simulations, which is compared to
the fitting function (dashed curves) in Eq. (28). The data is
obtained with the parameters in Tab. I and λ = 0.2, for 3
values of N = 4 × 105 (black data, Kn ≈ 0.06), N = 3 × 105

(gray data, Kn ≈ 0.07) and N = 2 × 105 (light gray data,
Kn ≈ 0.11)

to remain hydrodynamic, as is detailed in App. B. This
raises issues for Bose gases within the presented formal-
ism, since lowering the temperature to achieve threshold
scattering would result in a significant condensate frac-
tion. On the other hand, Fermi gases below TF still have
collective excitations well described by classical kinetic
theories, if Pauli blocking effects are included [47]. Lastly,
dipolar mean-field effects have been ignored, thermal en-
ergies being much larger than the average dipolar mean-
field energy per particle [14]. All these considerations,
albeit important to current molecular ultracold experi-
ments, are not within the current scope of this work and
will be considered in future investigations.
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Appendix A: Averaging out spatial coordinates

To obtain the spatially averaged equations of motion
in Sec. IVA, we start by defining a notation for spatially

averaged quantities:

⟨. . .⟩ = 1

N

∫
n(r, t) (. . .) d3r. (A1)

This renders the density averaged equation for σi(t) as

⟨r2i T ⟩
σ2
i (t)

− ⟨ri∂iT ⟩ =
m

kB

(
σ̈i(t)

σi(t)
+ ω2

i

)
⟨r2i ⟩

−
∑
j,k,ℓ

σ̇k

σℓ
δk,ℓ

∫
d3r

NkB
ri∂jµijkℓ(T )

=
m

kB

(
σ̈i(t)

σi(t)
+ ω2

i

)
σ2
i (t) (A2)

−
∑
j,k,ℓ

σ̇k

σℓ

∫
d3r

NkB
ri∂jµijkℓ(T )δk,ℓ.

As for the temperature balance equation:

∂T (r, t)

∂t
+
∑
i

Ui∂iT (r, t) +
2

3

∑
i

∂iUiT (r, t)

=
2

3n(r, t)kB

∑
i,j,k,ℓ

(∂jUi)(∂ℓUk)µijkℓ(T )

+
2

3n(r, t)kB

∑
i,j

∂i [κij∂jT (r, t)] , (A3)

we first note the relation

d⟨T ⟩
dt

=

∫
d3r

N

[
n(r, t)

∂T (r, t)

∂t
+ T (r, t)

∂n(r, t)

∂t

]
=

〈
∂T

∂t

〉
+
∑
i

σ̇i(t)

σi(t)

(
⟨r2i T ⟩
σ2
i (t)

− ⟨T ⟩
)
, (A4)

where we utilized the continuity equation. Then mul-
tiplying the temperature balance equation by n(r, t)/N
and integrating over d3r gives

d⟨T ⟩
dt

+
5

3

∑
i

σ̇i(t)

σi(t)
⟨T ⟩ −

∑
i

σ̇i(t)

σi(t)

(
⟨r2i T ⟩
σ2
i (t)

− ⟨ri∂iT ⟩
)

=
2

3NkB

∑
i,j,k,ℓ

σ̇i(t)

σi(t)
δi,j

(∫
d3rµijkℓ

)
δk,ℓ

σ̇ℓ(t)

σℓ(t)

+
2

3NkB

∑
i,j

∫
d3r [∂i(κij∂jT )] . (A5)

Combining equations (A2) and (A5), we get

d⟨T ⟩
dt

+
5

3

∑
i

σ̇i(t)

σi(t)
⟨T ⟩

− m

kB

∑
i

σ̇i(t)
[
σ̈i(t) + ω2

i σi(t)
]

≈ 2

3NkB

∑
i,j,k,ℓ

σ̇i(t)

σi(t)
δi,j

(∫
d3rµijkℓ

)
δk,ℓ

σ̇ℓ(t)

σℓ(t)
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− 1

NkB

∑
i,j,k,ℓ

σ̇i(t)

σi(t)

(∫
d3rri∂jµijkℓ

)
δk,ℓ

σ̇k

σℓ

+
2

3NkB

∑
i,j

∫
d3r [∂i(κij∂jT )] . (A6)

At this point, conservation of energy has that

Etotal =
m

2

∑
i

(
ω2
i ⟨r2i ⟩+

∫
d3rd3v

N
f(r,v, t)v2i

)
=

m

2

∑
i

(
ω2
i σ

2
i +

∫
d3rd3v

N
f(r,v, t)v2i

)
, (A7)

where Etotal is the total energy of the hydrodynamic sys-
tem. Therefore, the relation above along with Eqs. (7)
and (14) motivates the form for ⟨T ⟩ as

⟨T ⟩ = 2Etotal

3kB
− m

3kB

∑
i

[
ω2
i σ

2
i (t) + σ̇2

i (t)
]
, (A8)

and its time-derivative

d⟨T ⟩
dt

= − 2m

3kB

∑
i

[
ω2
i σ̇i(t)σi(t) + σ̈i(t)σ̇i(t)

]
. (A9)

Plugging these relations into Eq. (A6) and assuming each
axis can be solved independently, we obtain

σ̇i(t)
[
σ̈i(t) + ω2

i σi(t)
]

+
σ̇i(t)

σi(t)

1
3

∑
j

(
ω2
jσ

2
j (t) + σ̇2

j (t)
)
− 2Etotal

3m


≈ 3

5Nm

∑
j,k,ℓ

σ̇i(t)

σi(t)

(∫
d3rri∂jµijkℓ

)
δk,ℓ

σ̇k

σℓ

− 2

5Nm

∑
j,k,ℓ

σ̇i(t)

σi(t)
δi,j

(∫
d3rµijkℓ

)
δk,ℓ

σ̇ℓ(t)

σℓ(t)

− 2

5Nm

∑
j

∫
d3r [∂i(κij∂jT )] . (A10)

Finally, the conserved total energy Etotal, is made up
of the potential energy and thermal equilibrium temper-
ature T0:

Etotal =
3

2
kBT0 +

m

2

∑
i

ω2
i σ

2
0,i = 3kBT0, (A11)

where we utilized that σ0,i =
√
kBT0/mω2

i .

Appendix B: Considerations for threshold
scattering

The analytic results obtained for the viscosities in
Sec. IVA are applicable for close to threshold dipolar
scattering, which is energy independent [16]. However

this assumption is only appropriate when the collision
energy is much smaller than the characteristic dipole en-
ergy Edd = 16π2ϵ20ℏ6/m3d4, where d is the electric dipole
moment [61]. At the same time, the transport coefficients
are derived with classical kinetic theory that assumes a
nondegenerate sample. Implicit in this formulation is,
therefore, that the gas temperature remains well above
the Fermi temperature TF = ℏω(6N)1/3/kB [45]. The
applicability of our current theory requires that temper-
ature lies in the range TF < T ≪ Edd/kB .
Furthermore, the derivation above relies on the gas

being hydrodynamic, as is characterized by the Knudsen
number Kn. The requirements to remain in the regime
of validity as formulated in Sec. IVA are summarized as

ℏ2

4ma2d
≫ kBT > ℏω(6N)1/3, (B1a)

N ≫ 15
√
π

4

kBT

mω2a2d
, (B1b)

which is only ever possible if ad/aHO ≪ 0.04, where ad =

md2/(8πϵ0ℏ2) is the dipole length and aHO =
√

ℏ/(mω)
is the harmonic oscillator length. In heteronuclear alkali
dimers, these microwave shielded molecules with d ∼ 1
D and m ∼ 50 amu have dipole lengths on the order of
ad ∼ 5000a0 to 10, 000a0, in units of Bohr radius a0. The
necessary trap frequencies to permit threshold scattering
above TF would thus need to be of order ω ≪ 10 Hz,
which is very weak compared to typical ultracold exper-
iments.
For the parameters in Tab. I, we find that kBT/Edd ≈

28, implying a more accurate cross section would be that
obtained from the semi-classical Eikonal approximation
[61–63]. We opt to proceed with the effective cross section
obtained with threshold energy scattering as it still serves
to illustrates the effectiveness of our theory, which can be
extended to other cross sections.

Appendix C: A simple functional form for the
hydrodynamic volume

From Fig. 8, we saw that η is mostly independent of
λ, which leaves us with η = η(N,Θ). Then assuming
that η is separable in its 2 arguments, this allows us to
write η(N,Θ) = ηN (N)ηΘ(Θ). Within the range of N we
explore, we could Taylor expand ηN around a number of
molecules that is sure to be hydrodynamic N0, so that

η(N,Θ) ≈

(
ηN (N0) + (N −N0)

∂ηN
∂N

∣∣∣∣
N0

)
ηΘ(Θ).

(C1)

Then also assuming that the dependence of ηΘ on Θ
purely arises through σcoll(Θ) (i.e. ηΘ = ηΘ(σcoll)), we
then treat ξ = σcoll/σcoll as a small parameters and Tay-
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lor expand ηΘ to give

η(N,Θ) ≈ a+ b

(
N

105

)[
1 + c

(
σcoll(Θ)

σcoll

)]
, (C2)

as in Eq. (28), where

a = ηΘ(0)

(
ηN (N0)−N0

∂ηN
∂N

∣∣∣∣
N0

)
, (C3a)

b = 105 × ηΘ(0)
∂ηN
∂N

∣∣∣∣
N0

, (C3b)

c =
1

ηΘ(0)

∂ηΘ
∂ξ

∣∣∣∣
ξ=0

, (C3c)

having used the notation ηΘ(0) = ηΘ(ξ = 0).
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