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We have completed a new precision measurement of the electron’s electric dipole moment using
trapped HfF+ in rotating bias fields. We report on the accuracy evaluation of this measurement,
describing the mechanisms behind our systematic shifts. Our systematic uncertainty is reduced by
a factor of 30 compared to the first generation of this measurement [1]. Our combined statistical
and systematic accuracy is improved by a factor of 2 relative to any previous measurement [2].

I. INTRODUCTION

Symmetries are fundamental in physics and explor-
ing them has been vital to revealing much of what
we understand about nature today [3, 4]. In 1967,
Sakharov showed that violation of combined charge and
parity (CP) symmetry is required to explain the observed
baryon asymmetry of the universe—an imbalance be-
tween the amount of matter and anti-matter [5]. CP
symmetry is not a good symmetry of nature but is only
confirmed to be violated in the weak sector of the Stan-
dard Model [6]. Explaining the baryon asymmetry re-
quires new physics with additional sources of CP viola-
tion and many extensions to the Standard Model have
been proposed [7].

Electric dipole moments of fundamental particles such
as the electron violate time-reversal (T) symmetry, equiv-
alent to CP-violation assuming CPT invariance. The
Standard Model predicts an electron electric dipole mo-
ment (eEDM) which is well below current experimental
sensitivity [8, 9]. However many proposed extensions pre-
dict eEDMs which are several orders of magnitude larger,
bringing its observation within experimental reach. Mea-
surements of the eEDM thus constitute sensitive probes
for physics beyond the Standard Model [10].

We recently completed the most precise measurement
yet of the eEDM. This paper is intended to accompany
the result paper [11] and explains the details of our ex-
perimental procedure and analysis. Section II describes
our apparatus and experimental sequence, Section III the
protocol used for data analysis, and Section IV details
the effective Hamiltonian we use to model the results. In
Sections V–VIII we report the measures we have taken to
identify, characterize and mitigate sources of systematic
error.
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Institute of Technology, Haifa 3200003, Israel

II. EXPERIMENT

Our experiment uses HfF+ ions, confined in an ion
trap and prepared in the metastable 3∆1 state. Relevant
molecular properties are given in Table I. In the 3∆1

state, one of the valence electrons is subject to a large
intramolecular effective electric field Eeff = 23GV cm−1

[19], along the internuclear axis of the molecule. We ori-
ent this molecular axis in the lab frame by applying an
external electric field which rotates to maintain confine-
ment of the ions. We then prepare the electron spin of
the molecule in a coherent superposition of states, cor-
responding to the spin of the eEDM-sensitive electron
oriented either parallel or antiparallel to Eeff , and mea-
sure the energy difference between them using Ramsey
spectroscopy. The eEDM will give a contribution to this
energy proportional to deEeff . To reject other unwanted
contributions, we perform this measurement simultane-
ously on two spatially overlapping clouds of ions with
their molecular axes aligned and anti-aligned with the
externally applied field. The difference between the mea-
sured energies in each case is our science signal.

This section describes the apparatus and each of the
steps used in state preparation and measurement of the
ions. A summary of typical experimental parameters is
given in Table II.

A. Lasers

The experiment uses a total of 9 lasers; 5 pulsed
lasers used for ablation, ionization, and photodissocia-
tion, and 4 CW lasers—which we denote L961

trans, L818
vc ,

L1082
op , L814

depl—used for state-preparation and readout. A
summary is given in Table III and Fig. 2, and each is de-
scribed in detail in the following sections. All lasers are
locked to wavemeters using simple, ∼ 1Hz servo loops.
The CW lasers are locked to within ∼ ±30MHz, and the
pulsed lasers to ∼ ±500MHz.



2

FIG. 1. Schematic of experimental apparatus. On the left is the source chamber, where we produce neutral molecules. On the
right is the main experimental chamber, containing the ion trap. The two chambers are connected by a differential pumping
chamber with two small apertures at either end. The endcap electrodes of the ion trap have a hole in the center to allow optical
access along the z direction (vertical in the lab). Inset shows fields applied during experimental sequence: the rotating electric

bias field E⃗rot, and the quadrupole magnetic field B⃗0. The molecular axis of each of the ions is either aligned or anti-aligned
with E⃗rot.

TABLE I. Spectroscopic constants for 3∆1 state of HfF+ used throughout this document.

Constant Value Description Reference

Be/h 8.983(1)GHz Rotational constant [12]

A∥/h −62.0(2)MHz Hyperfine constant [1]

dmf/h 1.97(1)MHzV−1 cm Molecule-frame electric dipole moment [13, 14]

ωef/(2π) 0.74(4)MHz Ω-doubling constant [12]

gN 5.257 74(2) Nuclear magnetic g-factor of 19F [15]

G∥ −0.0122(3) Effective electronic g-factora [13]

gF −0.0031(1) F = 3/2 state g-factor [13]

|Eeff |/h 5.5× 1024 Hz e−1 cm−1 Effective electric field [17, 18]

aThe effective electronic g-factor given here is inferred from the measured gF , G∥ ≡ 3gF − gNµN/µB, and suited to calculations

including only states in 3∆1. A slightly smaller G∥ must be used when considering the effects of interactions with other electronic states
[14, 16].

B. Molecular beam and ionization

Our experiment begins with a pulsed beam of neutral
molecules. We use a pulsed Nd:YAG laser to ablate a
solid Hf rod into a pulsed supersonic expansion of Ar,
seeded with 1% SF6. Chemical reactions between the Hf
plasma and the SF6 produce neutral HfF which are en-
trained in the supersonic expansion and rovibrationally
cooled by collisions with the Ar atoms to a tempera-
ture of ∼ 10K. When they arrive in our main chamber,
∼ 50 cm away, a pair of pulsed UV lasers at 309 nm and
368 nm excite a two-photon transition to a Rydberg state

54 cm−1 above the ionization threshold, from which they
autoionize [13, 20]. The molecular ions are created in the
first few rotational levels of 1Σ+(v = 0), the electronic
and vibrational ground state of the molecule. The ions
are stopped at the center of our RF ion trap by pulsed
voltages on the radial trap electrodes, after which the
confining potentials are immediately turned on. We typ-
ically trap ∼ 2× 104 HfF+ ions with a lifetime∗ of ∼ 5 s.

∗We note that the trap lifetime is limited by slow heating of
the ions and is strongly dependent on the trapping parameters.
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TABLE II. Example experimental parameters and associated derived parameters from our 2022 data.

Parameter Value Description

Erot 58V cm−1 Magnitude of rotating electric field during free evolution

Eπ/2
rot 7V cm−1 Magnitude of rotating electric field during π/2 pulses

ωrot 2π × 375 kHz Angular frequency of Erot
Brot 10mG (typ.) Effective rotating magnetic field

Brev
2,0 200mGcm−1 (typ.) Applied magnetic quadrupole gradient

rrot 0.5mm Radius of ion circular motion
δgF
gF

−0.002 146(2) Stark doublet-odd magnetic g-factor ratio (see Figure 6)

∆0 ∼ 1Hz Rotation induced mF coupling

∆D ∼ −0.6Hz Doublet-odd correction to ∆

VRF 23.5V RF radial confinement voltage during free evolution

ERF 0.5V cm−1 RF electric field amplitude at typical ion during free evolution

ωRF 2π × 50 kHz Radial-confinement RF frequency

VDC 3.7V DC axial confinement voltage during free evolution

EDC 10mV cm−1 DC axial confinement electric field at typical ion

ωx 2π × 0.95 kHz x secular frequency during free evolution

ωy 2π × 1.51 kHz y secular frequency during free evolution

ωz 2π × 1.60 kHz z secular frequency during free evolution

TABLE III. Photons used in our experimental sequence. All lasers address v = 0 state of ground and excited levels, except
L818

vc which addresses v = 1. L961
trans and L818

vc propagate along the trap z axis, all other lasers propagate in the x-y plane.

Name Symbol Transition Power/Energy λ (nm) Polarization Pulse Width

Ablation – 10mJ 532 linear 10 ns

Photoionization 1 Ω = 3/2← X2∆3/2 30µJ 309.388 linear 10 ns

Photoionization 2 Rydberg ← Ω = 3/2 1.3mJ 367.732 linear 10 ns

Transfer L961
trans P (1) 3Π0+ ← X1Σ+ 600 mW 961.43495 linear CW

mF Pumping L1082
op P (1) 3Π0− ← 3∆1 21 mW 1082.4137 circular CW, strobed

mF Depletion L814
depl Q(1)3Σ−

0+
← 3∆1 550 mW 814.508 circular CW, strobed

Vibrational Cleanup L818
vc P (1)3Σ−

0+
← 3∆1 30 mW 818.37198 linear CW

Dissociation 1 Ω = 2← 3∆1 1.6 mJ 368.494 circular 10 ns

Dissociation 2 ?← Ω = 2 25 mJ 266 circular 10 ns

The trap is described in detail in the next section.

C. Ion trap

Our linear Paul trap has 8 radial electrodes and 2 end-
caps. The radial confinement is provided by driving the
radial electrodes in a quadrupole configuration producing

The 5 s here is for the very shallow trap used during the Ramsey
interrogation time.

a field,

E⃗RF(r⃗, t) =
VRF

R2
0

cos (ωRFt)(x⃗− y⃗), (1)

where ωRF = 2π × 50 kHz, VRF is the voltage applied
on each electrode, R0 ∼ 4.8 cm is the effective radius
the RF trap, and x⃗, y⃗ are the radial position coordinates
of the ions in the laboratory frame. Axial confinement
is provided by DC voltages VDC on a pair of endcaps,
producing a field

E⃗DC(r⃗, t) =
VDC

Z2
0

(x⃗+ y⃗ − 2z⃗), (2)
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where Z0 ∼ 17 cm is the effective height of the RF trap.
We choose the values of VRF and VDC immediately after
ionization to best match the spatial mode of the initial
ion cloud, giving trap frequencies ∼ 5 kHz in all direc-
tions. We then linearly ramp the trapping voltages down
over 10ms to expand and cool the ion cloud. The ramp
takes the trap frequencies to ∼ 2.8 kHz and ∼ 2.0 kHz in
the radial and axial directions respectively.

In addition to the confinement fields, we also apply a

rotating electric field E⃗rot,

E⃗rot(t) = Erot
[
x̂ cos (ωrott) + R̃ŷ sin (ωrott)

]
, (3)

where ωrot = 2π × 375 kHz, R̃ = ±1 indicates the rota-

tion direction and Erot = |E⃗rot| is typically ∼ 58V cm−1.
This field serves to orientate the molecular axis, and thus
the effective electric field, of the ions and we do our spec-

troscopy in this rotating frame. E⃗rot causes an additional
micromotion of the ions,

− e

mω2
rot

E⃗rot = −rrotÊrot, (4)

where rrot ∼ 0.5mm. The shape of the radial electrodes

is optimized to minimize inhomogeneities in E⃗rot across
the ion cloud [21].

D. Magnetic fields

Measuring the electron EDM also requires orienting
the electron spin of the molecules which we do with an

applied magnetic field B⃗0. In order for the unpaired elec-
trons to experience a time-averaged interaction with the
intramolecular effective electric field, this magnetic field

must corotate with E⃗rot. We achieve this using a pair
of coils in anti-helmholtz configuration aligned along the
axial direction, giving

B⃗0 = B̃Brev2,0 (2z⃗ − x⃗− y⃗). (5)

Here Brev2,0 is typically ∼ 200mGcm−1 and B̃ = ±1 indi-
cates the direction of the current in the coils, explained
in more detail in Sec. II I. In the rotating and co-moving
frame of the ions, this quadrupole magnetic field appears
as a time-averaged magnetic bias,

B̃Brot = ⟨B⃗0 · E⃗rot⟩ = B̃Brev2,0 rrot. (6)

The coil pair is driven by a precision current source with
1 pA resolution, corresponding to 200 fG cm−1. We refer

to the pair of coils that produces this field as the B⃗0-coils.
The apparatus also includes three pairs of coils setup

along the lab frame x̂, ŷ, ẑ axes in Helmholtz configura-
tion for tuning the magnetic field at the position of the
ions. The z coil is driven by the second channel of the

precision current supply used for the B⃗0-coils, the x and y
coils are driven by a lower precision current supply. The

FIG. 2. Cartoon depicting the transitions used during our
state preparation. The 3Π0+ and 3Π0− states decay prefer-
entially to 3∆1, while the 3Σ−

0 state decays preferentially to
1Σ+.

magnetic field around the periphery of the trap is mea-
sured by an array of eight, 3-axis fluxgate magnetometers
bolted to the outside of the main experimental chamber.
We use these measurements to infer the magnetic field
at the center of the trap. In contrast to other modern
eEDM experiments [2, 22, 23], the apparatus includes no
magnetic shielding as we are principally only sensitive to
magnetic fields rotating at ωrot, as discussed in detail in
Sec. VIA.

E. State preparation

Immediately after ionization, the HfF+ ions are in the
ground electronic and vibrational state (1Σ+(v = 0)),
primarily distributed over the lowest 4 rotational levels
J = 0–3. We connect these rotational levels using mi-
crowaves and perform incoherent transfer to the eEDM-
sensitive 3∆1(v = 0, J = 1) science state by using light
from L961

trans to drive the 3Π0+(J = 0) ← 1Σ+ transition,
the excited state of which decays preferentially to 3∆1.
This light enters the chamber along the z-axis and is on
for 80ms beginning immediately after ionization. The
decay from 3Π0+ puts population in several vibrational
levels in 3∆1, which can decay into the v = 0 science state
if left untreated. We remove the population in higher vi-
brational levels by illuminating the cloud with L818

vc light
which connects 3Σ−

0+(v = 1, J = 0)← 3∆1(v = 1, J = 1)

at ∼ 818 nm, preferentially decaying back to 1Σ+. The
L818
vc laser also enters the chamber along the z axis and

remains on for the duration of the experiment. Poten-
tial systematics associated with this light are discussed
in Sec. VIB 2.
After transferring the ions to the science state, we

ramp on E⃗rot in 5ms. Figure 3 shows the structure of
the science state at Erot = 58V cm−1. In this field,
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the stretched states of 3∆1(J = 1, F = 3/2) correspond
to the molecule aligned or anti-aligned with the field.
They form two pairs of levels—which we call the up-
per and lower doublet, highlighted in orange and blue
respectively—with their molecular dipole, and thus Eeff ,
either aligned or anti-aligned with Erot. Each doublet
consists of one state with mF = 3/2 and one with
mF = −3/2.

We polarize the molecules in the rotating frame by op-
tically pumping them using L1082

op light addressing the
3Π0−(v = 0, J = 0) ← 3∆1(v = 0, J = 1) at 1082 nm.
The light is circularly polarized with its k-vector in the

plane of E⃗rot. We use an AOM to strobe L1082
op syn-

chronously with the rotation of E⃗rot on a 50% duty cy-
cle† such that it drives either σ+ or σ− transitions to
an F ′ = 3/2 manifold in the excited state. This even-
tually leaves population only in either the mF = 3/2 or
mF = −3/2 states of 3∆1(v = 0, J = 1). We define
the preparation phase of the experiment as the orienta-

tion of E⃗rot relative to the k-vector of the light when the

light is on; in when E⃗rot is parallel, and anti when it is
anti-parallel. This preparation phase can be changed by
adjusting the timing of the strobing cycle. L1082

op is on for
a total of 80ms, starting 40ms after trapping.

The final step of state preparation is applying L814
depl

light at 814 nm. This laser is tuned to address the
3Σ−

0+(v = 0, J = 0) ← 3∆1(v = 0, J = 1), which pref-

erentially decays to 1Σ+ by a 10:1 ratio, having weaker
coupling to the 3∆1 state. L814

depl is circularly polarized

with the same handedness and k-vector as L1082
op . It is

again strobed so as to only address and remove any resid-
ual population left over in other mF states after L1082

op is

turned off. L814
depl light is on for 7ms, beginning 3ms after

L1082
op is turned off.
These steps leave the population in an incoherent mix-

ture of one of the stretched states of the two doublets.
The key difference from our previous measurement [1] is
that the experiment proceeds on both doublets simultane-
ously. Our detection scheme [24], described in Sec. IIG,
allows us to read out each independently, enabling us to
take advantage of common-mode noise cancellation.

F. Ramsey sequence

Immediately prior to the Ramsey sequence, we ramp
the radial confinement of the ions down further, to trap
frequencies of ∼ 1 kHz. This reduces the density of the
cloud and improves the coherence time due to mecha-
nisms discussed in Sec. VID 1.

We apply a π/2 pulse to the ensemble of ions by

temporarily ramping down the magnitude of E⃗rot from

†We note that, although the light is on for 50% of each cycle,
the micromotion-induced Doppler shifts mean it is only resonant
with the ions for less than 5%.

FIG. 3. Ramsey spectroscopy in HfF+. Top: level struc-
ture of the eEDM-sensitive 3∆1(v = 0, J = 1) manifold in
external electric Erot ∼ 58V cm−1. Solid (dashed) lines cor-
respond to states with Ω = +1(−1). Gray lines correspond
to states which asymptote to F = 1/2 at zero field, all other
states asymptote to F = 3/2. The upper (orange) and lower
(blue) doublets used for the measurement, corresponding to
Eeff aligned and anti-aligned with the externally applied field
respectively, are separated by ∼ 100MHz. The two states
in each doublet are further split by the Zeeman energy, not
resolvable on this scale, and interaction of the eEDM with
Eeff . Bottom: example Ramsey fringes from our dataset. The
fringes from the two doublets are collected simultaneously.

∼ 58V cm−1 to ∼ 7V cm−1 in 16 µs, holding it there for
1ms and then ramping back up in a further 16µs. Re-
ducing Erot increases a rotation-induced coupling between
mF = ±3/2 states in a doublet (see Sec. IV), causing the
pure spin states in each doublet to evolve into a coherent
superposition. We allow this superposition to evolve for
a variable amount of time tR—up to 3 s—and then apply
a second π/2 pulse to map the relative phase onto a pop-
ulation difference between the two states in a doublet.

G. Measurement

We project the ions into their final state by apply-
ing L814

depl again to remove population from one of the
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stretched states in each doublet. The readout phase is
defined in the same way as the preparation phase; in for

E⃗rot is parallel with the k-vector of the light when it is
on and anti for antiparallel.
Finally, we detect and count the number of ions in the

remaining stretched states via resonance-enhanced multi-
photon dissociation [25], driven by two pulsed UV lasers
at 368 nm and 266 nm. Immediately prior to the dissocia-
tion pulse, we ramp up both radial and axial confinement
to compress the cloud and improve the dissociation effi-

ciency. The dissociation pulse is timed so that E⃗rot is
along Ĩ ŷ, parallel to the plane of a microchannel plate
(MCP) and phosphor screen assembly. Here Ĩ = ±1 and
ŷ is defined by Fig. 1. Because the dissociation lasers
enter at an angle to ŷ, there is considerable Doppler shift
from the micromotion of the ions at 45◦ to the k-vector of
the light. To account for this we adjust the frequency of
the 368 nm light by ∼ ±2GHz depending on the product
R̃Ĩ which gives the sign of the Doppler shift.

Each of the lasers is circularly polarized to drive tran-
sitions which preserve the orientation of the molecules
during dissociation [21]. In this way the resultant Hf+

ions from each doublet are ejected in opposite directions.
The handedness of the dissociation lasers P̃ is determined
by a λ/2 waveplate which can be moved into or out of
the beam path on a motorized mount. Immediately after
dissociation, we turn off the RF confinement and apply
pulsed voltage on the radial electrodes to kick the ions
towards the MCP. The Hf+ ions from each doublet are
imaged on opposite sides of the phosphor screen; the side
each doublet is imaged on is set by the value of Ĩ. We
time-gate the phosphor screen such that we only image
the dissociated Hf+ and not any remaining HfF+ ions.
We detect both Hf+ and HfF+ ions in time of flight.
Technical details of our imaging and counting system are
described in [26] and [24].

Of the ∼ 2×104 trapped HfF+ ions, we typically detect
∼ 550 Hf+ ions on each side of the screen at early time
(∼ 1100 total), and ∼ 120 (∼ 240 total) after tR ∼ 3 s.
The latter is principally limited by the finite lifetime of
the 3∆1 state but with a contribution from ions being
heated out of our shallow trapping potential during tR.

H. Noise

Instability of the intensity of the pulsed lasers used for
ablation, ionization and photo-dissociation means that
the fluctuations in the number of Hf+ ions detected at
the end of each shot are ∼ 30%, roughly 3× the quan-
tum projection noise limit for 120 ions. However these
sources of noise, and many others, are common mode;
the exact same laser pulses address the ions which end
up in the upper and lower doublets. If we measure the ion
number when the Ramsey oscillations of the two doublets
are close to in phase with one another then we can take
advantage of excellent noise cancellation in the number
difference [24] which we use to extract our science sig-

nal (see Sec III). The two doublets oscillate at slightly
different frequencies owing to a part in 230 difference in
their magnetic moments and so we deliberately take our
data at a beat ; our early-time data is taken when the
two doublets are in phase‡ and our late-time data ∼ 230
oscillations later when they come back into phase again.
The time of the second beat can be controlled by varying

the oscillation frequency via the B⃗0-coils. In our final
dataset, the noise in the science signal is roughly 30%
above the shot noise limit.

I. Experimental protocol and switch states

In each shot of the experiment we can choose the
preparation phase to be either in or anti. For a given

choice of Ĩ, the direction of E⃗rot at the moment of disso-
ciation, and P̃ , the handedness of the dissociation laser
polarization, the readout phase is constrained by the need
to drive stretched-to-stretched transitions which preserve
molecule orientation. We label each shot of the experi-
ment with each of these phases. For example in-anti
labels a shot where the cleanup (and optical pumping)

laser are parallel to E⃗rot during state preparation but
anti-parallel during readout.
To record a Ramsey fringe, we repeat our measurement

at different free evolution times. For a given fringe, the
phase of readout is kept fixed. At each Ramsey time, we
take an even number of shots with each pair consisting of
one shot with each phase of state preparation. This set
of shots is called a point and a Ramsey fringe consists of
8 of these points taken at different tR; we take 4 points
at early Ramsey time, and 4 points at late Ramsey time,
each consisting of two points on the sides of fringes and
one point each on the top and bottom as shown in Fig. 3.
The points on the sides of the fringes consist of 20 shots
each, while the points on top and bottom consist of 8
shots each.
We record our data in ‘blocks’. Each block is con-

structed from a set of 23 = 8 fringes recorded in each
possible combination of 3 experimental switches. Each
switch corresponds to an experimental parameter whose
sign can be reversed: B̃ the direction of the current in

the B⃗0-coils, R̃ the direction of rotation of E⃗rot, and Ĩ

the direction of E⃗rot relative to the y axis at the time of
dissociation, corresponding to which side of the phosphor
screen each of the doublets are imaged onto. Note that
in our implementation of the Ĩ switch, the direction of

E⃗rot is reversed at all points in time so that the opposite
switch is prepared and read out. A fourth experimen-
tal switch, P̃ the polarization of the dissociation light, is
alternated every block.

‡Due to the finite length of the π/2 pulses, the doublets are
already slightly out of phase at the earliest Ramsey times accessi-
ble to us. Systematic effects associated with this imperfection are
discussed in Sec VII.
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We refer to each experimental configuration with
{B̃, R̃, Ĩ, P̃} = ±1 as a switch state. In each block, the
first Ramsey time is recorded for all switch states before
moving onto the second Ramsey time for each switch
state etc. The order of the switch states at each point
is {B̃, R̃, Ĩ} ={1,1,1}, {-1,1,1}, {1,-1,1}, {-1,-1,1}, {1,1,-
1}, {-1,1,-1}, {1,-1,-1}, {-1,-1,-1}. Every other block, the
order of switch states is reversed. In each switch state,
we simultaneously collect data for molecules in each dou-
blets, corresponding to orientation of the molecular axis
with respect to the applied electric field which we rep-
resent by another switch D̃ = ±1. The Ramsey times
for each switch state are adjusted independently based
on the data from the previous block to ensure that the
20-shot points are as close as possible to both the sides
of the fringes, where our sensitivity is highest, and to
the beat, where our noise cancellation is best and where
various systematic shifts are minimized.

For the eEDM dataset, we collected 1370 blocks or ∼
600 hours of data over a ∼ 2 month period of April–June
2022. During the data run, we took data with 3 different
values of the Brev2,0 , corresponding to fringe frequencies
of ∼ 75, 105 and 151Hz. About halfway through the
dataset, we rotated the waveplates of L1082

op , L814
depl and

the dissociation lasers to reverse the handedness of the
light from each.

J. Images to determine doublet positions

To determine where the dissociated Hf+ ions from each
doublet fall on the phosphor screen in each switch state,
we take a series of images with no Ramsey sequence.
For these images we prepare the stretched states as de-
scribed in Sec. VIIA but apply no π/2 pulses before re-
moving the population in one of the doublets using low-
power L814

depl light, tuned to resonance with the doublet
to be depleted, and propagating along the z direction
to avoid micromotion-induced Doppler shifts. We take 3
types of image per switch state: one where we deplete
the lower Stark doublet, one where we deplete the upper
Stark doublet, and one where the laser is tuned between
the doublets to deplete both symmetrically. We use these
three images to determine the center line between the two
blobs for each switch state as described in Sec. IIIA. We
repeated this imaging routine roughly every 10 blocks
during the dataset to protect against alignment drifts.
Potential effects of a systematic error in the determina-
tion of the center line are discussed in Sec. VIIB 2.

III. DATA ANALYSIS

A. Ion counting and asymmetry

Our experimental signal is dissociated Hf+ ions read
out via phosphorescence on an imaging microchannel
plate (MCP). The images are processed asynchronously

FIG. 4. Example ion-detection data for a single shot of the
experiment. Swatch (solid lines), from which ion counts are
discarded, is defined by region ±45 pixels from center line
(dashed line). Ions assigned to the upper and lower doublets
are shown in orange and blue respectively.

and we save a file which contains the locations of each
bright spot which was determined to be an ion accord-
ing to our smoothing and noise-reducing processing algo-
rithm. The data from a tyical shot is shown in Fig 4. The
full eEDM dataset contains ∼ 108 ion detection events.
We use this same algorithm to analyze the test im-

ages described in Sec. II J and find a center line for each
switch state. We use this center line when analyzing
the Ramsey data to define a swatch which is a rectangu-
lar area, of fixed width, at the center of the image from
which ion counts are discarded, as shown in Fig. 4. We
do this because the doublets are not entirely separated
on the screen, so in this area we cannot be sure that we
will assign ions to the correct doublet. The extent to
which we are able to isolate the two doublets is given by
the imaging contrast CI. As the swatch width increases,
the imaging contrast improves but total ion number N
decreases as we throw out more ions. For the final anal-
ysis of the dataset, we used a swatch of 90 pixels—to be
compared with the total width covered by the detected
ions, about 900 pixels—which roughly maximizes CI

√
N ,

proportional to our sensitivity. Potential systematics as-
sociated with the swatch width and imaging contrast are
discussed in Sec. VIIB 1.
Once we have our center line for each switch state we

can properly count Hf+ ions in our Ramsey data images
and assign them to the correct doublet. For every image
(which corresponds to a single run of the experiment),
we end up with a number of ions in the upper doublet
Nu, and number of ions in the lower doublet N l.
For every switch state, we take data in both the in-in

and anti-in (or the anti-anti and in-anti) combinations of
preparation and readout phase. If the preparation and
readout phase are the same (i.e. in-in and anti-anti), then
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the fringe formed as we vary tR will have a π phase shift
from the fringe formed when they are different (anti-in
or in-anti). We will refer to in-in and anti-anti as “In”
and in-anti and anti-in as “Anti”. Now for each pair of
shots, we can form our spin asymmetry,

Au/l =
N

u/l
In −N

u/l
Anti

N
u/l
In +N

u/l
Anti

, (7)

where the subscript refers to the preparation and readout
phase combination. For each Ramsey time and switch
state we take n shots and so can form n/2 asymmetries
for each of the upper and lower doublet. From these n/2
asymmetries we construct a mean Am

u/l, and from their

scatter, a standard error on the mean δAu/l.
We then form two ‘meta’ asymmetries by taking the

difference (D) and sum (S) of the upper and lower asym-
metries,

AD = Au −Al,

AS = Au +Al,
(8)

with means Am
D ,Am

S and standard errors δAD, δAS. The
δAD are reduced compared to δAS (and δAu/l) due to
common-mode cancellation of many sources of noise.

B. Least squares fitting

As mentioned previously, we perform our Ramsey ex-
periment simultaneously on both doublets and use their
opposing orientations at the time of dissociation to read
them out on opposing sides on the imaging MCP screen.
Because the data are acquired simultaneously, the differ-
ence asymmetry allows us to cancel much of the common-
mode noise, leaving us with doublet-odd data with less

scatter than the raw data. Unfortunately, the doublets
are not fully separated on the screen, so we must be care-
ful with how we fit our data.
For an ideal Ramsey fringe, with no leakage from the

other doublet, we can define a functional form for the
asymmetry,

hu/l(tR) = Cu/le
−γu/ltR cos(2πfu/ltR + ϕu/l) +Ou/l. (9)

Here C is the initial fringe contrast, γ the contrast de-
cay rate, f the fringe frequency, tR the free evolution
time, ϕ the initial phase, O the offset, and the subscripts
indicate the upper or lower Stark doublet. In our fit-
ting routine, we initially fit each fringe separately to this
function. From the fit parameters we define the mean
and difference parameters as

αm =
αu + αl

2
,

αd =
αu − αl

2
,

(10)

with α ∈ {C, γ, f, ϕ,O}. Due to imperfect imaging con-
trast CI, in reality each doublet’s signal has a contribu-
tion from the other doublet. In this case, the measured
asymmetries are

Au = (
1 + CI

2
)hu + (

1− CI

2
)hl,

Al = (
1− CI

2
)hu + (

1 + CI

2
)hl.

(11)

Now our sum and difference asymmetries are

AS = hu + hl

AD = CI(hu − hl),
(12)

which we can express in terms of the mean and difference
fitting parameters,

AS = (Cm + Cd)e
−2γmtR cos(2π(fm + fd)tR + (ϕm + ϕd)) + (Om +Od)...

+ (Cm − Cd)e
−2γdtR cos(2π(fm − fd)tR + (ϕm − ϕd)) + (Om −Od),

AD = CI((Cm + Cd)e
−2γmtR cos(2π(fm + fd)tR + (ϕm + ϕd)) + (Om +Od)...

− (Cm − Cd)e
−2γdtR cos(2π(fm − fd)tR + (ϕm − ϕd))− (Om −Od)).

(13)

We use these two expressions to perform a simultaneous
least-squares fit for the sum and difference asymmetries
in each experimental switch state. The value of CI, the
imaging contrast, is fixed at 0.89 for this fit—determined
as described in Sec. VIIB 1. The parameter uncertainties
are extracted based solely on the standard errors of the
asymmetries used in the fits. The resultant uncertainties
on the fitted values of fd and ϕd are close to the shot
noise limit and much smaller than those on fm and ϕm

thanks to our simultaneous data collection and fitting

routine, which cancels most of the common-mode noise.
The outputs of these simultaneous fits are used for all
further analysis.

C. Switch-parity channels

After fitting to each Ramsey fringe in a block to extract
the 10 fitting parameters, we use the resulting 8 values of
each parameter to form 8 linear combinations which we
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call switch-parity channels. The switch-parity channels
for the mean and difference parameters αm and αd which
are odd under the product of switches [S̃aS̃b...] are given
by

αSaSb... =
1

8

∑
B̃,R̃,Ĩ=±1

[S̃aS̃b...]αm(B̃, R̃, Ĩ),

αDSaSb... =
1

8

∑
B̃,R̃,Ĩ=±1

[S̃aS̃b...]αd(B̃, R̃, Ĩ).

(14)

So for example, CDBRI is formed from adding together
the measured Cd in all switch states for which the prod-
uct B̃R̃Ĩ = 1, subtracting all switch states for which the
product B̃R̃Ĩ = −1 and dividing by the number of switch
states. fBR is formed by adding together the fm mea-
sured in all switch states for which the product B̃R̃ = 1,
subtracting the fm measured in all switch states for which
the product B̃R̃ = −1 and, again, dividing by the total
number of switch states. To avoid ambiguity, we label
parity channels for the mean parameters αm which are
even under all switches with superscript 0; e.g. f0 is the
mean of the fm measured in all switch states. We note
that, because the measured fu/l are defined as positive

quantities (see Sec. IV), the B̃ switch is anomalous in

that frequency contributions which change sign with B̃
appear in B̃-even channels while contributions which are
independent of the B̃ switch appear in B̃-odd channels.
In particular, the absolute sign of the contribution from
the eEDM, which appears in fDB , changes sign only with
D̃. All other parity channels allow us to to diagnose ex-
perimental issues and identify sources of systematic error.

D. Blinding

We blinded the dataset by programming the fitting
routine to add an unknown constant offset to the fDB

channel. This offset, drawn from a uniform distribution
with a width of 10mHz (∼ 9×10−28 e cm), was stored in
an encrypted file and not removed until all statistical and
systematic checks on the dataset had been completed,
and the uncertainties finalized.

E. Data cuts

After completing the dataset, we applied cuts to the
blinded data based on non-EDM channels indicating sig-
nal quality. Blocks with any individual fringe with late-
time contrast below Clate = 0.2 were cut due to low signal
to noise. By inspection of least-squares fits of individual
fringes, this cut served as a good proxy for pathological
fitting results. Blocks were also cut if they contained a
fringe with a fitted difference frequency fd in any switch
state which was more than 3.5σ different from the mean
fringe frequency for that switch state. The mean fringe
frequencies were calculated over all blocks not removed

FIG. 5. Change in fDB over whole dataset as a function
of cuts explained in text. (a) Late-time contrast cut. (b)
Individual fringe outlier cut. In each plot, only one cut is
applied. The error bars on fDB are corrected by a factor of√

χ2. Dashed lines indicate cuts used in final analysis.

by the late-time-contrast cut and which had the same

value of B⃗0. They were constructed from the linear com-
binations, including the blinded offset on fDB . This cut
helped remove blocks where an experiment malfunction,
e.g. laser unlocking, affected just one or two shots in a
fringe. If our data were perfectly normally distributed,
with no outliers, this would be expected to remove ∼ 5
blocks, and decrease χ2 by ∼ 0.7%. Figure 5 shows the
shift in the center value, and the error bar of the eEDM
channel, as a function of each of these two cuts. The first
cut removed 26 blocks and the second a further 15, leav-
ing 1329 blocks in the final dataset, with χ2 = 1.07(4)
for fDB . Our final 1σ statistical error of 22.8 µHz has

been relaxed by a factor
√
χ2 = 1.035.

IV. EFFECTIVE HAMILTONIAN FOR
DOUBLETS

To an excellent approximation, we can model the evo-
lution of either of the Stark doublets, shown in orange
and blue in Fig. 3, as a two-level system. The effective
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Hamiltonian for each pair can be parameterized

Heff =
h

2

(
f0 ∆

∆ −f0

)
. (15)

The diagonal components f0 contain all terms which di-
rectly shift the energies of the two states relative to one
another, whilst the off-diagonal components ∆ contain
all terms which mix the two states. We can expand both
f0 and ∆ in terms of their leading contributions,

f0 = B̃f0
0 + δF0, (16)

∆ = R̃∆0 + R̃D̃∆D + δD. (17)

Here the quantities with tildes are equal to ±1 and are
determined by the experimental switch state, discussed
in Sec. II I. The remaining parameters are defined in the
next two paragraphs.

The principal contribution to f0 is the Zeeman splitting
f0
0 = 3gFµBBrot ∼ 100Hz. The off-diagonal component
is dominated by two terms with similar magnitude, but
different switch state dependence; ∆0 and ∆D ∼ 1Hz
represent a slight mixing of the two mF = ±3/2 states
in each doublet and arise at fourth order in perturbation
theory in the full molecular Hamiltonian from the com-
bined perturbations of rotation and Ω-doubling, break-
ing the degeneracy of either Stark doublet at Brot = 0

[27, 28]. ∆0 and ∆D are given by

h∆0 =
3ℏωef

2

(
ℏωrot

dmfErot

)3
(
18A2

∥ − 19d2mfE2rot
A2

∥ − d2mfE2rot

)
,

h∆D =
3ℏωef

2

(
ℏ3ω3

rot

d2mfE2rotA∥

)(
9A2

∥ − 8d2mfE2rot
A2

∥ − d2mfE2rot

)
,

(18)

where the various constants are defined in Table I. These
expressions are valid as long as dmfErot ≫ ℏωef and
dmfErot ≫ ℏωrot or, in other words, if the molecule is
fully polarized. The strong scaling of ∆ with Erot allows
us to perform off-resonant π/2 pulses by modulating the
magnitude of Erot as described in Sec. II F.
The additional perturbations are given by

δF0(B̃, R̃, Ĩ, D̃) =
∑
S̃∈W

S̃δfs
0 , (19)

δD(B̃, R̃, Ĩ, D̃) =
∑
S̃∈W

S̃δ∆s, (20)

where both summations are overW, the set of all possible
products of {B̃, R̃, Ĩ D̃}, and the superscript s on the
δfs

0 and δ∆s denote the switch state dependence of the
perturbation relative to the largest term in each matrix
element, f0

0 and ∆0 respectively. For our purposes, the
most important perturbation is that due to the eEDM
which contributes a diagonal term, D̃δfDB

0 = 2D̃deEeff§.
Others which are important for our determination of de
are discussed in detail in Sec. VI.

For each experimental switch state (B̃, R̃, Ĩ), and dou-

blet D̃, we measure a frequency f(B̃, R̃, Ĩ, D̃) correspond-
ing to the energy difference between the two eigenstates,
which we define to be always positive. For typical experi-
mental parameters, f0

0 is roughly two orders of magnitude
larger than any other term in the Hamiltonian, and so we
can expand f about f0

0 ,

f(B̃, R̃, Ĩ, D̃) =
∣∣∣B̃f0

0 + δF0 +
(∆0)

2
+ (∆D)

2
+ 2D̃∆0∆D + 2R̃(∆0 + D̃∆D)δD + δD2

2B̃f0
0

− δF0
(∆0)

2
+ (∆D)

2
+ 2D̃∆0∆D + 2R̃(∆0 + D̃∆D)δD + δD2

2f0
0
2 + ...

∣∣∣
= |f0

0 |+ sgn(f0
0 )

[
B̃δF0 +

(∆0)
2
+ (∆D)

2
+ 2D̃∆0∆D + 2R̃(∆0 + D̃∆D)δD + δD2

2|f0
0 |

− B̃δF0
(∆0)

2
+ (∆D)

2
+ 2D̃∆0∆D + 2R̃(∆0 + D̃∆D)δD + δD2

2|f0
0 |2

+ ...

]
(21)

Note the factor of sgn(f0
0 ), equivalent to sgn(gF ), multi-

plying all but the first term in this expression. We have

§The factor of 2 in this expression arises because our defini-
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measured sgn(gF ) = −1 and, to avoid the need to litter
our expressions for systematics with such factors, assume
this from here on.

V. EVALUATION OF SYSTEMATIC
UNCERTAINTY

Accurate determination of the eEDM-induced energy
shift in HfF+ requires a careful evaluation of all signifi-
cant systematic shifts. There are several methods we em-
ploy to search for and understand systematics. The first
is to change experimental parameters in a controlled way
and look for shifts in the various switch parity channels.
To directly constrain shifts in fDB with this method,
at the level of our final statistical sensitivity and on a
timescale which is short compared to the full dataset,
one typically needs to change the parameter in question
by a factor of at least 10, more in cases where extreme
values of the parameter reduce the statistical sensitivity
of the experiment. In many cases, varying a parame-
ter by the required amount while maintaining the basic
function of the experiment is not possible. In these cir-
cumstances, we use other parity channels for insight into
the eEDM channel; many shifts that could cause system-
atics are greatly magnified in D̃-even channels. To search
for unforeseen sources of error, we varied a wide range of
parameters and studied their effect on all switch parity
channels. Any shifts in fDB or closely related channels
(e.g. differing from fDB by only one switch, or in chan-
nels with a known mechanism to talk to fDB), as well
as large unexplained shifts in any channel, were further
investigated until they were understood and a limit set
on their possible effect on our measurement result. Pa-
rameters varied in this process include (i) uniform mag-
netic fields, (ii) magnetic field gradients, (iii) polarization
of state-preparation lasers, (iv) polarization of dissocia-
tion lasers, (v) intensity of vibrational cleanup laser, (vi)
positions of ions in the trap, (vii) trapping frequencies,
(viii) π/2-pulse parameters, (ix) magnitude of Erot, and
(x) imperfections in Erot. Many of the systematic errors
presented in the following sections were discovered in this
way.

A second method we used is to break the data analy-
sis by making extreme assumptions during fitting. This
can be very precise since it can be performed on our
entire dataset before unblinding, and runs no risk of ac-
tually breaking the physical experiment. Section VIIB
contains several examples of this approach. Finally, we
performed detailed analytical calculations or simulations
to understand how experimental parameters might affect
our measurement when varied outside the range possible
using the apparatus.

tion for the frequency of each fringe corresponds to the full energy
difference between de aligned and anti-aligned with Eeff .

Our systematics themselves can be divided into 2 cat-
egories: shifts in the actual frequency of phase evolution
between the two states in a doublet, and shifts in the
phase at early or late free-evolution time. Frequency
shifts are the dominant class of systematics in our ex-
periment, and are covered in Section VI. The effects
of phase shifts—which tend to be smaller, because they
are suppressed by our long coherence times and ability
to measure both the early-time and late-time phase (not
possible in beam experiments)—are covered in Section
VII.
For a sense of scale, the various systematic errors de-

scribed here can be compared to the overall statistical
precision of 22.8 µHz. Generally, systematic effects are
included in the uncertainty budget, summarized in Ta-
ble VII, if we conservatively estimate their magnitude
to be ≥ 100 nHz. When summed in quadrature with
our statistical uncertainty, more than 400 separate effects
smaller than this would be required to produce a 100 nHz
increase in our total uncertainty. Other effects are in-
cluded when they are closely related to another larger
effect or when their magnitude could be substantially
larger without steps we have taken to mitigate them.

VI. FREQUENCY SHIFTS

A. Magnetic effects

Many experiments to measure EDMs are plagued by
the interaction of the atom or molecule with stray mag-
netic fields. In our experiment, three features make us
comparatively immune to these effects. First, the 3∆1

state we use has an extremely small magnetic moment,
roughly 200 times smaller than the magnetic moment of
a bare electron. Second, our measurement is a differen-
tial one taken simultaneously between two pairs of states
with almost identical magnetic moments. This allows us
to measure magnetic effects by looking at the fB chan-
nel whilst they cancel to a high degree in our measure-
ment channel fDB . Finally, the rotating quantization
axis in our experiment means that most effects consid-
ered in other experiments tend to average to zero over an
integer number of rotation cycles. However, there are still
important magnetic effects that can shift our measured
value of fDB and we consider those in this section.
The interaction of the science states with a magnetic

field B⃗ is well described by the effective Zeeman Hamil-
tonian,

HZ = −(µ⃗0 + D̃µ⃗D) · B⃗,

= −mFµB(gF ± δgF )Êrot · B⃗,
(22)

where D̃ = ±1 corresponds to the upper and lower dou-
blet respectively. Here µ⃗0 is the part of the magnetic
moment that is common to both doublets and µ⃗D is
the differential part, typically 460 times smaller for our
choice of experimental values. In the second line, we have
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made explicit the fact that both magnetic moments track
the quantization axis defined by the unit vector pointing
along Erot¶. We choose to write the magnetic field as a

sum of two parts, B⃗ = B̃B⃗0 + δ⃗B where the first part
is due to the idealized applied quadrupole magnetic field
gradient which reverses perfectly with the B̃ switch, and

the second part δ⃗B represents any additional magnetic

field experienced by the molecules. In general, δ⃗B will be
composed of many components with different dependence
on the switch state and can be written

δ⃗B =
∑
S̃∈W

S̃ ⃗δBs, (23)

where the summation is over W, the set of all possible
products of {B̃, D̃, R̃, Ĩ}, and the superscript s denotes

the switch state dependence of the field relative to B⃗0.
In analogy with the parity channel definitions given in
Sec. III C, this means that fields with a B superscript
do not change sign with B̃. For example, the largest
magnetic shifts measured in the experiment are caused
by charging currents induced by the oscillating voltages
on the radial electrodes. The charging currents produce a

uniform magnetic field which rotates with E⃗rot and whose
sign depends on the rotation direction,

R̃ ⃗δBBR = R̃
µ0ωrotCeffVrot

2πReff
Êrot. (24)

Here Vrot is the amplitude of the oscillating voltages on
each of the fins, Ceff is the effective capacitance, and
Reff the effective radius of the trap. In our experiment

| ⃗δBBR| ∼ 15 µG, causing fBR ∼ 200mHz.

We will be particularly interested in ⃗δBB , the magnetic
field which does not switch sign with B̃, causing shifts in
fB and fDB . To first order‖ these are

hδfB = −3gFµBÊ · ⃗δBB , (25)

hδfDB = −3δgFµBÊ · ⃗δBB , (26)

where Ê is the unit vector pointing along the total electric
field E⃗ .

The differential magnetic moment µ⃗D arises principally
from two effects—mixing of adjacent mF levels in the ro-
tating frame, and mixing of the J = 1 levels with J = 2

¶While strictly an approximation, this is true to high precision
for the fields used in our experiment. The typical electric fields of
∼ 50V cm−1 cause shifts between adjacent mF levels of ∼ 30MHz
while typical magnetic fields of ∼ 10mG cause shifts of ∼ 50Hz.
This means that deflection angles caused by magnetic fields are
∼ 10−6.

‖We note that there are higher-order corrections to these shifts
arising from mixing of the two states in a doublet described in
Section IV. These effects are well understood but, under the ex-
perimental parameters used in the dataset, contribute less than
10% corrections to the shifts discussed and so are not included in
our systematic uncertainty budget.

induced by the electric field∗∗. For the experimental pa-
rameters used throughout our dataset, the latter domi-
nates and so we neglect the former here. The differential
g-factor δgF can then be calculated from second-order
perturbation theory as,

δgF ≃ −
dmfG∥|E⃗ |

20B
, (27)

where the values of molecular constants are given in Ta-
ble I. We see that, as expected, the mixing is linear in
the size of the electric field. We can use this, in combina-
tion with Eq. 26 to give expressions for the time-averaged
frequency shifts we measure in the experiment,

h⟨δfB⟩ = −3gFµB⟨Ê · ⃗δBB⟩, (28)

h⟨δfDB⟩ = −3δgF
|E⃗ |

µB⟨E⃗ · ⃗δBB⟩, (29)

where δgF /|E⃗ | is independent of the electric field. We see
that the common-mode part of the Zeeman interaction

is proportional to ⟨Ê · ⃗δBB⟩, while the differential part is

proportional to ⟨E⃗ · ⃗δBB⟩. This subtle difference will be
the source of most of the systematics described in this
section.
Any possible ⃗δBB can be expanded as

⃗δBB(x⃗, y⃗, z⃗) =
∑

l=1,2,...

l∑
m=−l

Bl,m∇⃗rlYl,m, (30)

where x⃗, y⃗, z⃗ are the ions position relative to the trap
center, Bl,m is the coefficient of each component and Yl,m
are the semi-normalized real spherical harmonics

Yl,m =

√
4π

2l + 1
×


i√
2
(Y m

l − (−1)mY −m
l ) if m < 0

Y 0
l if m = 0
1√
2
(Y −m

l + (−1)mY m
l ) if m > 0

.

(31)

The ∇⃗rlYl,m for l ≤ 3 are given in Table IV.

1. Non-reversing B′
axgrad

In an idealized version of the experiment where the
ions are subject only to a perfect rotating electric field

E⃗rot = Erot(cos(ωrott)x̂+sin(ωrott)ŷ), the micromotion of

the ions is − e
mω2

rot
E⃗rot = −rrotÊrot. In this case the only

component of the magnetic field with l ≤ 3 which causes
a non-zero time-averaged shift in any frequency channel

is the quadrupole magnetic field ⃗δBB = B2,0(−xx̂− yŷ+
2zẑ). As described in Section II, we deliberately apply

∗∗A further ∼ 10% correction to the electric-field induced δgF
arises from interaction with the 3∆2 electronic state [14].
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TABLE IV. Magnetic-field expansion. Estimated sizes of
components are given in parentheses.

Coefficient ∇⃗rlYl,m

Uniform fields (≲ 10mG)

B1,−1 ŷ

B1,0 ẑ

B1,1 x̂

First-order gradients (≲ 10mGcm−1)

B2,−2

√
3(yx̂+ xŷ)

B2,−1

√
3(zŷ + yẑ)

B2,0 −xx̂− yŷ + 2zẑ

B2,1

√
3(zx̂+ xẑ)

B2,2

√
3(xx̂− yŷ)

Second-order gradients (≲ 10mGcm−2)

B3,−3
3
2

√
5
2
(2xyx̂+ (x− y)(x+ y)ŷ)

B3,−2

√
15(yzx̂+ xzŷ + xyẑ)

B3,−1

√
3
2
(−xyx̂+ 1

2
(−x2 − 3y2 + 4z2)ŷ + 4yzẑ

B3,0 −3(xzx̂+ yzŷ + 1
2
(x2 + y2 − 2z2)ẑ)

B3,1

√
3
2
( 1
2
(−3x2 − y2 + 4z2)x̂− xyŷ + 4xzẑ)

B3,2

√
15(xzx̂− yzŷ + 1

2
(x− y)(x+ y)ẑ)

B3,3
3
2

√
5
2
((x− y)(x+ y)x̂− 2xyŷ)

such a quadrupole magnetic field B⃗0 whose sign reverses
in the B̃ switch and which causes the main contribution
to f . However there can be an additional contribution
which does not reverse sign with B̃, arising either from
a background field present in the lab, or from imperfect
reversal of the applied field. In this case we have

h⟨δfB⟩ = 3gFµBB2,0rrot, (32)

h⟨δfDB⟩ = 3δgFµBB2,0rrot. (33)

Both shifts are proportional to B2,0 but with the D̃-even
shift being ∼ 460 times larger. There are two possible
approaches to removing the effect of this systematic from
our measurement. The first is to make a correction to the
measured value of fDB based on the measured value of
fB ,

δfDB
corr = fB δgF

gF
. (34)

The second is to shim out B2,0 by deliberately apply-

ing slightly different currents through the B⃗0 coil in each
direction. Both approaches are equivalent, we choose to
combine them; we minimize fB by shimming B2,0 on each
block based on the measured value of fB in the previous
block and then correct the measured value of fDB on

FIG. 6. Measurement of δgF
gF

. (a) fD vs f0 for various values

of the applied quadrupole magnetic field, B⃗0. Data taken at

Erot ∼ 58V cm−1. Fit is to fD = δgF
gF

f0 + ∆0∆D

f0 , giving
δgF
gF

= −0.002 149(3), ∆0∆D = −0.39(4)Hz2. (b) Change in

fDB vs fB induced by introducing a large non-reversing B2,0.

Fitted gradient is equal to δgF
gF
− ∆0∆D

f02 and when combined

with value of ∆0∆D from (a) gives δgF
gF

= −0.002 13(2), in
excellent agreement. Under each plot we show the residuals
after fits are subtracted.

each block by the measured value of fB on that block.
The quantity δgF

gF
in Eq. 34 is determined directly from

experiment as shown in Fig. 6. The largest fB measured
on any single block is 35mHz, corresponding to a correc-
tion to fDB of 75 µHz, while the median correction size
is 5µHz. The average correction over the whole dataset
is just 90 nHz.

This approach is effective in reducing the contribution
of this systematic shift to levels well below our statistical
error bar, but only holds if there are no other shifts in fB

that scale with fDB with a constant of proportionality
different from δgF

gF
—or even no shift in fDB at all. The

remainder of this subsection explores and places limits
on such shifts arising from stray magnetic fields. Section
VIB explores possible contributions from Berry’s phase
effects.
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2. General principles in determining other magnetic effects

Although no other magnetic field components couple
directly to an idealized rotating electric field to give sig-
nificant shifts, a number of potentially problematic shifts
can arise when other contributions to the electric field
experienced by the ions are taken into account. In par-
ticular, when the magnitude of the total electric field ex-
perienced by the ions is not constant in time, there can

be effects for which ⟨E⃗ · ⃗δBB⟩ ≠ ⟨|E⃗ |⟩⟨Ê · ⃗δBB⟩.
To enumerate possible shifts in the experiment, we an-

alytically calculate the micromotion of a classical charged

particle subject to an electric field E⃗ = E⃗rot + κδ⃗E where

E⃗rot is the idealized rotating electric field, and δ⃗E rep-
resents perturbations to this, discussed in the sections
below. This micromotion allows us to write down the
time-dependent magnetic field experienced by a molecule

moving through magnetic field imperfections κδ⃗B. Fi-
nally we find the frequency shifts ⟨fB⟩ and ⟨fDB⟩ by
calculating ⟨Ê · δ⃗B⟩ and ⟨E⃗ · δ⃗B⟩. Here the time average
is over an integer number of periods of all relevant fre-
quencies and we keep terms up to O(κ2), before setting
κ = 1.

For those effects which give non-zero shifts in either
channel, we constrain the maximum size of the shifts by
direct measurement using the ions, or by auxiliary mea-
surements of the size of the imperfections. We note that
this analytical approach, by necessity, does not include
the effects of spatially dependent electric fields and so
misses the effects of ponderomotive forces such as those
from the RF confining fields. To validate this approxima-
tion, we performed comprehensive numerical simulations
including the full motion of the ions in the trap while
varying the size of the imperfections listed over ranges
well above their expected size in the experiment and ob-
served no additional systematic effects.

3. Second harmonic of Erot and transverse magnetic field

The rotating electric field in our experiment is gen-
erated by sinusoidally varying voltages on each of the
radial electrodes. These voltages are driven by op-amps
which inevitably suffer from harmonic distortion, adding
higher harmonics of the input signal. Consider the effect
of an additional electric field oscillating at the second-
harmonic frequency. We have

E⃗ = Erot


cos(ωrott)

sin(ωrott)

0



+


E2hx cos(2ωrott+ ϕ2hx)

E2hy cos(2ωrott+ ϕ2hy)

0

 ,

(35)

Ê ≃


cos(ωrott)

sin(ωrott)

0

+
1

2Erot


E2hx cos(2ωrott+ ϕ2hx)

E2hy cos(2ωrott+ ϕ2hy)

0



+
E2hx
4Erot


− cos(ϕ2hx)

sin(ϕ2hx)

0

+
E2hy
4Erot


sin(ϕ2hy)

cos(ϕ2hy)

0



+
E2hx
4Erot


− cos(4ωrott+ ϕ2hx)

− sin(4ωrott+ ϕ2hx)

0



+
E2hy
4Erot


− sin(4ωrott+ ϕ2hy)

cos(4ωrott+ ϕ2hy)

0


(36)

where Ê has been expanded to first order in 1/Erot.
Alongside the components oscillating at ωrot and the cor-
rections oscillating at 2ωrot, Ê also has terms that are
time-independent, and terms that oscillate at 4ωrot. The
time-independent terms can couple to a uniform trans-

verse magnetic field ⃗δBB = B1,1x̂+ B1,−1ŷ to give time-
averaged shifts,

h⟨δfB⟩ = − 3gFµB

4Erot
(
− B1,1E2hx cos(ϕ2hx)

+ B1,−1E2hy cos(ϕ2hy)

+ B1,−1E2hx sin(ϕ2hx)

+ B1,1E2hy sin(ϕ2hy)
)
,

(37)

h⟨δfDB⟩ = 0. (38)

We note that, depending on the nature of the origin of the
second harmonic, the phases ϕ2hx and ϕ2hy can change
sign under rotation. In this way, some of this shift can
(and usually does) show up in fBR rather than fB . We
have verified these shifts experimentally by intentionally
applying a large second harmonic to our electrodes along
with large transverse magnetic fields. Although the effect
causes no direct shift in fDB , any shift in fB will cause
our applied correction—described in Section VIA1—to
include a systematic †† δfDB = δgF

gF
⟨δfB⟩.

During the data run, we measure the transverse field
using an array of magnetometers positioned on the vac-
uum chamber and tune it to zero using three pairs of shim
coils arranged around the apparatus. The magnetome-
ters can be subject to small offsets and are calibrated
at the beginning of the data run by intentionally apply-
ing large second-harmonic electric fields and measuring

††We note that this effect was identified in generation 1 of the
experiment [1] but its effect on fDB misunderstood such that it was
not thought to contribute a systematic shift to the measurement
result.
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shifts in fB and fBR. We used the same technique at
regular (roughly weekly) intervals throughout the dataset
to check the size of the magnetic fields and guard against
any drifts in the magnetometer offsets. Based on these
measurements, we conservatively estimate the maximum
size of the transverse fields to be < 10mG in x and y, lim-
ited principally by the precision of the current supplies
used to drive the shim coils.

To reduce the size of the second-harmonic electric fields
present in the experiment, we intentionally apply a feed-
forward voltage at 2ωrot with the opposite phase, cancel-
ing the inherent voltage at 2ωrot down to about a part
in 40,000 of the voltage at ωrot. In the worst case, where
the relative phases of the residual 2ωrot signals are such
that the corresponding electric field at the position of the
ions is maximized, this corresponds to residual shifts in
fB of about 80mHzG−1. After this procedure, we delib-
erately apply large magnetic fields ∼ 2G to the ions and
observe the residual shifts in fB to be 103(1)mHzG−1

and 46(9)mHzG−1 for fields along x and y respectively,
in good agreement with our direct voltage measurements.
The amplitude of the second harmonic was checked pe-
riodically throughout the dataset to guard against any
drifts, for example in the characteristics of the power op-
eration amplifiers. Combined with the uncertainty on the
transverse fields above, the measurement of these shifts
limit the contribution of this effect to fB to less than
1.0mHz with a corresponding systematic uncertainty in
fDB of 2.2 µHz.

4. Higher-harmonics of Erot

We can generalize the arguments of the previous sec-
tion to higher harmonics of Erot. For the nth harmonic,
the expansion of Ê in powers of 1/Erot will contain com-
ponents which oscillate at (n−2)ωrot and (n+2)ωrot. The

E⃗rot-induced micromotion of the ions combined with an
mth order magnetic field gradient, produces a magnetic
field in the frame of the ions which oscillates at mωrot. So
in general an nth harmonic of Erot can couple to (n−2)th
and (n + 2)th order magnetic field gradients (l = n − 1
or n+3) to give non-zero time-averaged frequency shifts.
After the feedforward is applied to reduce the second
harmonic as described above, the next largest shift from
harmonic distortion is due to 3ωrot, with an amplitude on
each fin of about a part in 1500 of the amplitude at ωrot.
The 3rd harmonic can couple to first-order field gradients

of the form ⃗δBB = B2,−2

√
3(yx̂+ xŷ) +B2,2

√
3(xx̂− yŷ)

to give shifts,

h⟨δfB⟩ = − 3
√
3gFµBe

4mω2
rot

(
B2,2E3hx cos(ϕ3hx)

− B2,−2E3hy cos(ϕ3hy)

− B2,−2E3hx cos(ϕ3hx)

− B2,2E3hy cos(ϕ3hy)
)
,

(39)

h⟨δfDB⟩ = 0. (40)

We intentionally applied a large third-harmonic electric
field with various phases and observed shifts of fB ∼
20mHz. The applied third harmonic field was 28 times
larger than that present in the dataset and so we conser-
vatively set a limit on the maximum size of any possible
shift in fB at 0.7mHz, with a corresponding systematic
uncertainty in fDB of 1.5 µHz.

Higher harmonics are comparable to, or lower in am-
plitude (see the second column of Table V for a summary
of their measured amplitudes) and couple to higher-order
magnetic field gradients. To set limits on their possible
contributions to shifts in fB we made measurements of
the magnetic field gradients. These measurements were
made outside of, but within a few cm of, the main vac-
uum chamber. The electrodes in the experiment are
machined from non-magnetic titanium and there are no
other sources of magnetic fields closer to the ions than
the steel vacuum chamber which is ∼ 10 cm away. Be-
cause of this, we expect that the field gradients imme-
diately outside the chamber are similar to, or greater
than, those inside the chamber. From these measure-
ments we estimate the maximum size of first-order field
gradients to be 10mGcm−1 and second-order gradients
to be 10mGcm−2. To determine the size of the magnetic
field oscillating at nωrot, the nth order magnetic field gra-
dient should be multiplied by rnrot where rrot = 0.05 cm.
This means we expect any higher-order harmonic contri-
butions to shifts in fB to be reduced by a factor of ∼ 20
from those for the third harmonic, corresponding to sys-
tematic uncertainties in fDB < 100 nHz. Therefore, we
do not include any higher-order effects in our systematic
uncertainty budget.

5. Ellipticity of Erot

Another possible electric field imperfection is an ellip-
ticity of Erot (i.e. the oscillating voltage on different elec-
trodes in the trap having slightly different amplitudes).
A general rotating electric field having an ellipticity with
its major axis orientated at angle θ to the x axis can be
written

E⃗ = Erot


cos(ωrott)

sin(ωrott)

0

+ Eϵ


cos(2θ − ωrott)

sin(2θ − ωrott)

0

 . (41)
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The corresponding Ê is

Ê =


cos(ωrott)

sin(ωrott)

0

+
Eϵ

2Erot


cos(2θ − ωrott)

sin(2θ − ωrott)

0



+
Eϵ

2Erot


− cos(2θ − 3ωrott)

sin(2θ − 3ωrott)

0

 .

(42)

This field can once again couple to first-order magnetic

field gradients of the form ⃗δBB = B2,−2

√
3(yx̂ + xŷ) +

B2,2
√
3(xx̂−yŷ). After taking into account the modifica-

tion to the ion micromotion caused by this perturbation,
the resulting shifts are

h⟨δfB⟩ =9
√
3gFµBeEϵ
2mω2

rot

(
B2,2 cos(2θ) + B2,−2 sin(2θ)

)
,

(43)

h⟨δfDB⟩ =6
√
3δgFµBeEϵ
mω2

rot

(
B2,2 cos(2θ)

+ B2,−2 sin(2θ)
)
. (44)

Note that in contrast to the effects of higher-harmonics
discussed above, the ellipticity does cause a shift in
fDB , with δfDB/δfB = 4

3
δgF
gF

. After accounting for

the correction described in Sec. VIA 1, which assumes
δfDB/δfB = δgF

gF
, the systematic associated with the

shift described in this section will be 1/3 of the shift in-
duced in fB , or a quarter of the shift induced in fDB .
The size of the ellipticity in our experiment was measured
as described in Sec. VIB 4. To set limits on the size of
the shift, we applied an ellipticity 5 times larger than
this, limited by our shallow ion trap during the Ram-
sey sequence, and varied its angle. The one-sigma upper
limit on the shifts seen in this way was 12mHz and so
we set an upper limit on the size of any shift in fB due
to this effect of 2.4mHz, corresponding to a systematic
uncertainty in fDB of 1.7 µHz.

6. RF micromotion

In addition to the rotating electric field, the ions are
subject to the RF confining field oscillating at ωrf . This
RF field induces its own micromotion of the ions and,
through B2,0, a magnetic field oscillating at ωrf . The
corresponding time-averaged shifts are

h⟨δfB⟩ = − 3gFµB
eE2rfB2,0
4Erotmω2

rf

, (45)

h⟨δfDB⟩ = − 3δgFµB
eE2rfB2,0
2Erotmω2

rf

. (46)

In this case we have ⟨δfB⟩/⟨δfDB⟩ = 2δgF /gF and so
there is potential for a systematic, but both shifts are

proportional to B2,0 which we are shimming to zero. The
ratio of the magnitude of the shift caused by the RF
field to that caused by Erot is ⟨E2rf⟩ω2

rot/E2rotω2
rf ∼ 10−2

so that this shift will just provide a ∼ 1% correction
to the—already very small—systematic uncertainty in
Sec. VIA 1. In addition, because our measurement of
δgF /gF was performed with the RF fields present, it al-
ready includes this correction. Therefore, we do not in-
clude any contribution from this effect in our systematic
uncertainty budget. Other electric fields which oscillate
at frequencies other than integer multiples of ωrot (e.g.
time-averaged electric field due to secular motion) behave
similarly but with even smaller contributions.

7. Out of plane electric fields

All the electric field imperfections discussed thus far
are additional fields contained within the x, y-plane, the
plane in which Erot rotates. However, it’s also possible for
the ions to experience oscillating fields in the z direction.
This can occur, for example, due to thermal motion of
the ions or patch charges displacing the center of the
ion cloud from the geometrical center of the trapping
electrodes. The largest shifts from fields in the z direction
are those due to the motion of the ions induced by these
fields coupling to B2,0. The shifts have δfDB/δfB =
δgF /gF and so produce no systematic effects not already
accounted for by the approach described in Sec. VIA 1.

B. Berry’s phase effects

The rotating electric bias field Erot defines our quanti-
zation axis, and we do our spectroscopy in the rotating
frame. Working in this rotating frame has two important
effects: a mixing of the eigenstates of the system, which
depends on the rotation rate; and an additional phase
accumulation between eigenstates with different total an-
gular momentum projections onto the quantization axis,
which does not. This latter part, a geometric or Berry’s
phase—depending only on the path traced out by the
quantization axis in time—is discussed in this section,
whilst the former is discussed in Section VIC.
As the electric field vector in the experiment rotates,

it traces out closed loops in phase space. In each loop,
the two states in a doublet accrue a differential geometric
phase given by

ϕgeo = ∆mFΩ = 3Ω, (47)

where ∆mF is the difference in the angular momentum
projection of the two states and Ω is the solid angle
traced out by the electric field, as shown in Fig. 7. In
the idealized experiment, the electric field rotates strictly
in the x, y-plane, subtending a solid angle of 2π every
Trot = 1/frot. Phase shifts of integer multiples of 2π are
indistinguishable from zero and so not observable in the
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FIG. 7. Berry’s phase. The rotating quantization axis, de-
fined by Êrot, is tilted out of the x, y-plane and traces out a
solid angle Ω which differs from the ideal case of 2π.

experiment. However effects that tilt the quantization
axis out of the x, y-plane can cause a non-zero frequency
shift. For small tilts, the shift is given by

δf ≃ −3frot
2π

∫ Trot

0

α(t)ϕ̇(t)dt (48)

where α(t) is the tilt of the quantization axis out of the

equatorial plane, ϕ̇(t) is its azimuthal angular velocity,
and the integral is over one period of the rotating field,
Trot.
This frequency shift affects both doublets identically

but is independent of the B̃ switch and so appears in
B̃-odd frequency channels. We note that the main con-
tribution to ϕ̇(t) ∼ R̃ωrot is rotation odd and so the most
natural channel for the shift to appear in is fBR. How-
ever rotation-odd components of α(t) can cause effects
in fB as well. While the shifts do not appear directly in
our measurement channel, any shifts in fB will cause a
systematic shift—suppressed by a factor of δgF /g—due
to the correction we make based on the measured value
of fB , described in Sec. VIA 1.
The most straightforward way to tilt the quantization

axis is to add a time-independent electric field in the
axial direction. Our measurement using trapped ions is
well protected from this possibility; any axial electric field
in the ion’s frame—including those arising from motion
of the ion through magnetic fields—which does not time
average to zero, and which is not balanced by another
force on the ions, will cause the mean position of the
ions to shift to where the time-averaged electric field is
zero. However, there are a number of mechanisms that
can cause non-zero time-averaged geometric phases in the
experiment. In this section, we discuss these mechanisms

and place constraints on their possible size during our
measurement.

1. Gravity

The gravitational force on the ions causes them to sit
at a position in the trap where the axial electric field is
slightly different from zero. This field is Egrav = mg/e ∼
20 µVm−1, causing a shift δf = 3frotEgrav/Erot ∼ 4mHz.
This shift appears rigorously in fBR which we do not use
for correction of fDB and so we do not include any con-
tribution from this effect in our systematic uncertainty
budget.

2. ac Stark shift from vibrational cleanup light

The vibrational cleanup light is tuned to resonance
with the 3∆1(v = 1)← 3Σ0+(v = 0) transition to remove
any population in 3∆1(v = 1) and prevent it decaying
into the science state. The light is left on throughout
the free evolution time and propagates in the axial direc-
tion through the chamber. To estimate the effect of this
light, we assume that the polarizability of the 3∆1(v = 0)
state is dominated by interaction with 3Σ0+(v = 0), from
which the laser is detuned δL ∼ 1.7THz, and the nearby
3Σ1(v = 0), a further ∼ 30THz away. Conservatively
assuming transition matrix elements of dtrans ∼ 0.1 ea0
for each, we obtain a polarizability of d2trans/(h

2ϵ0cδL) ∼
4× 10−4 HzW−1 m2. The light intensity at the position
of the ions is ∼ 300Wm−2, giving an ac Stark shift of
order ∼ 0.1Hz.
The scalar ac Stark shift affects all states in 3∆1(v = 0)

equally and so has no effect on our measurement. How-
ever, a gradient of the intensity could exert a force on the
ions, pushing them to a position where the electric field
is non-zero in a similar way to the gravitational effect
described above. The light is roughly collimated through
the chamber and we conservatively constrain the inten-
sity gradient to be< 500Wm−3, corresponding to a force
more than 10 orders of magnitude smaller than that due
to gravity discussed in section VIB 1.

Effects from possible vector or tensor ac stark shifts
depend on the polarization of the light which is nom-
inally linear in the x, y-plane in our experiment. The
tensor shift causes an ac stark shift which is differential
between doublets but common mode within a doublet,
and which oscillates at 2frot, imitating an ellipticity of
Erot. Conservatively assuming the tensor polarizability
is of similar size to the scalar, this effective ellipticity is
∼ h×0.1Hz/Erotdmf ∼ 10−9, much smaller than our best
limit on the true ellipticity in the trap.

For linearly polarized light, the vector Stark shift is
zero but we can consider the effect of a residual hand-
edness. In this case, the vector shift can tilt the quanti-
zation axis out of the x, y-plane. Conservatively assum-
ing vector polarizability similar size to the scalar, and a
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2% residual handedness of the light, we find a geomet-
ric phase of ∼ 1mHz. Like the gravitational effect, this
shift is in fBR and so has no systematic effect on our
measurement. We took some auxiliary blocks with the
vibrational cleanup light turned off during the free evolu-
tion time and observed no shifts, empirically constraining
any shift in fBR to less than 9mHz.

3. Phase modulation due to axial secular motion

Ions displaced from the center of the trap experience
a non-zero axial confining field. Any axial motion due
to the axial confining potential is harmonic, so the axial
component of the electric field will average out to zero
over many cycles. Instantaneously, however, the ions will
accrue a Berry’s phase,

δ(tR) =

∫ tR

0

e−t/τz3ωrot
zsec
rrot

cos(ωzt+ ϕz)dt,

≃ δ0(− sinϕz + e−tR/τz sin(ωztR + ϕz)).

(49)

Here zsec, ωz and ϕz are the amplitude, angular fre-
quency and phase of the center-of-mass axial secular mo-
tion, τz the coherence time of that motion, and δ0 =
3ωrotzsec/(ωzrrot). The second line holds only for τzωz ≫
1; we find τz = 90(10)ms, while ωz ∼ 2π × 1.6 kHz and
so this is condition is well satisfied. We are sensitive to
the difference in this phase evaluated at early and late tR
and so the first term cancels. The late tR used are long
compared to τz and so the maximum size of the difference
is δ0.

We investigated this effect by pulsing the endcap elec-
trode to ‘kick’ the ion cloud in the axial direction right
before the first π/2 pulse—causing temporary coherent
axial oscillations—then collecting a short-time Ramsey
fringe. Example data is shown in the inset of Fig. 8. We
repeated this procedure over a range of kick amplitudes,
in each instance fitting the data to the model

A cos(2πft+ ϕ+ δ0 cos(ωzt+ ϕz)). (50)

Figure 8 shows δ0, plotted against the amplitude of the
applied kick. The data constrain |δ0| for no applied kick
to < 0.024 radians at the 1σ confidence level, correspond-
ing to zsec ≲ 1mm. The worst-case frequency shift is
then |δ0/(2πtR)| < 1.6mHz for the effective average late
tR (∼ 2.4 seconds) used. This shift is likely to be in fBR

but could leak into fB if the phase of the axial oscilla-
tion were rotation odd. We did not monitor this during
our dataset and so include a systematic uncertainty of
|(δgF /gF )| × 1.6mHz = 3.4 µHz in our uncertainty bud-
get.

4. Axial 2nd harmonic + radial ellipticity

In addition to static tilts of the quantization axis and
aliasing of time-varying tilts, perturbations to the radial

FIG. 8. Phase modulation amplitude δ, in each doublet for
various sizes of z kick. Upper doublet data is in orange and
lower doublet data is in blue. Both fits have intercepts of
−0.013(11) rad. Inset shows example data for one kick value.

electric field can cause variations in the magnitude of the
rotating field and its azimuthal angular velocity which
can couple to axial displacements to give geometric phase
effects which do not time-average to zero. An important
example of this type of effect is an ellipticity of Erot com-
bined with a second-harmonic field in the axial direction.
Such an axial field could result either from leakage of the
signals that drive the radial electrodes onto the endcaps,
or from axial displacement of the ions from the geometric
center of the trap combined with fields generated by the
radial electrodes themselves.
We can express a radial ellipticity in Erot as we did

before (Eq. 41) but now explicitly including rotational
dependence,

E⃗ = Erot


cos(ωrott+ ϕR + R̃ϕ0)

R̃ sin(ωrott+ ϕR + R̃ϕ0)

0



+ Eϵ


cos(2R̃θ − ωrott− ϕR − R̃ϕ0)

R̃ sin(2R̃θ − ωrott− ϕR − R̃ϕ0)

0

 .

(51)
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Here ϕ0 + R̃ϕR is the angle of the radial electric field
to the x-axis at t = 0 and θ is the angle between the
major axis of the ellipse and the x-axis. An axial field
oscillating at the second harmonic is given by

E⃗2hz =E2hz


0

0

cos(2ωrott+ ϕ2hz)

 . (52)

With these electric fields we find the tilt angle and az-
imuthal angular velocity are

α(t) ≃ E2hz
Erot

cos(2ωrott+ 2ϕ2hz)

×
(
1− Eϵ
Erot

cos(2ωrott+ 2ϕR + 2R̃ϕ0 − 2R̃θ)

)
,

(53)

ϕ̇(t) ≃ R̃ωrot −
2R̃Eϵωrot

Erot
cos(2ωrott+ 2ϕR + 2R̃ϕ0 − 2R̃θ),

(54)

where in each case we have expanded to first order in
Eϵ/Erot. Using Eq. 48, we find

δf ≃ 9R̃E2hzEϵfrot
2E2rot

cos(ϕ2hz +2R̃θ− 2R̃ϕ0− 2ϕR). (55)

Finally we can calculate the expected shifts in fB and
fBR by taking the sum and difference of the shifts in the
two rotation directions,

δfB = −9E2hzEϵfrot
2E2rot

sin(2θ − 2ϕ0) sin(ϕ2hz − 2ϕR),

(56)

δfBR =
9E2hzEϵfrot

2E2rot
cos(2θ − 2ϕ0) cos(ϕ2hz − 2ϕR).

(57)

We see that we expect frequency shifts which vary sinu-
soidally as a function of either θ or ϕ2hz, with a π/2 phase
shift between fB and fBR. Figure 9 shows example data
for deliberately applied ellipticity Eϵ/Erot ∼ 7×10−3 and
an axial second-harmonic E2hz ∼ 4Vm−1.
We used data like this to manually shim out any resid-

ual ellipticity by applying E2hz, and adjusting the Erot
multiplying DAC on each electrode until we saw the ef-
fect was minimized. We then measured the residual el-
lipticity in the same way and found Eϵ/Erot = 3 × 10−4,
suppressed by a factor of 28 relative to our applied el-
lipticity. We constrain the axial second harmonic field
by deliberately applying an ellipticity and varying θ to
constrain |E2hz| < 10mVm−1 at the 1σ confidence level,
suppressed by a factor 400 relative to our deliberately
applied second harmonic. Combining these suppression
factors allows us to place a limit on the maximum size
of any shift in fB , |δfB | < 0.8mHz. We include a cor-
responding contribution to our systematic uncertainty of
1.7µHz.

FIG. 9. Example data collected with E2hz ∼ 4Vm−1 and an
ellipticity Eϵ/Erot ∼ 7 × 10−3. As we vary the phase of the
axial modulation, fB and fBR vary sinusoidally with a π/2
phase offset, as expected.

5. Effects of higher harmonics

We can generalize the discussion of the previous sec-

tion to a pair of perturbations δ⃗Ex,y and δ⃗Ez which act
in radial and axial direction respectively, and which are
both phase-locked to Erot. We can write general expres-
sions for these perturbations,

δ⃗Ex,y = Enhx cos(nωrott+ ϕnhx)x̂

+ Enhy cos(nωrott+ ϕnhy)ŷ,
(58)

δ⃗Ez = Emhz cos(mωrott+ ϕmhz)ẑ (59)

where m,n are both integer. The combination of these
perturbations will result in a non-zero time-averaged fre-
quency shift at first order provided m and n differ by ±1.
The shift is given by

δf = ∓ 3Emhzfrot(n± 2)

4E2rot

(
Enhx cos(ϕnhx − ϕmhz)

± Enhy sin(ϕnhy − ϕmhz)
)
,

(60)

where the ± correspond to m = n ± 1. Depending on
the R̃ dependence of the various phases, this shift could
appear in either fB or fBR. We note that the frequency
shift corresponding to the first harmonic on the endcap
and second harmonic radially, m = 1, n = 2, is zero,
and so the next largest shifts are expected to come from
effects involving the third harmonic or higher.
To place constraints on the possible size of these ef-

fects, we measured the Fourier transform of the signal on
each of the radial electrodes and the two endcaps‡‡ The

‡‡To characterize higher harmonics with power as low as -80 dB
relative to the fundamental, we suppressed the carrier with a home-
built notch filter with well-characterized linearity.
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measured amplitudes of each harmonic are shown in the
second column of Table V. We first consider the possible
radial electric fields caused by these signals. The radial
electric fields at the center of the trap generated by an
nωrot voltage signal on each electrode are

δExnh = −
8∑

k=1

Vnhk

Rx,y
cos((9− 2k)

π

8
) cos(nωrott+ ϕnhk),

(61)

δEynh =

8∑
k=1

Vnhk

Rx,y
sin((9− 2k)

π

8
) cos(nωrott+ ϕnhk),

(62)

where Vnhk and ϕnhk are amplitude and phase of the
voltage on each of the 8 electrodes and Rx,y ≃ 23 cm
is a constant relating to the geometry of the trap. The
amplitude of these fields is given by

|δExnh| =

[(
8∑

k=1

Vnhk

Rx,y
cos((9− 2k)

π

8
) cos(ϕnhk)

)2

+

(
8∑

k=1

Vnhk

Rx,y
cos((9− 2k)

π

8
) sin(ϕnhk)

)2 ]1/2
,

(63)

|δEynh| =

[(
8∑

k=1

Vnhk

Rx,y
sin((9− 2k)

π

8
) cos(ϕnhk)

)2

+

(
8∑

k=1

Vnhk

Rx,y
sin((9− 2k)

π

8
) sin(ϕnhk)

)2 ]1/2
.

(64)

The amplifiers driving each of the electrodes are nomi-
nally identical and so the harmonic distortion is approxi-
mately equal on each electrode. As a first-order approxi-
mation, we take the amplitude of the signal on each elec-
trode to be equal, Vnhk = Vnh, and the phases to be
locked to the fundamental with a small offset that can be
different on each electrode, ϕnhk = ϕnh0 + n(9− 2k)π8 +
δϕnhk.

We first consider δϕnhk = 0. In this case all the radial
fields from all electrodes cancel one another unless n dif-
fers from a multiple of 8 by ±1. When n is one greater
than a multiple of 8, the relative phases on neighboring
electrodes are the same as for the fundamental and so
the harmonic field corotates with Erot. For n one less
than a multiple of 8, the relative phases on neighboring
electrodes are flipped compared to the fundamental and
the resulting field counterrotates. In both cases the am-
plitude is 4Vnh/Rx,y and we use this as an estimate of
the field size for these values of n in the third column of
Table V. For the other harmonics, we can estimate their
size by looking at the variance of their amplitude due to

the variance of the amplifier phases,

⟨|δExnh|2⟩ =
8∑

k=1

(
∂|δExnh|
∂δϕnhk

)2

⟨δϕ2
nhk⟩, (65)

⟨|δEynh|2⟩ =
8∑

k=1

(
∂|δEynh|
∂δϕnhk

)2

⟨δϕ2
nhk⟩, (66)

where the derivatives in brackets are evaluated at
δϕnhk = 0. Since in these cases the phase relationship
between the fields is random, we will be interested in
their quadrature sum. After some lengthy algebra, we
find

⟨|δEx,ynh|2⟩1/2 =
(
⟨|δExnh|2⟩+ ⟨|δEynh|2⟩

)1/2
=

Vnh

Rx,y

[
4 + (−1)n

√
2 cos

(nπ
4

)

− (−1)n
√
2 cos

(
3nπ

4

)]1/2
⟨δϕ2

nh⟩1/2,

(67)

where we have set the variances of the phases on all am-
plifiers to be equal, ⟨δϕ2

nhk⟩ = ⟨δϕ2
nh⟩. From measure-

ments of the signals on the electrodes, we conservatively
estimate ⟨δϕ2

nh⟩ = (π/8)2. The third column of Table V
shows the estimated size of the radial electric fields from
higher harmonics calculated using this expression. Note
that, because we shim the 2nd harmonic, we can make no
such claims about relative phases on electrodes and so we
assume the worst case of all electrodes on one side of the
trap in phase and exactly out of phase with the electrodes

on the other side, giving δEx,y2h = 4
√

1 + 1√
2
V2h/Rx,y.

We can take a similar approach to estimate the possi-
ble higher harmonic fields in the z direction. The most
direct way of generating axial electric fields with angular
frequency nωrot is for them to appear directly on the end-
caps of our trap where they generate a field Vnhz/R

ax
z ,

with Rax
z ≃ 137 cm. Our measurements of possible

higher-harmonic signals onto the endcaps are shown in
the third column of Table V; for n > 3 these are up-
per limits, constrained by the frequency-dependent noise
floor of our FFT measurements. We find that in most
cases the fields generated by these voltages are dominated
by another contribution, signals on the radial electrodes
combined with axial displacement of the ions from the
center of the trap. We can write the axial electric field
due to nωrot signals on the radial electrodes at axial dis-
placement z0 as

δEznh =

8∑
k=1

Vnhkz0
R2

z

cos(nωrott+ ϕnhk), (68)
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TABLE V. Constraints on electric fields from higher-harmonic
voltages on radial electrodes and endcaps. For reference, the
amplitude of the fundamental on the radial electrodes is ∼
330V.

Amplitudes (mV) Fields (mVm−1)

n Radial Axial |δEx,ynh| |δEznh|

2 11 0.5 250 1.0

3 310 0.3 1296 2.1

4 190 0.1 649 1.8

5 410 0.2 1715 2.7

6 100 0.4 341 0.8

7 230 0.5 4000 1.7

8 45 0.7 154 3.1

9 170 1.0 2957 1.8

10 37 1.4 126 2.0

11 140 1.8 586 2.7

12 42 2.1 143 3.1

with amplitude

|δEznh| =
z0
R2

z

((
8∑

k=1

Vnhk cos(ϕnhk)

)2

+

(
8∑

k=1

Vnhk sin(ϕnhk)

)2)1/2

.

(69)

The constant Rz ≃ 27 cm is fixed by the trap geome-
try. We measure the axial displacement by deliberately
applying an ellipticity plus a large second harmonic in
phase to all radial electrodes and find z0 = 0.6mm.
Again, we make the substitutions Vnhk = Vnh and

ϕnhk = ϕnh0+n(9−2k)π8 +δϕnhk and start by assuming
δϕnhk = 0,

δEznh =
Vnhz0
R2

z

sin(nπ)

sin
(
nπ
8

) cos(nωrott+ ϕnh0). (70)

The contributions of the 8 electrodes cancel out except
for when n is a multiple of 8 when they are all in phase
with one another and we have |δEznh| = 8Vnhz0/R

2
z. For

these values of n, we use this as an estimate of the axial
field amplitude from the radial electrodes. For the other
possible harmonics we can estimate their amplitudes in
the same way we did for the radial fields. The variance
of the amplitude of the field is given by

⟨|δEznh|2⟩ =
8∑

k=1

(
∂|δEznh|
∂δϕnhk

)2

⟨δϕ2
nhk⟩, (71)

where again, the derivative in brackets is evaluated at

TABLE VI. Constraints on Berry’s phase frequency contri-
butions to fB or fBR due to possible combinations of radial
and axial field imperfections from harmonic distortion in am-
plifiers used to drive radial electrodes. All entries are in µHz.

nz

nx,y 2 3 4 5 6 7 8 9 10 11 12

2 0 17 0 0 0 0 0 0 0 0 0

3 11 0 95 0 0 0 0 0 0 0 0

4 0 22 0 87 0 0 0 0 0 0 0

5 0 0 75 0 83 0 0 0 0 0 0

6 0 0 0 31 0 38 0 0 0 0 0

7 0 0 0 0 139 0 947 0 0 0 0

8 0 0 0 0 0 13 0 24 0 0 0

9 0 0 0 0 0 0 545 0 556 0 0

10 0 0 0 0 0 0 0 16 0 35 0

11 0 0 0 0 0 0 0 0 90 0 200

12 0 0 0 0 0 0 0 0 0 33 0

δϕnhk = 0. After some more lengthy algebra, we find

⟨|δEznh|2⟩1/2 =
Vnhz0
R2

z

(
4− sin(nπ)

sin
(
nπ
4

))1/2

⟨δϕ2
nh⟩1/2.

(72)
We use this expression with ⟨δϕ2

nh⟩ = (π/8)2 to calculate
the field estimates for all n which are not a multiple of 8.
Note that, again due to our shimming of the second har-
monic, we can’t make any claims about relative phases
on the electrodes and so we assume the worst case of all
in phase, giving |δEz2h| = 8V2hz0/R

2
z. The fourth column

of Table V shows the sum in quadrature of our estimates
for the axial field from the radial electrodes with those
from the endcaps.
In Table VI, we combine these estimates of the ra-

dial and axial field amplitudes with Eq. 60 to set lim-
its on the Berry’s phase from each possible combination
of higher-harmonics. Summing all the contributions in
quadrature—including terms not shown up to the 17th
harmonic—we get an uncertainty on the Berry’s phase
of 1.4mHz, corresponding to a systematic uncertainty in
fDB of 3.0 µHz which we include in our systematic un-
certainty budget.

C. Residual rotation-induced doublet mixing

The systematic effects we have considered so far are
all concerned with the second term in Eq. 21, various
sources of δfs

0 . However, the third and fourth terms in
the expression, containing the off-diagonal components
of the effective Hamiltonian, can also potentially cause
systematic shifts. The third term concerns shifts directly
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generated by the off-diagonal mixing components, while
the fourth term concerns the leaking of frequency shifts
into other channels due to this mixing. In this section
we discuss possible contributions to each and place con-
straints on their size during the measurement.

1. Leaking of fBR

The largest leak of any frequency channel into fDB is
expected to come from the frequency channel with the
largest signal. This is fBR where a signal of ∼ 200mHz
is caused by the charging currents in our electrodes. This
could potentially leak into fDB when combined with non-
zero values of δ∆DR or δ∆R. From Eq. 21 we have

δfDB = −fBR∆0δ∆DR +∆Dδ∆R

|f0
0 |2

. (73)

Non-zero values of δ∆DR and δ∆R can come from an
axial magnetic field through a 4th-order coupling similar
to ∆0 and ∆D but where one of the rotation matrix ele-
ments is replaced with a magnetic-field matrix element.
Any effect would also result in a contribution to fDR,

δfDR =
∆0δ∆DR +∆Dδ∆R

|f0
0 |

. (74)

Assuming fDR is composed only of this contribution and
a magnetic shift which also appears in fR, we can rewrite
Eq. 73 as

δfDB ≃ −fBR

f0

(
fDR − δgF

gF
fR

)
. (75)

Our data places a limit on this contribution to fDB of <
170 nHz which we include in our systematic uncertainty
budget.

On similar grounds, we could also expect non-zero
δ∆DR or δ∆R to cause fBR to leak into fB ,

δfB = −fBR∆0δ∆R +∆Dδ∆DR

|f0
0 |2

, (76)

causing a systematic via the correction described in
Sec. VIA 1. Since this expression involves the same terms
as Eq. 73, barring unlikely cancellations, the contribution
can be expected to be of similar size. The corresponding
systematic in fDB is suppressed by a further factor of
δgF /gF and so we include no contribution in our system-
atic uncertainty budget.

2. Axial magnetic fields

Analogously to how a static axial magnetic field can
generate δ∆DR and δ∆R, a B̃-odd axial magnetic field
BBz can cause δ∆BDR and δ∆BR. Such a field could

be generated from the B⃗0 coils if the ions are situated

slightly away from their geometric center. The combina-
tion of these two effects can cause a shift in fDB via the
third term in Eq. 21,

δfDB =
δ∆DRδ∆BR + δ∆Rδ∆BDR

|f0
0 |

. (77)

An order-of-magnitude estimate for these R̃-odd mixing
elements can be obtained by taking the measured values
of ∆0 and ∆D and multiplying them by the ratio of the
magnetic-field matrix element to the rotational matrix
element, gFµBBz/ℏωrot ∼ 0.01G−1. Since ∆0 and ∆D

are ∼ 1Hz, we can expect δ∆DR, δ∆BR, δ∆R, δ∆BDR of
∼ 10mHzG−1. We took data with large axial magnetic
fields ∼ 10G and saw shifts in fDR of 170(30) µHzG−1

for f0 = 151Hz, confirming the order of magnitude of
this approximation. Applying these approximations to
Eq. 77, we can then expect a systematic shift in fDB

of ∼ 2 µHzG−2 × BBz Bz. Looking at fDR − δgF
gF

fR and

fDBR − δgF
gF

fBR for our dataset puts limits on the fields

of Bz < 0.5G and BBz < 0.4G. We note that the same
magnetometers used to shim out Bz are able to shim Bx
and By to ∼ 10mG but since we have not confirmed this
for Bz, we use this more conservative limit. Finally we
constrain any systematic shift in fDB to < 2µHzG−2 ×
0.5G× 0.4G = 400 nHz.

D. Oddities & miscellany

1. Ion-ion interactions

The dominant ion-ion interaction is from the monopole
charge on each ion. If we qualitatively model the cloud as
20,000 singly charged ions uniformly distributed across a
sphere 1 cm in radius, we find that the resulting mean-

field electric field is much smaller than either E⃗rot or the
peak E⃗RF, but comparable to the time-averaged value of

E⃗RF. That is to say, the mean-field self-repulsion of the
cloud is only modestly smaller than the effective electric
fields providing secular confinement. We see evidence
for this, for instance in the frequencies of the breath-
ing modes of the cloud. The ions therefore experience
a net confinement that is somewhat anharmonic. None
of the arguments for the limits of the size of systematic
errors on de hinge on the confinement being particularly
harmonic. Each trapped ion necessarily experiences a
total time-averaged axial electric field (whether external
or from other ions) extremely close to zero, and thus to

a high precision the rotation of E⃗rot causes no Berry’s
phase frequency shift. It is the case, however, that the
mean-field repulsion causes the ion cloud to be larger
than it otherwise would be at a given temperature. In
the presence of various field inhomogeneities, changes in
the radius of the cloud can change both the decoherence
rate and the average fringe frequency f0. We see shifts
in the mean Ramsey frequency f0 that correlate with the
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number of ions in the trap. These do not appear in the
D̃-odd frequency channels. The mean-field coulombic re-
pulsion does not break the various symmetries that keep
frequency shifts out of the eEDM channel.

On a microscopic level, the coulomb potential between
two nearest-neighbor atoms is typically 10−3kT , and thus
ions are far from the ion-crystal regime [29]. When
small-impact-parameter ion-ion collisions occur, the ion-
ion electric field can briefly spike to a magnitude which
is not infinitesimal compared to Erot [27]. This can cause

the tip of the E⃗rot to briefly wobble in a way that en-
closes solid angle, and there can be a resulting random
Berry’s phase shift that degrades the coherence between
the mF = 3/2 and mF = −3/2 states, but does not bias
the central value of the Ramsey fringe frequency. Adia-
batic relaxation of the confining potential of the trap dra-
matically reduces this source of decoherence, at the cost
of increasing the decoherence from spatial inhomoegene-
ity mentioned in this section. We empirically reoptimize
the compromise value of the ramped-down confinement
several times during the course of a long data collection
run.

Fields from the molecule-frame electric dipole moment
are down from the monopole-generated fields by a factor
of 105 or more.
As for magnetic interactions, each ion carries a mag-

netic dipole moment (3/2)gFµB. Approximating the dis-
tribution of 20,000 ions just as described above, the field
arising from a uniform magnetization within the ball of
ions could cause frequency shifts of order pHz, and is
thus neglected.

2. Effect of ion-cloud spatial distributions in which the
Stark doublets are not perfectly overlapping

Much of the ultimate accuracy and precision of our
measured fDB ∼ deEeff comes from the fact that we are
measuring a resonance in two samples of ions which over-
lap perfectly in space and in time, but for which Eeff
points in opposite directions. If for some reason the two
samples do not perfectly overlap, then spatial variation
in B̃-odd frequencies can cause systematic shifts in our
eEDM channel. Generically, time-averaged D̃-odd dis-
placements ⟨ri⟩D or sizes of the ion cloud ⟨ri2⟩D can
couple to first- and second-order gradients in fB to give
systematic shifts,

δfDB =
∑

i=x,y,z

⟨ri⟩D
∂fB

∂ri
+ ⟨ri2⟩D

∂2fB

∂ri2
. (78)

By moving the ions around in the trap, we measure

typical gradients ∂fB

∂ri
∼ 40mHz cm−1 and ∂2fB

∂r2i
∼

10mHz cm−2 and so we are potentially interested in
⟨ri⟩D ∼ 1× 10−4 cm and ⟨r2i ⟩D ∼ 5× 10−4 cm2.

We have good a priori reason to believe that the spa-
tial distributions of ions in the two doublets are identical

to very high precision. The two Stark doublets are ini-
tially populated by optical pumping with L961

trans from the
1Σ ground state via a 3Π0 state, both with Ω = 0. To
an excellent approximation, both these states have well-
defined parity in the modest electric fields used in our
experiment and so the pumping process is completely in-
dependent of doublet. Any D̃-odd spatial distributions
must be imprinted subsequently, either by the lasers used
to prepare or readout the states of the molecules, or by
D̃-odd forces on the ions.

We first discuss possible effects of the lasers used for
state preparation. The next laser to interact with the
ions is L1082

op which polarizes the ions by optically pump-
ing them into stretched mF states. Although this pro-
cess again proceeds via an excited state with Ω = 0, and
so each photon scatter is equally likely to populate ei-
ther doublet, in this case the laser excites out of the 3∆1

state, and so can potentially cause a D̃-odd population
difference. However, we operate in the strongly saturated
regime where all ions have sufficient time to interact with
the laser and so any effects of spatial intensity variation
are strongly suppressed. Due to this suppression, we ex-
pect any effects to be smaller than those discussed in the
next paragraph.

The other CW laser addressing molecules in the science
state is L814

depl used to remove population in unwanted

mF states. L814
depl is on for 7ms before the Ramsey se-

quence, to clean up any population not successfully opti-
cally pumped, and for 25ms after the Ramsey sequence
to remove population in one stretched state. Using mea-
surements of ion number as a function of L814

depl inter-
action time, we estimate the time taken to remove all
molecules in unwanted mF levels is about 1ms and so
both interaction periods are strongly saturated, again
greatly suppressing any effects of spatial variation. How-
ever for this laser, there is a second relevant time scale;
because the electric field is not perfectly aligned with the
k-vector of the light, molecules in the desired stretched
mF state can also occasionally scatter photons, remov-
ing a fraction βdep from the state we detect. This ef-
fect is largest for the time after the Ramsey sequence,
where interaction time is longest and we conservatively
estimate that βdep < 0.1. Although this step takes place
after the Ramsey sequence, if the ions removed have some
D̃-odd spatial dependence, that will result in similar de-
pendence being imprinted onto the remaining ions which

we detect. The rotating E⃗rot causes the ions to move in
small circles at speeds of ∼ 1000m s−1. This motion in
the x-y plane causes a sinusoidally varying Doppler shift
oscillating at ωrot with amplitude ∆Dopp ∼ 1000MHz.
This Doppler shift, combined with the Stark splitting of
∆St ∼ (dmfErot − A∥/2)/h ∼ 140MHz between the two
doublets means that the laser comes into resonance with
each at a slightly different time on each rotation. We
have identified two possible mechanisms related to this
effect which can produce D̃-odd spatial structure in the
cloud.

The first is that the interaction with each doublet takes
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place at slightly different spatial locations, separated by
δxdep ∼ 60 µm. This can cause an initial offset between
the two clouds, rDi0 ≲ βdepδxdep ∼ 6 µm. Initial offsets in
the center position of the two doublets can cause a non-
zero ⟨ri⟩D but, given that both clouds oscillate about
the trap center with trap frequencies ωsec ∼ 2π × 1 kHz,
the time-averaged effect is heavily suppressed by the long
Ramsey times, tR ∼ 2 s used in our experiment, ⟨ri⟩D ∼
⟨ri0⟩ωsec/2πtR ∼ 30 nm. This effect is D̃R̃-odd and so
produces a systematic when coupled to gradients in fBR.
The fBR gradients we measure in the radial directions are
< 20mHz cm−1, giving a systematic shift of < 100 nHz.
In reality we expect any effect to be significantly smaller
still due to the depletion laser being on for a time which
is long compared to one trap period so that any rDi0 is
greatly reduced.

If the laser beam has non-zero displacement from the
center of the micromotion, xdep, the interaction can se-
lectively remove more of the hotter ions from one doublet
than from the other, producing an effective ⟨r2i ⟩D in those
ions remaining in 3∆1. In the worst-case limit where the
depletion laser is much smaller than the ion cloud, the
mean square position of the removed ions is

(xdep +
δxdep

2
)2 − (xdep −

δxdep

2
)2 = 2xdepδxdep. (79)

The ions oscillate backwards and forward in the trap
and so, in the limit of no ion-ion collisions, their time-
averaged mean square position during the Ramsey time
is reduced by a factor of 2. Simulations of more realistic
ratios of laser to cloud size reduce this by a further factor
of ∼ 3. We estimate xdep < 2mm and so estimate the
difference in mean square position of the remaining ions
as ⟨ri2⟩D ∼ βdepxdepδxdep/3 ∼ 4× 10−5 cm2. The effect

is again D̃R̃-odd and so can produce a systematic when
accompanied by curvature in fBR. The largest such cur-
vature we measure is 70mHz cm−2, producing a system-
atic of ∼ 3 µHz. In reality, ion-ion collisions redistribute
the velocities and positions of ions in the trap so that
any initial difference in the size of the clouds is rapidly
scrambled. To set an upper limit on the timescale of this
thermalization, we note that we measure a curvature in
f0 of 1200mHz cm−2, caused by the spatial variation of

the magnetic field from the B⃗0 coils. For a 1 cm gaus-
sian cloud with no ion-ion collisions, this would cause
decoherence of ∼ 20% of the contrast in ∼ 50ms. This
is roughly equal to our total loss of contrast over a 3 s
Ramsey time and so ∼ 50ms sets a rough upper limit for
the timescale of thermalization. For the shortest Ramsey
times used in the dataset of ∼ 1.5 s, the possible system-
atic shift is reduced by a factor of 1.5 s/50ms ∼ 30. As
such we estimate the size of any residual systematic to
be < 3µHz/30 = 100 nHz and so do not include its con-
tribution in our systematic error budget.

The second mechanism is that the electric field vector
defining the quantization axis is, on average, pointing in
slightly different directions when the laser interacts with
each doublet. These angles are given by θu = θ0/2 + δθ,

θl = −θ0/2 + δθ where θ0 ∼ ∆St/∆Dopp ∼ 0.14 is the
difference in the angle of Erot when it addresses each
of the two doublets and δθ ∼ δdepl/∆Dopp is half the
difference in the magnitude of those angles caused by
imperfect laser detuning δdepl ≲ 20MHz. In the unsat-
urated limit, the scattering rate with which each dou-
blet interacts with the laser is then different by a factor
cos θu − cos θl ∼ −2∆Stδdepl/∆

2
Dopp. Again, the laser in-

teracts with a fraction ∼ 0.1 of the molecules and so we
estimate the possible difference in mean square position
as ⟨ri2⟩D ∼ ⟨r2i ⟩0.1(2∆Stδdepl/∆

2
Dopp) ∼ 6 × 10−4 cm2.

This effect is R̃-even and so can produce a systematic
when accompanied by curvature in fB . The largest such
curvature we measure is 10mHz cm−2, producing a sys-
tematic of < 6 µHz. The same thermalization arguments
discussed in the previous paragraph reduce this to below
200 nHz.

Finally, we consider the first dissociation laser. The
photodissociation beam is a doubled, pulsed dye laser
with a 10 ns pulse width. The central frequency of the
laser pulse is stabilized to a wavemeter, with the set point
chosen to be a compromise between the peaks of the two
transitions for dissociating the upper and lower doublets.
Over the course of the entire data run we find that on
average we see a D̃-odd term of 2% in the number of
Hafnium ions we create. A residual difference in effi-
ciency, in combination with intensity-driven saturation
and spatial structure on the beam can generate a D̃-
odd contribution to the mean-square spatial extent of the
molecules that participate in the Ramsey fringes. This in
turn can combine with curvature in fB , which can be as
large as 10mHz cm−2, to give a systematic error on fDB .
As with possible D̃-odd effects arising from the optical
pumping beams, the size of the resulting systematic er-
ror is strongly suppressed by ion-ion thermalization that
occurs over the course of the tR and washes out size dif-
ferences. The pulsed laser’s width in frequency space is
large compared to the transform-limited value for a 10 ns
pulse width, and frequency structure within the pulse is
not well characterized, which makes modeling the effect
of the laser beam a little uncertain. Just before enter-
ing the chamber, however, the dissociation beam passes
through an iris with 1 cm diameter. We can make the
simplifying and very pessimistic assumption that the ex-
tra 2% D̃-odd change in Hafnium ions is due entirely to
molecules dissociated just at the outer edge of the laser
beam. In this way we can set a conservative limit that
the size of this effect on fDB must be less than 3.5 µHz.

In addition to these effects from the lasers, we have
also considered possible effects of D̃-odd forces on the
ions due to electric field gradients, and D̃-odd heating
due to photon scattering. We find each to be significantly
smaller than our limits on those from the lasers.
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3. Effects of frequency drifts

The average frequency probed in our experiment expe-
riences drifts over multiple time scales, driven by multiple
physical effects. The frequency is linear in the magni-

tude of E⃗rot, and linear in the magnitude of the reversing

B⃗0. The electronics that generate these fields have gains
that drift with various thermal time constants. Changes
in surface potentials cause the equilibrium position, the
center of the trapped ion cloud, to move slightly over
the course of hours and days. In the presence of lin-
ear field gradients, this can cause a frequency drift. We
reoptimize ion production every few hours. In between
these tune-ups, ion number usually drifts downward. The
fringe frequency is weakly coupled to ion number because
the larger ion clouds experience slightly different spatially
averaged fields. There is also the possibility of finite ‘set-
tling time’ as e.g. the magnetic field restabilizes after we
switch its sign.

The order in which we cycle through the various com-
binations of the parameters B̃, R̃, Ĩ can couple to the
various frequency drifts and result in systematic effects
in various frequency channels. The data collection soft-
ware must periodically perform various overhead func-
tions such as writing data to disk, and this can disrupt
the cadence of data collection and cause differential ther-
mal shifts for different switch states. As described in Sec-
tion II I, every two blocks we reverse the order of switches.
We report data averaged over the frequencies obtained
from blocks with the different progression direction, but
if we disaggregate the data we see that progression order
is associated with shifts in the D̃-even frequency chan-
nels of 2 or 3mHz, in particular in fB , f I and fR. We
reverse but do not fully randomize the switch progression
between blocks, and a simple model for drifts would sug-
gest that fRI , fBR, and fBI should all be shifted away
from zero by switch-progression effects that survive av-
eraging over our reversal of switch progression direction.
Indeed we see that both fBI and fRI differ from zero
by statistically significant amounts of order ∼ 1mHz, see
Appendix B.

The D̃-odd frequency channels, and fDB in particular
are highly insulated from drift effects because the upper
and lower doublets are probed simultaneously with each
shot of the experiment. We estimate that the degree
of temporal overlap is better than a part in 104 of the
duration of the Ramsey sequence which, if the blocks had
been carried out in only one of the progression orders,
would limit any possible leakage from D̃-even channels
to D̃-odd channels to ∼ 3mHz/104 ∼ 300 nHz. After
including the effects of averaging over the two progression
directions, we expect any effect on our result to be of
order 10 nHz and so do not include any contribution in
our systematic uncertainty budget.

VII. PHASE SHIFTS

In this section we explore possible systematic effects
caused by shifts in the ion’s internal quantum phase, or
our measurement of that phase. Using trapped ions for
our measurement makes us relatively insensitive to these
effects when compared to other similar experiments us-
ing beams of atoms or molecules. The first reason is that
we can vary the free evolution time of our measurement;
each block of our dataset consists of data taken at short
and long Ramsey times. Most phase shifts caused by
state-preparation or measurement are common mode and
so cancel out in our eEDM channel which is only sensi-
tive to the differential phase evolution between the early-
and late-time data. The second reason is that any resid-
ual shifts—from phase effects which are different for the
early- and late-time data—get divided by the difference
in free evolution time between the early- and late-time
data. The interrogation time of the ions in our exper-
iment is roughly three orders of magnitude longer than
comparable experiments using beams [2, 22] and so any
effects are reduced by a similar factor. In Sec. VIIA, we
consider phase errors caused by imperfections in state-
preparation, and in Sec. VIIB, we consider errors caused
by imperfections in our measurement of phases.

A. State preparation

1. phases due to π/2 pulses

During preliminary data runs, we measured a small,
and unexpected, contribution to the initial phase
(roughly 10mrad) which is odd under D̃, B̃ and Ĩ. We
studied the dependence of this effect on many experimen-
tal parameters. In particular we found: (a) the magni-
tude of the effect depended strongly on the parameters
used for the π/2 pulses–we could greatly suppress the ef-
fect by implementing π/2 pulses with less reduced values
of Erot, and compensating by increasing their duration;
(b) the sign of the effect changed when we projected into
the opposite doublet; and (c) contrary to what we had

anticipated for an effect which is odd under Ĩ, there is no
dependence on the side of the phosphor screen that each
doublet is imaged onto.
We have settled on a probable physical mechanism

for the effect which qualitatively matches our obser-
vations by including the effects of other states in the
3∆1(v = 0, J = 1) manifold outside the two doublets
used for spectroscopy. The important features of this
mechanism can be illustrated with the toy model system
shown in Fig. 10(a). The model includes just 4 of the
12 levels in 3∆1(J = 1): the two F = 3/2, |mF | = 3/2
states of a given doublet, labeled |↑⟩ and |↓⟩, and the
two F = 3/2, |mF | = 1/2 levels which lie closest to them
in energy, labeled |a⟩ and |b⟩. In an electric field, and
in the absence of any magnetic field or rotation, the two
pairs of states with |mF | = 3/2 and |mF | = 1/2 are each
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FIG. 10. Toy model to explain ϕDBI . (a) Uncoupled basis.
(b) Coupled basis.

degenerate. The Stark splitting between the two pairs
is κ. When rotation is included, there is a direct cou-
pling mixing |↑⟩ and |a⟩, and |↓⟩ and |b⟩. In the full 12-
level model there is also a second-order coupling between
|a⟩ and |b⟩—involving a single matrix element associated
with each of rotation and Ω-doubling—and a fourth-order
coupling between |↑⟩ and |↓⟩— involving three matrix el-
ements associated with rotation and a matrix element
associated with Ω-doubling. Although these couplings
are much smaller than the direct coupling, they are im-
portant because they act in degenerate subspaces so we
include their effects in our toy model through couplings
∆ and ∆′. We neglect effects of magnetic fields here
because we are interested in what happens during a π/2-
pulse where the other effects are all much larger. The
Hamiltonian for our toy system in this basis is then

H =


κ δ 0 ∆

δ 0 ∆′ 0

0 ∆′ 0 δ

∆ 0 δ κ

 , (80)

where the states are in order of mF : |↑⟩ , |a⟩ , |b⟩ , |↓⟩.
We can simplify our thinking by changing to a differ-

ent basis. Consider the case where we somehow inde-
pendently tune δ to zero; we now have two uncoupled
systems, |↑⟩ and |↓⟩, and |a⟩ and |b⟩. We can diagonal-
ize each system to give eigenstates which are fully mixed
as shown in Fig. 10(b): |3/2,+⟩ = 1√

2
(|↑⟩ + |↓⟩) and

|3/2,−⟩ = 1√
2
(|↑⟩−|↓⟩), and |1/2,+⟩ = 1√

2
(|a⟩+ |b⟩) and

|1/2,−⟩ = 1√
2
(|a⟩ − |b⟩). Rewriting the full toy-model

Hamiltonian in this basis we have

H =


∆′ δ 0 0

δ κ+∆ 0 0

0 0 −∆′ δ

0 0 δ κ−∆

 , (81)

where the states are in the order
|1/2,+⟩ , |3/2,+⟩ , |1/2,−⟩ , |3/2,−⟩. The Hamilto-

nian is now block diagonal. During the second π/2
pulse, the mixing between |↑⟩ and |↓⟩ causes population
to oscillate between them (as intended), but it also
causes a weak oscillation between the |mF | = 3/2 states
and the |mF | = 1/2 states. This oscillation depends
on the initial phase difference between the |↑⟩ and |↓⟩
states. The two most important phases to consider
are the sides of the fringe; where we are most sensitive
to phase shifts, and thus where we take most of our
data. On the side of the fringe, the state immediately
before the second π/2 pulse is |3/2,+⟩ or |3/2,−⟩. It
can be seen from Eq. 81 that when δ = 0, these states
are eigenstates of the Hamiltonian and the π/2-pulse
does nothing. When δ is non-zero, the coupling causes
population to be transferred from |3/2,+⟩ to |1/2,+⟩
and from |3/2,−⟩ to |1/2,−⟩ with Rabi frequencies Ω+

and Ω− respectively,

Ω+ =
√
4δ2 + (κ+∆−∆′)2 ∼ κ+∆−∆′,

Ω− =
√
4δ2 + (κ−∆+∆′)2 ∼ κ−∆+∆′.

(82)

The two Rabi frequencies are different because the en-
ergy gap is different in each case. The amplitudes of the
oscillations in each case are then

A+ =
δ2

4δ2 + (κ+∆−∆′)2
∼ δ2

κ2
,

A− =
δ2

4δ2 + (κ−∆+∆′)2
∼ δ2

κ2
.

(83)

The approximate expressions in both cases assume κ ≫
δ,∆,∆′. This difference in Rabi frequencies results in a
different amount of the population being transferred to
|a⟩ and |b⟩, dependent on the initial phase. We measure
only the population in either |↑⟩ or |↓⟩ and never the
population in |a⟩ or |b⟩, and so this population transfer
appears as an apparent phase shift. The population os-
cillations are happening very fast—the frequencies are of
order the energy gap between the 3/2 states and the 1/2
states, κ ∼ MHz—and so the size of the apparent phase
shift can depend very sensitively on the exact parameters
of the π/2-pulse. The maximum size of the effect goes as
1/κ2 and so depends strongly on the size of Erot during
the π/2 pulse.
We now examine the dependence of this effect on the

experimental switch state:

(i) Ĩ: in our implementation of the Ĩ switch, the mF

state we project into, and read out of, is Ĩ odd. This
corresponds to measuring, for example, |↑⟩ instead
of |↓⟩. On the side of the fringe where the popu-
lation in |↑⟩ is decreasing with Ramsey time, the
population in |↓⟩ is increasing with Ramsey time
and as a result the apparent phase shift—a relative
change in population which has same sign for both
states—is Ĩ odd.

(ii) B̃: the phase shift is completely independent B⃗0 and
so is B̃-odd.
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(iii) D̃: in the opposing doublet, the sign of κ is flipped;
the |mF | = 1/2 states are above the |mF | = 3/2
states in energy. This means that the relative rate
of transfer between the two sides of the fringe are
flipped and the effect is D̃ odd.

(iv) R̃: δ, ∆ and ∆′ all involve odd numbers of matrix
elements associated with rotation and so flip sign
with rotation direction. This flips the sign of the
effect so that the relative rates of population trans-
fer out of the two states are reversed. However, the
flipping sign of ∆ means that the initial superpo-
sition produced by the first π/2 pulse is π out of
phase compared with the opposite rotation direc-
tion so the phase shift at a given Ramsey time ends
up being R̃ even.

In the experiment it is very difficult to control the param-
eters of the π/2 pulses at the required level to quantita-
tively verify this mechanism is at play. In addition, small
differences in the electric field experienced by different
ions, and coupling to other states in the full Hamiltonian,
cause the population oscillations to dephase rapidly, so
we were never able to observe them. However, we believe
the qualitative agreement with what we observe to be
convincing.

We took three steps to mitigate the effects of ϕDBI . We
reduced the size of the effect dramatically by increasing
the value of Erot that we ramp down to during the π/2-

pulse relative to Ref. [24]. We also added the P̃ switch
to our experimental sequence for the eEDM dataset; in
every other block, we read out of the opposite state, so
that any remaining effect would change sign. Finally,
midway through the dataset, we reversed the polariza-
tion of all the optical pumping, depletion and dissociation
lasers, again flipping the sign of any effect. We can still
check for any residual effect by looking at the difference
in ϕDBIP before and after the waveplate change; in the
eEDM dataset its average value was 1.1(1)mrad. Such
phase shifts could potentially leak into frequency chan-
nels if, for example, the second π/2 pulse depended on
the Ramsey time, perhaps because of heating in the am-
plifiers or similar. We note that during our exploration
of the effect we were able to increase its size to 170mrad,
and saw no shift in fDBI at the 1σ confidence level. Us-
ing this data we can set a limit on any shift caused by the
phase at −3(4) µHzmrad−1, increasing confidence in our
ability to reject systematic effects associated with phases
caused by the π/2 pulses. In the eEDM dataset, none of

the other D̃-odd phases (except ϕD) exceed 750 µrad and
ϕDB = −30(140) µrad, constraining any systematic shift
in fDB to ≲ 500 nHz. Since we know of no mechanism
for a leak, and observe no evidence of one, we do not
include this in our systematic error budget.

B. Internal state measurement

1. Improperly characterized imaging contrast

Our imaging process allows us to differentiate between
Hf ions originating from the upper and lower doublets by
projecting them onto different sides of the imaging MCP.
However, due to the initial size of the cloud and its fi-
nite temperature the two clouds are not perfectly sepa-
rated and they overlap slightly at the center of the screen.
This overlap can cause our measurement of the difference
frequency to be pulled and, if improperly characterized,
can potentially cause a systematic error. To see how this
works, consider how the number of ions detected on each
side of the MCP, and in each phase, depends on the phase
evolution of the upper and lower doublets Φu and Φl,

Nanti
u =

N

2
(1− sin(Φu))(1− ϵ) +

N

2
(1− sin(Φl))ϵ

N in
u =

N

2
(1 + sin(Φu))(1− ϵ) +

N

2
(1 + sin(Φl))ϵ

Nanti
l =

N

2
(1− sin(Φl))(1− ϵ) +

N

2
(1− sin(Φu))ϵ

N in
l =

N

2
(1 + sin(Φl))(1− ϵ) +

N

2
(1 + sin(Φu))ϵ,

(84)

where N is the mean number of ions measured on each
side of the MCP, ϵ is a parameter which characterizes the
amount of leakage of each cloud onto the other side of the
MCP screen, and we have assumed perfect contrast. We
can now form asymmetries as we do in our analysis,

Au =
N in

u −Nanti
u

N in
u +Nanti

u

= (1− ϵ) sinΦu + ϵ sinΦl,

Al =
N in

l −Nanti
l

N in
l +Nanti

l

= (1− ϵ) sinΦl + ϵ sinΦu.

(85)

We can simplify our thinking by assuming that we are
taking data close to the side of the fringe such that Φu ≃
2pπ + δu and Φl ≃ 2qπ + δl for p and q integer. In this
limit we have

Au ≃ δu − ϵ(δu − δl)

Al ≃ δl + ϵ(δu − δl).
(86)

The apparent phase of each of the doublets are pulled
towards each other by an amount that depends on the
leakage ϵ and their difference in true phase δu − δl. We
account for this in our analysis by including a parameter
CI, the imaging contrast. By comparing Eq. 85 with
Eq. 11 we can identify ϵ = (1 − CI)/2. Now suppose
we mischaracterize the imaging contrast CI, assigning it
an incorrect value C ′

I. The resultant fitted values for the
phases of the upper and lower doublet δ′u and δ′l will then
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satisfy the following expressions

δ′u −
1− C ′

I

2
(δ′u − δ′l) = δu −

1− CI

2
(δu − δl),

δ′l +
1− C ′

I

2
(δ′u − δ′l) = δl +

1− CI

2
(δu − δl).

(87)

We find that the fitted difference phase Θ′ = δ′u − δ′l is
different from the true difference phase Θ = δu − δl by
an amount

Θ′ −Θ =
(CI − C ′

I)Θ

C ′
I

. (88)

Both the early- and late-time data in our Ramsey fringes
are potentially susceptible to this phase pulling effect and
so it is important that we properly characterize and un-
derstand CI. To do so, we took fringes where the data
was collected deliberately offset from the early- or late-
time zero crossings of the difference fringe. Taking the
late-time data removed from the beat by a number of f0

periods n causes the fitted fD to be pulled by an amount

δfD =
Θ′ −Θ

2πtR
=

n

tR

(CI − C ′
I)

C ′
I

fD

f
. (89)

Moving the early-time data has the same size effect but
with the opposite sign. For a given C ′

I and swatch size,
we can fit the extracted fD vs the number of periods we
are offset from the zero crossing of the difference fringe.
Figure 11 shows how this slope varies with the value of C ′

I
for the swatch size of 90 pixels used in our measurement,
chosen to maximize C

√
N . The correct value of C ′

I is the

one for which ∂fD

∂n = 0, here C ′
I = 0.89(2), corresponding

to ϵ = 0.05(1), which we use for analysis of our whole
dataset. We note that, because the points in Fig. 11
correspond to reanalysis of the same dataset, the signal
to noise in the shifts is much better than indicated by
the error bars. This also applies to Figs. 12–14 and the
lower part of Fig. 15.

Whilst we can measure CI very precisely, its value can
wander slightly over time. We have repeated this mea-
surement many times over the course of a year and find
that the early- and late-time CI are consistent with one
another, and between measurements, to ±0.05. We con-
servatively estimate the largest possible deviation in CI,
averaged over the dataset to be δCI ∼ 0.05.

For this effect to leak into fDB and cause a systematic
shift in our eEDM signal requires either the amount we
miss the beat by to be B̃-odd, or the imaging contrast
itself to be B̃-odd. We consider the B̃-odd phase first.
Because the mean value of ϕD is negative, the early-time
beat happens before zero, and so we are forced to take
data with nonzero Θ. In this case a non-zero value of
ϕBD will mean that the early-time data is taken at a
different Θ depending on the B̃ switch. The value of
ϕBD over the dataset is −30(140) µrad. Combining this
with the uncertainty in CI above leads to a systematic

uncertainty ϕDBδCI

2πtRCI
∼ 0.7 µHz which we include in our

FIG. 11. Example data. Plotting the slope of fD when the
early-time data is taken at varying offsets from the beat. The
x-intercept gives C′

I = 0.89(2), which we then use in our fit-
ting program.

FIG. 12. Varying the swatch width while correcting for the
doublet contrast. We see no meaningful shifts in our eEDM
channel and a small residual shift in fD. In the right panel
we have averaged over the 3 distinct values of fD that we
operated at.

systematic error budget. As a final check, we refit all
1329 blocks in the dataset with CI deliberately offset
from our best estimate and see no concerning shift in our
final value of fDB .

A systematic shift can also potentially be caused by ϕD

combined with a B̃-odd imaging contrast CB
I . For this

shift to reach the 5 µHz level would require CB
I ∼ 0.005,

or equivalently ϵB ∼ 2.5 × 10−3, about 5% of the total
leakage. In contrast, we find that quantities like B̃-odd
Hf number and cloud position are smaller than a part
in 103. We know of no mechanism which can cause a
nonzero CB

I without strongly affecting these quantities
and so include no contribution in our systematic uncer-
tainty budget.
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FIG. 13. The effect of moving the center of the swatch on our
eEDM channel.

FIG. 14. Moving the center of the swatch has a measurable
effect in several parity channels. Note all panels show the en-
tire aggregated dataset except for the fD panel, which shows
a subset of measurements performed at a single f0

2. Swatch position

As described in Section II, the position of the center
line and corresponding swatch for each switch state is
determined by an algorithm based on images of the cloud
taken without any π/2-pulses. In this section we explore
the consequences of a possible systematic error in the
center position dividing line between the two doublets.

We reanalyzed the dataset, with the center line in each
image displaced by different number of pixels left and

right. The largest observed shifts in the frequency and
phase channels are shown in Fig. 14. We can explain
the observed shifts using ideas from the previous section.
Let’s use Eq. 87 as before but this time with the phase
pulling on each of the doublets separated,

δ′u − δu =
(δu − δl)(ϵ− ϵ′)

2ϵ′ − 1
,

δ′l − δl = −
(δu − δl)(ϵ− ϵ′)

2ϵ′ − 1
.

(90)

We can combine both of these equations as

δϕ = D̃
Θ(ϵ− ϵ′)

2ϵ′ − 1
(91)

where δϕ is the phase pulling of a single fringe and Θ =
δu− δl is the amount we are missing the beat by. We can
express the effect of moving the swatch center around
by modifying ϵ, the amount each doublet leaks into the
other

ϵ = ϵ0 + κD̃ĨYc − ν(D̃ĨYc)
2. (92)

This equation expresses the fact that as we move the
swatch over to one side, there is more leakage into one
of the doublets and less into the other. The direction
of the leakage depends on the I switch. The first order
effect, ∝ κ, is linear but for larger swatch displacements,
the second order effect, ∝ ν, starts to become important
too. Substituting this back into Eq. 91 and assuming for
simplicity that we have done a good job of picking the
doublet contrast in the first place so that ϵ′ = ϵ0, we get

δϕ =
Θ

2ϵ′ − 1
(ĨκYc − D̃νY 2

c ). (93)

The last factor we need to include to explain the data
is to make the approximation that the main place we
are missing the beat is at early time; a small amount of
differential phase evolution occurs during the π/2-pulses
so that even at tR = 0, the two doublets are slightly out
of phase. Including the largest (by far) contribution to
the D-odd phase only, we have Θ ∼ ϕD, and

δϕ =
1

2ϵ′ − 1
(ĨκϕDYc − D̃νϕDY 2

c ). (94)

So the principle effects we expect are a linear shift in
ϕI and a smaller quadratic effects in ϕD. Because (al-
most) all of the pulling is happening at early time, each
of these could be expected to have an echo in the cor-
responding f channel, with opposite sign and scaled by
a factor of 2πtR ∼ 15 s. Each of these can be seen in
Fig. 14 from which we infer κ = −1.89(6) × 10−3 per
pixel and ν = −7.0(2)× 10−6 per pixel squared, in good
agreement with estimates of these parameters from im-
ages such as that shown in Fig. 4. The shifts seen in ϕDI

and fDI (about a factor of 5 smaller than those in ϕI and

f I) could be caused by a Ĩ-odd systematic error in the
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swatch position Y I . Including this in Eq. 94 yields an ad-

ditional contribution ϕD

2ϵ′−1 (κY
I − D̃νY I2 − 2D̃ĨνYcY

I).
Comparing the term linear in Yc to the observed gradient
in ϕDI gives Y I = 25(1) pixels. Other possible system-
atic shifts in swatch position can be constrained by the
data in the same way to less than 5 pixels.

The largest gradient in a frequency channel seen in this
analysis is ∂f I/∂Yc ∼ 2 µHz per pixel. It is important
to realize that the swatch displacement that is carried
out here is just one of many possible ways of moving the
swatch. Because we moved the swatch the same direc-
tion in each switch state, Yc shows up in Eq. 92 with
D̃Ĩ. There are 7 other possible ways to move the swatch,
always D̃-odd but with all other possible switch-state
dependence. We can infer the effects of these possible
systematic effects from those shown here. We are in-
terested in any possible shifts in ϕDB and fDB which
can only show up quadratically in any systematic er-
ror in the swatch position. To see an effect requires
either missing the beat by a B̃-odd amount, or a com-
bination of two systematic shifts in swatch position, one
B̃-odd and one B̃-even. As discussed in the previous
section, the former can happen due to a combination of
our non-zero ϕD and a non-zero ϕDB . In our dataset,
ϕDB = −30(140) µrad which, combined with Y I gives

a systematic | ϕ
DBνY I2

2πT (1−eϵ′) | < 70 nHz. The largest con-

tribution to the latter is from Y I combined with Y BI ,
constrained by looking at the gradient of ϕDBI in our
analysis to be 1(2) pixels. This gives a systematic of

| 2ϕ
DνY IY BI

2πT (1−eϵ′) | < 1.2 µHz. We include the quadrature sum

of these two in our systematic uncertainty budget.

3. Counting saturation

Our imaging system is subject to ion-counting satura-
tion, and if that were somehow magnetic field and dou-
blet odd it could be a concern. It is hard to conceive of
a mechanism for this to be both magnetic field and dou-
blet odd, however, because even if one side of the screen
saturated faster than the other, that asymmetry is heav-
ily suppressed by the fact that the Ĩ switch swaps which
side of the screen we read each doublet out on.

Collating the imaging data over 25 blocks we can see
that our imaging does indeed saturate (the integrated im-
age intensity, I, does not scale linearly with the number
of individually counted ions, see Figure 15).

We can fit the data in Figure 15 to the function
Hf+counted = βI/(1 + I/Isat). For small numbers of ions,

the image intensity should scale linearly with Hf+counted.
Therefore, we can apply a saturation correction to our
data: Hf+real = Hf+counted(1 + αHf+counted), where α =
1/(Isatβ) is the saturation correction parameter. We re-
analyzed all our data with several saturation corrections
applied: none/zero, two incorrect ones, and the “true”
value of α = 8.52 × 10−4. We see no significant shift in
our eEDM channel and so we do not include this effect

FIG. 15. Imaging saturation. (a) Imaging data collated over
25 blocks. The upper doublet data is in orange while the lower
doublet data is in blue. (b) Effect of saturation correction on
fDB , averaged over eEDM dataset.

in our systematic error budget.

4. Time-varying offsets

Our asymmetry fringes are slightly offset from zero due
to the necessary compromise in our π/2-pulse parameters
when addressing both doublets simultaneously, discussed
in Appendix B. The offsets are characterized by the pa-
rameters Ou/l from Eq. 9. It is possible that these offsets
might decay as a function of Ramsey time, for example if
collisions slowly redistribute population between the two
states in a doublet. Since we fit our fringes with a single
offset for all Ramsey times, this could potentially lead to
a systematic shift in the relative phases. To investigate
this possibility, we refit our entire dataset with a fixed
differential offset between the early- and late-time asym-
metry data points and looked for changes in fDB . We
observe no significant shifts and so include no contribu-
tion in our systematic uncertainty budget.

VIII. CONCLUSION

Table VII presents our error budget. We have demon-
strated a significant advance in the characterization of
our experiment resulting in a lower systematic uncer-
tainty and a measurement which is statistics dominated.
The use of rotating bias fields and trapped molecules is
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TABLE VII. Uncertainty budget

Effect Section Correction (µHz) Uncertainty (µHz)

Magnetic

Non-reversing B⃗0 VIA1 0.1 < 0.1

Second harmonic of Erot and transverse magnetic field VIA3 2.2

Third harmonic of Erot and magnetic field gradients VIA4 1.5

Higher harmonics of Erot and higher-order magnetic field gradients VIA4 < 0.1

Ellipticity of Erot and magnetic field gradients VIA5 1.7

Berry’s phase

Phase modulation due to axial secular motion VIB 3 3.4

Axial 2nd harmonic with ellipticity of Erot VIB4 1.7

Higher harmonics of Erot VIB5 3.0

Rotation induced mixing

Leaking of fBR VIC1 0.2

Axial magnetic fields VIC 2 0.4

Other frequency

Imperfect overlap of spatial distributions VID2 3.5

Phase

Improperly characterized imaging contrast VIIB 1 0.7

Swatch position VIIB 2 1.2

Total systematic 0.1 6.9

Statistical 22.8

Total 0.1 23.8

a powerful technique for suppressing systematics; the ro-
tation means that most stationary field-induced system-
atics average away over a rotation cycle, and the trapped
species allows us to measure both early- and late-time
phase which eliminates a large class of state-preparation
systematics one might otherwise have to worry about.
As eEDM sensitivity is pushed into the next decade of
accuracy, these advantages may prove essential.
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Appendix A: Parameters varied in search for
unknown systematic effects

During evaluation of the systematic uncertainty of our
measurement, we varied a wide range of experimental
parameters. Here, we give more details on the parameters
varied, the range over which they were varied, and the
typical values of the parameter during the eEDM dataset.

(i) Uniform magnetic fields. We applied transverse
magnetic fields—in the plane of Erot—up to 1.5G,
and axial magnetic fields—perpendicular to Erot—
up to 9G. This can be compared with typical values
during data collection of 10mG.

(ii) Magnetic field gradients. We applied large magnetic
fields to the ions using small permanent magnets
positioned close to the vacuum chamber. We esti-
mate the magnetic field gradients produced by these
magnets to be of order 100mGcm−1. This can be
compared with our conservative estimate of gradi-
ents in the absence of the magnets of 10mGcm−1.
To avoid magnetizing the chamber or other nearby
components of the apparatus, these tests were con-
ducted after data collection for the eEDM measure-
ment was complete, but before unblinding.

(iii) Polarization of state-preparation lasers. The light
used for state-preparation and cleanup is circularly
polarized using a pair of Berek polarization com-
pensators. This circular polarization is optimized
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and verified by inserting a polarizer and photodi-
ode into the beam and observing the variation in
the photodiode signal as the polarizer is rotated.
If the ratio of the peak-to-peak intensity to the
mean intensity is R, the normalized magnitude of
the electric field in the opposite handedness is given

as η = 1
2

√
2−
√
4−R2, peaking at η = 1/

√
2 for

R = 2 where the light is linearly polarized. We use
this as a metric for the polarization imperfection.
We typically achieve η ∼ 3 × 10−3 measured be-
fore entering the chamber and η ∼ 1 × 10−2 after
passing through the vacuum chamber (through two
windows). During our systematic investigations, we
increased this imperfection as much as much as pos-
sible while retaining usable fringe contrast, giving
η ∼ 1× 10−1 after the chamber.

(iv) Polarization of dissociation lasers. The polariza-
tions of the pulsed UV dissociation lasers are set
using a quarter waveplate immediately before they
enter the chamber. We moved this waveplate up
to 10 degrees from the optimum point during our
exploration.

(v) Intensity of vibrational cleanup laser. We took
blocks with the vibrational cleanup laser off.

(vi) Position of ions in trap. We can tune the position of
ions in our trap by varying the DC offset voltages we
apply to our trap electrodes. We were typically able
move ions by roughly ±4mm in the radial plane and
±10mm in the axial direction. We estimate that,
during normal operation, the displacement of the
cloud from the geometric trap center is less than
1mm in all directions.

(vii) Trap frequencies. We varied the DC voltages ap-
plied to the axial electrodes by a factor of∼ 2 during
our parameter exploration. This changes both the
axial and radial trap frequencies by a factor ∼

√
2.

(viii) π/2-pulse parameters. We experimented with dif-
ferent π/2-pulse parameters, changing their dura-
tion from the 30 µs used during the dataset to 1ms
by varying the magnitude that we ramp Erot down
to. We also varied the ramp duration from 16 µs out
to 1ms.

(ix) Erot magnitude. We operate with Erot very close to
the maximum that can be handled by trap drivers
during the free evolution time. However, we did ex-
periment with taking blocks where Erot was reduced
by ∼ 25%.

(x) Erot imperfections. We experimented with a wide
variety of imperfections to Erot including higher har-
monics and ellipticities, as described in detail in Sec-
tions VIA and VIB.

Appendix B: Guide to the tables of fit values

1. Overview of data

In each block of our dataset, we fit each asymmetry
fringe with the functional form

Ce−γt cos(2πf + ϕ) +O, (B1)

where C is the contrast, γ the rate of contrast decay, f
the frequency, ϕ the initial phase, and O the offset. We
then create linear combinations of the fitted parameters
in a block to give the switch-parity channels, the compo-
nents of each fit parameter which are odd or even under
the various switches, D̃, B̃, R̃, Ĩ etc. We label these chan-
nels with superscripts which denote the switches under
which they are odd. The fitting procedure and formation
of the switch-parity channels are described in detail in
Sections III B and III C respectively. In Tables VIII–XII
below, we present the values of each of the switch-parity
channels in our dataset.

The data blocks can be divided into three main cate-
gories based on the approximate value of f0, correspond-
ing to roughly 77, 105, and 151Hz. fD ≃ δgF

gF
f0, or

−171, −230 and −327mHz respectively, and by choosing
late-time Ramsey fringes centered at 1/(2fD) or roughly
2.9, 2.2 and 1.5 s, the late-time Ramsey fringes were taken
at the re-phasing of the fringes for the upper and lower
doublets. In the tables, we present average values of each
parameter taken separately over the three ranges of f0,
plus an average taken over all the blocks. In each case,
the quoted 1σ errors are based on combining the esti-
mated error on all the relevant blocks, and then relaxing

that value by multiplying by
√
χ2 to correct for over-

scatter. For reference, we include the relevant value of
χ2 as calculated before the error bars were relaxed. The
χ2 associated with the relaxed values of σ displayed here
are all, by construction, equal to 1.

2. Overall comments

The parameters which are even in all switch states (su-
perscript 0) are the noisiest, as they are unprotected from
all drifts in the experimental conditions. These drifts
arise from many sources, for instance: (i) changes in the
temperature of the lab, or of the water cooling the power
op-amps that drive the ion-trap electrodes; (ii) changes
in the ambient magnetic field and its gradients, arising
e.g. from a distant freight elevator, a less-distant optical
table, or a still-closer weld in an only nominally non-
magnetic UHV chamber; (iii) variation in the number,
temperature, and density of the ion cloud; or (iv) drifts

in the current supply that drives the B⃗0 coils. Cloud
size, and thus ion density and trap temperature, were
not well-characterized parameters. Ion number in par-
ticular drifts from block to block and, due to mean-field
coulomb repulsion within the cloud, is coupled to cloud
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size and to f0 which is an average over spatial field inho-
mogeneities. Ion production parameters were frequently
reoptimized between blocks, with resulting jumps in f0

of tens of mHz or more. The strength of radial and ax-
ial trap confinement were treated as parameters to be
tweaked to maximize the precision per block of data.

All P̃ -odd values are in a category by themselves, in
that they were not collected as part of a rigorously im-
plemented intra-block switch. Instead, we reverse the
direction of the relevant polarizer every other block. On
some days, we took an odd number of blocks. In other
instances we vetoed an entire block of data which left
the next block of data unpaired with a block of oppo-
site P̃ switch. For these reasons, from our entire run of
∼ 1300 blocks, we do not try to generate ∼ 650 sets of
P̃ -odd fit values based on pairs of matched, sequentially
collected blocks. Instead, for each of the f0 superblocks,
we divide the blocks into the P̃ = 1 and P̃ = −1 piles,
calculate weighted mean values for each fitting parameter
and each of the {D̃, B̃, R̃, Ĩ} parity channels, with error
bars corrected for scatter. Then, element-wise across the
large table of values, we take either a sum or difference
between the P̃ = 1 and P̃ = −1 to create the overall P̃ -
even or P̃ -odd parity channels. In this method, there is
no particular meaning to χ2 for the P̃ -odd parity chan-
nels, so no such value is presented in the tables below,
however we use the P̃ -even χ2 to relax the associated
error bars.

After each block, we attempt to servo the value of fB

back to zero for the subsequent block. Thus the mean
value of fB is very low despite the fB channel being
susceptible to drifts in ambient conditions. These drifts
can be tracked because we record the value of the current
in the B⃗0 coils used to servo fB .
Looking across the 480 parity-channel values associ-

ated with the three frequency superblocks, and the 160
fully aggregated values, we see the overwhelming major-
ity of the values are quite close to zero. There are a few
numbers which are dramatically different from zero, for
good reason:

(i) f0, the absolute value of the energy difference be-
tween mF = ±3/2, which we apply a bias magnetic
field to set to a value between 75 and 155Hz, de-
pending on the superblock.

(ii) fD comes in at −225mHz, smaller than the mean
value of f0 by a factor of about −1/450, which is
half the fractional difference in g-factor between the
upper and lower states, plus a few smaller correction
factors.

(iii) fBR, at 212mHz, comes from a magnetic field, ro-
tating at 375 kHz, generated by oscillating charging
currents in the fins which create Erot.

(iv) fDBR, at roughly 410µHz, is fBR echoed in the

corresponding D̃-odd channel by the same factor of
δgF /g ∼ −1/450. After a correction for finite fBR

is applied, fDBR is within 1.7σ of zero.

(v) fDB is proportional to the electron’s electric dipole
moment de and its value in principle could be quite
large. Taking at face value the ACME 90% con-
fidence limit [2], |de| < 1.1 × 10−29 e cm, we would
have similar confidence that our measured value will
lie between −120 µHz < fDB < 120 µHz. For all
but the last few weeks of the experimental effort
described here, the blinding procedure detailed in
Sec IIID made fDB appear to have an arbitrary
value near 16.1mHz.

(vi) γ0, the mean decay rate of coherence is about
0.1 s−1. Arising from ion-ion collisions and from
spatial inhomogeneities, gamma is a noisy number
that depends sensitively on number of trapped ions
and fine details of the trap shimming.

(vii) ϕ0, fairly large at tens of milliradians, is measured
to be proportional to f0 and is consistent with ∼
140 µs offset in where we define tR = 0. This is not
unexpected given that the Rabi frequency varies as
we ramp into and out of the π/2 pulses.

(viii) O0, OD, CD, ϕD. These nonzero terms all arise pre-
dominantly from the same basic cause. Due to the
presence of the F = 1/2 manifold intermingled with
the F = 3/2 levels, the coupling procedure we use
to drive nominal π/2 pulses is characterized by a
slightly different effective Rabi frequency for the up-
per and lower doublets. The duration of the pulses
is chosen as a compromise, and results in a state
mixing of slightly larger than π/2 for one doublet
and slightly smaller than π/2 for the other. This
is the origin of the fringe offset O0 and this com-
promise also contributes to the deviation of fringe
contrast from unity. Our compromise π/2-pulse du-
ration was, in retrospect, chosen imperfectly, such
that the deviation from perfect π/2 duration was
not equal and opposite for the upper and lower dou-
blets; this led to finite values of OD and CD. With
the π/2 pulses not applied at exactly zero detuning,
a ϕD term also results.

Beyond these large (and largely understood) nonzero
fit values, in a perfect version of the experiment, we would
like to see the remainder of the 480 values be very small,
and ideally within measurement error of zero.

3. Frequencies

Of the remaining 27 frequency channels, there are five
that differ from zero by more than 4σ, i.e. by more than
4 times their scatter-adjusted estimated error.
The four largest are fR, fRI , f I , and fBI with fre-

quencies of −4.2,−2.2,−0.8 and −0.42mHz respectively.
fRI and fBI are discussed in Section VID3. What
fR, fRI , and f I have in common is that they correspond
to switches which involve changing the inputs to our di-
rect digital synthesis (DDS) boards. Each fin is driven
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by a distinct DDS board. To change the sign of rota-

tion of E⃗rot, the R̃-switch, we change the relative digital
phases we load into the different DDS boards. To effect

the Ĩ switch, which has to do with the direction of E⃗rot
at the instant of photodissociation, we switch the sign of
the amplitude input into all 8 boards. The digital math
performed within the DDS boards must always include,
at least implicitly, a truncation to the least significant bit
(LSB) of the digital-to-analog converter, and this process
is repeatable but subject to tiny discontinuities from the
round-off error. Our fringe frequency is directly propor-
tional to |Erot|. The commanded voltage on any fin is
sinusoidal in time. A shift of 4mHz could result in a
change in the magnitude of E⃗rot corresponding to much
less than 1 LSB of commanded voltage. In this context,
our nonzero values of fR, fRI and f I seem unsurprising.
fR is additionally affected by small drifts in the equilib-
rium location of the center of the ion cloud, and by drifts
in the magnitude of residual second-harmonic contami-
nation in Vrot.
After the discussion above, we are left with 9 D̃-even

and 14 D̃-odd channels which we believe should be quiet,
and near zero after a “δgF /g correction” for the nonzero

value in the corresponding D̃-even channel (the correc-
tion leaves fDR at 2.7σ from zero, and fDBR at 1.6σ
from zero). In addition to these 23 channels, we expect
fDB to be quiet and near zero except for any nonzero
value of de, the electron’s EDM. We do not have an in-
dependent measure of the correct value of de, but the 23
channels offer a chance to test our accuracy and precision
claims. We take each quiet frequency channel, divide it
by its corresponding sigma, and then we can ask what
is the rms amount by which the items in the ensemble
differ from zero? If we omit the 2.7-sigma value, fDR,
and look at only the remaining 22 values, we get a very
pleasing answer – the frequencies differ from zero by an
rms amount of 1.01. If instead we include fDR, the re-
sult is 1.28. This is not a especially large number for an
ensemble of 23 independent points; for 23 normally dis-
tributed points, there is a ∼ 15% chance that at least one
will be as far away from its “correct” value as 2.7σ. We
have no explanation for why fDR should be nonzero, and
cannot rule out an uncharacterized systematic error con-
tributing to its nonzero value. We put a lot more effort
into thinking about and characterizing systematic errors
in fDB than in fDR, so even if one in 23 measured fre-
quencies does have an uncharacterized systematic error,
this is not a very worrisome impeachment of fDB . In the
end we have chosen to comment on this slightly aberrant
observation but to make no corresponding relaxation in
our error budget for our main measurement.

4. Contrasts, and contrast decays

We’ve already mentioned C0 and CD. The fit value
C, the initial contrast of the Ramsey fringes, is af-
fected by parameters of the ion cloud exactly at the mo-

ment of photodissociation. The cloud mean position, its
mean velocity, and the direction in which Hafnium ions
are ejected after photodissociation, all impact where the
atomic Hafnium ions eventually impact on the imaging
ion detector. Different regions of the multi-channel ion
detector have different sensitivity and different propen-
sity to saturate. We have a procedure to determine which
regions of the detector receives ions ejected from the up-
per doublet and lower doublets, but this procedure can
be subject to biases. All this means that changes in con-
trast can appear in multiple channels. In particular CDI

corresponds to a different contrast detected on the right
or left side of the detector. This is a particularly large
term. The R̃Ĩ switch changes the sign of the HfF+ ve-
locity, along the direction towards the detector, at the
moment of photodissociation. This in turn affects the
mean arrival time for the Hf+ ions and the HfF+ ions.
We impose a hardware gate to image only the Hf+ ions
and not the heavier, later-arriving HfF+ ions. The tim-
ing of this gate is designed to maximize count rate from
Hf+ ions but suppress the contrast-destroying HfF+ ions.
Changing the molecule velocity at the moment of disso-
ciation changes the optimum time for the gate, but we do
not make any adjustment to the gate timing. Therefore a
substantial value of CRI comes as no surprise. CR, CDR

and CDRI likely arise from similar but smaller effects.
The entire point of including the contrast C as a fit-
ting term is to prevent the nonlinear fitting routine from
interpreting changes in contrasts as changes in frequen-
cies. Frequencies are further isolated from misinterpreted
changes in contrast (as for instance, if the detector loses
more sensitivity due to large-count rate saturation) by
ensuring we choose Ramsey times separately for data in
each switch state so that we take points as close as pos-
sible to exactly halfway up the sides of fringes.
What we call γ is really just a measure of the ratio of

the contrast in the early-time fringe to that in the late-
time fringe. We don’t routinely collect over the inter-
mediate times between the first, “early-time” sinusoidal
cycle of the Ramsey fringe and the last “last-time” fringe.
On those occasions when we do fill in some of the inter-
mediate times, the resulting full fringe does not fit well to
a pure exponential decay in contrast. The various effects
that limit contrast cannot be combined in a purely mul-
tiplicative way, and thus our approach to fitting (Eq. 13)
means that any channel with a distinctly nonzero con-
trast, say CRI , will have a nonzero decay rate, i.e. γRI .

5. Phases

The largest observed nonzero channels in phase and
offset (O, OD, ϕ, ϕD) are well understood. Phase errors
typically arise from small imperfections in the π/2 pulses.
The observed value of ϕBR, for instance, is consistent
with the presence of an otherwise imperceptibly small

axial gradient in the magnitude of E⃗rot. Other channels of
ϕ differ from zero by statistically significant amounts, but
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all less than 3mrad. With the exception of ϕD, no D̃-odd
channel differs from zero by more than 1mrad, and the
all important ϕDB is measured to be 0.03(14)mrad. The
frequencies we measure are isolated from phase errors by
taking data at early and late time. Our best effort at
deliberately creating a nonzero fringe phase resulted in
a 170mrad phase, 1000 times larger than the 1σ limit
on our measured ϕDB , but even in that case we could
resolve no frequency shift in the corresponding frequency
channel.

6. Offsets

Offsets in our Ramsey fringes can also occur due to im-
perfections in π/2 pulses, as in O0, OD and presumably
OBR. There are scenarios where offsets in some channels
can occur due to minor spatial variations in the polariza-
tion of laser beams, such as could happen from a dusty
waveplate. This may account for the anomalous value of
ODIP . Other than O0 and OD, the magnitudes of off-
set channels are less than one thousandth of the average
fringe amplitude. Even if we did not allow a nonzero off-
set in our fitting routine, the spacing of our Ramsey time
points is such that it would strongly suppress coupling of
offsets to frequencies in our fits.
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