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We explore the effect of tunable integrability breaking dipole-dipole interactions in the equilib-
rium states of highly magnetic 1D Bose gases of dysprosium at low temperatures. We experimentally
observe that in the strongly correlated Tonks-Girardeau regime, rapidity and momentum distribu-
tions are nearly unaffected by the dipolar interactions. By contrast, we also observe that significant
changes of these distributions occur when decreasing the strength of the contact interactions. We
show that the main experimental observations are captured by modeling the system as an array
of 1D gases with only contact interactions, dressed by the contribution of the short-range part of
the dipolar interactions. Improvements to theory-experiment correspondence will require new tools
tailored to near-integrable models possessing both short and long-range interactions.

One-dimensional (1D) bosonic gases with only contact
interactions are integrable, and, consequently, they pos-
sess stable quasiparticles [1]. Integrability is in general
unstable to the addition of long-range interactions. Even
weak integrability-breaking interactions have drastic ef-
fects on the nonequilibrium dynamics of integrable sys-
tems, causing relaxation to a thermal distribution: For
dipole-dipole interactions (DDI) these dynamical effects
were recently explored [2]. By contrast, the effects of
integrability-breaking interactions on equilibrium states
are less clear: Instead of causing quasiparticles to decay,
one might expect (in the spirit of Fermi liquid theory)
that interactions simply perturbatively dress the quasi-
particles. When the energy scale associated with inte-
grability breaking is a small fraction of the other natural
energy scales, it is plausible that the dressing will be weak
and the bare quasiparticles can still provide an accurate
description. This expectation has not been experimen-
tally tested so far; it is not a priori clear how the dressing
depends on the parameters of the integrable system and
on the type of integrability breaking interaction.

In the past, characterizing the dressing of quasipar-
ticles would have been a forbidding experimental chal-
lenge: In dense, strongly interacting systems, the map-
ping between quasiparticles and microscopic particles is
nontrivial, and the quantum numbers of the quasiparti-
cles (known as rapidities) are distinct from the micro-
scopic particle momenta, making their distribution hard
to measure [3, 4]. In a recent experimental breakthrough,
a modified time-of-flight (TOF) sequence was developed
to measure the rapidity distribution of 1D gases [5, 6]. In
this protocol, one first allows the system to freely expand
in 1D under near-integrable dynamics; this step preserves
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FIG. 1. (a) Schematic illustrating the experimental sequence
for measuring the rapidity distribution of a dipolar 1D gas. A
dipolar 1D gas is prepared with a magnetic field magnitude B
and angle θB resulting in contact strength g1D. Then, the un-
derlying harmonic trap is suddenly removed, while the trans-
verse confinement is maintained. This allows the quantum gas
to expand in a flat, 1D trap along x̂. Time-of-flight absorp-
tion imaging follows 3D expansion by switching off all optical
traps. The blue arrows denote the rapidities. (b) Timing se-
quence for creating a dipolar 1D gas at dipolar angle θB and
g1D. Once the quantum gas is loaded into a quasi-1D trap, the
B-field angle is slowly rotated from 55◦ to θB = 0◦, 35◦, or 90◦

in a time tθB , or kept at 55◦, as the experiment requires. g1D
is then set to its final value by ramping the B-field strength
near a Feshbach resonance in a time tγ = 50 ms.

the rapidity distribution. Once the system is dilute, ra-
pidity and momentum distributions coincide, and one can
extract the rapidity distribution via TOF imaging.

Here, we use measurements of rapidity and momen-
tum distributions in an array of 1D bosonic gases with a
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tunable DDI to explore how the DDI affects the equilib-
rium properties, e.g., via a dressing of the quasiparticles,
and how the effect of the DDI varies when changing the
strength of the contact interactions. We find that both
distributions are nearly unaffected by the DDI in the
Tonks-Girardeau (TG) regime, suggesting that the bare
quasiparticles can be used to characterize that regime.
As the strength of the contact interactions is decreased,
the densities of the 1D gases increase and with them the
strength of the dipolar interactions. We find that, as a
result, the dressing of the quasiparticles becomes signif-
icant and needs to be taken into account in any model
of the system in that regime. To attempt to do so, we
confirm that modeling the system as an array of 1D gases
with only (integrable) contact interactions (dressed with
the short-range part of the DDI) is most accurate in the
TG regime. We also show that the model captures the
experimental trends as the strength of the contact inter-
actions is decreased. A more accurate correspondence
will require the development of new theoretical tools to
account for the long-range part of the dipolar interaction
and dynamical effects during the initial state preparation.

A dipolar 162Dy BEC of 2.3(1)×104 atoms is prepared
in a 1064-nm crossed optical dipole trap (ODT) with a fi-
nal trap frequency of 2π×[55.5(6), 22.5(5), 119.0(7)] Hz;
more details can be found in Refs. [2, 7]. The gas is then
adiabatically loaded into a 2D optical lattice that is blue-
detuned from Dy’s 741-nm transition [8, 9]. Roughly two
thousand 1D traps are populated, with the central ones
containing about 40 atoms. Before loading, the angle of
an externally imposed magnetic field is set to θB ≈ 55◦

with respect to x̂, the 1D axis of the gases. This mini-
mizes the intratube DDI among atoms within the same
1D trap, which scales as 1− 3 cos2 θB. When the optical
lattice reaches a depth of 30ER, the 1D trap frequency ωx

is lowered to 2π×36.4(3) Hz by reducing the power of the
1064-nm ODT. The recoil energy is ER = ℏ2k2R/2m and
kR = 2π/741 nm, where m is the mass of the highly mag-
netic, 10 Bohr magneton 162Dy atom we use [10]. Simul-
taneously, a 1560-nm ODT is superimposed to negate the
antitrapping potential caused by the blue-detuned opti-
cal lattice. We then set θB to the particular value we re-
quire by rotating the magnetic field while maintaining the
same lattice depth by adjusting the optical lattice power
to compensate for the large tensor light shift [9]. The
1D-regularized contact interaction strength g1D is then
ramped to the required final value via a confinement-
induced resonance [7, 11, 12]. The resonance is accessed
by adjusting the magnitude B of the magnetic field near
a Feshbach resonance [8, 13]. To create the dilute TG
gases, we prepare a smaller BEC of 5.8(2) × 103 atoms
and set θB = 90◦; this leads to a maximum of about 15
atoms in the central 1D tubes.

Figure 1 illustrates the experimental sequence for mea-
suring rapidity and momentum distributions. The rapid-
ity distribution is measured using a 1D expansion of dura-

FIG. 2. The TOF density distribution for θB = 55◦ and
γT ≈ 16 for t1D = 0 to 20 ms. The width of the distributions’
θ has been scaled by ℏkR. Data at times >15 ms suffer from
imaging artifacts and are not used. Inset: The evolution of
the FWHM of the distribution versus t1D for γT ≈ 16 at
θB = 55◦ (light green) and γT ≈ 19 at θB = 90◦ (red). Error
bars are explained in Ref. [8].

tion t1D = 15 ms followed by a 3D expansion of duration
t3D = 18 ms. Momentum distributions are measured by
setting t1D = 0 with the same t3D. The magnetic field is
switched to the imaging axis ŷ at a time 5 ms after the
start of the 3D expansion. To reduce the effect of initial
gas size, we employ momentum focusing for measuring
momentum distributions [8]. To determine the appropri-
ate t1D for the rapidity measurement, TOF density dis-
tributions with t1D = 0−20 ms are measured; see Fig. 2.
By t1D ≈ 15 ms, the distributions have asymptoted to
the same shape, indicating that the density distribution
reflects the rapidity distribution [5, 14, 15]. The inset
also shows the saturation in the full width at half maxi-
mum (FWHM) of the distribution beyond 10–15 ms. For
longer t1D, imaging artifacts, stray magnetic field gradi-
ents, and lower signal-to-noise ratio degrade the image
quality, as can be seen in the 20-ms data. We therefore
use t1D = 15 ms for the rapidity measurements.
Each 1D gas can be described by the Lieb-Liniger

Hamiltonian [16] with the addition of an intratube DDI
U1D
DDI and a harmonic confining potential UH:

H =

N∑
i=1

[
− ℏ2

2m

∂2

∂x2
i

+ UH(xi)

]
(1)

+
∑

1≤i<j≤N

[
gvdW1D δ(xi − xj) + U1D

DDI(θB, xi − xj)
]
,

where m is the atomic mass, N is the number of atoms,
and gvdW1D is the effective 1D contact interaction due to
the van der Waals force; see Ref. [8]. Solving this Hamil-
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tonian is very challenging because of the presence of the
DDI term. To make theoretical progress, we account
for only the leading-order, short-range effect of the in-
tratube DDI. (The intertube DDI is neglected.) Hence,
we solve this 1D Hamiltonian after replacing gvdW1D →
g1D = gvdW1D +gDDI

1D and setting U1D
DDI(θB, xi−xj) = 0 [8].

We note that the properties of the Lieb-Liniger model
are parameterized by γ = mg1D/n1Dℏ2, where n1D is
the 1D particle density. A γ = 1 denotes a strongly
correlated Bose gas of intermediate-strength interactions,
while γ → ∞ indicates a TG gas, which can be mapped
onto a system of noninteracting spinless fermions [1].

To model the experimental state preparation as closely
as possible, we assume there is a lattice depth U∗

2D at
which the 3D gas decouples into individual 1D gases as
the 2D optical lattice is turned on [6]. At this lattice
depth, we also assume that the 1D gases are in thermal
equilibrium with each other at temperature T ∗ and at a
global chemical potential that is set by the total number
of particles. Then, using the local-density approximation
(LDA) and the thermodynamic Bethe ansatz (TBA) [17],
we determine N and the entropy of each 1D gas as func-
tions of U∗

2D and T ∗. As the depth of the 2D optical
lattice is increased beyond U∗

2D, we assume that the 1D
gases neither exchange particles nor interact. Thus, they
no longer are in thermal equilibrium with each other. We
assume this part of the loading process is adiabatic, i.e.,
that the entropy of each 1D gas is constant. We find
the temperature of each 1D gas using: (i) the number
of atoms and entropies calculated at decoupling, and (ii)
the experimental parameters measured at the end of the
state preparation. The momentum and rapidity distri-
butions are computed using these temperatures.

We compute the momentum distributions in the pres-
ence of the trap using path integral quantumMonte Carlo
with worm updates [18–20]. The rapidity distributions
are computed within the LDA by solving the TBA equa-
tions. We then sum the results of the 1D gases to com-
pare to the experimental absorption-imaging measure-
ments (which provide distributions averaged over all 1D
gases). The values of γT reported in the figures and
throughout the text reflect the γ at which the LL model—
at the experimentally set g1D at finite temperature—
exhibits the same ratio of kinetic–to–interaction energy
obtained in our model at θB = 55◦ [8].

The free parameters in our model of state preparation
are U∗

2D and T ∗. We find the results to be rather insen-
sitive to the precise value of U∗

2D, which suggests that
assuming a single decoupling depth for all 1D gases is
a reasonable approximation. We select U∗

2D = 5ER [8].
To find T ∗, we minimize the quadrature sum of the dif-
ferences between the experimental and theoretical mo-
mentum and rapidity distributions [8], which we call the
“theoretical error.” We plot this error for the results in
the TG limit versus T ∗ in the inset of Fig. 3(a). We
find the error minimum to be ∼5.5% at T ∗ ≈ 15 nK.

(a)

(b)

FIG. 3. Momentum and rapidity distributions; θ denotes ei-
ther momentum or rapidity. Solid lines show the experimental
momentum (blue) and rapidity (red) distributions, while the
dashed lines show the simulation results. (a) Distributions for
θB = 90◦ and γT ≈ 420 in the TG limit. The simulations use
T ∗ = 15 nK and U∗

2D = 5ER. (b) Distributions for θB = 55◦

and γT ≈ 6.7. Simulations use T ∗ = 25 nK and U∗
2D = 5ER.

Insets show the theoretical error used to select T ∗ [8].

For U∗
2D = 5ER and T ∗ ≈ 15 nK, we estimate the inter-

tube DDI energy to be ∼4% of the kinetic + interaction
plus trap energy of the 1D gases; see [8] for how inter-
tube DDI energy is calculated. The comparison between
the theoretical and experimental results for the momen-
tum and rapidity distributions is shown in Fig. 3(a). The
agreement is remarkable for the momentum distribution.
The theoretical rapidity distribution is slightly narrower,
which might be due in part to intertube DDI energy being
converted into rapidity energy during the 1D expansion.

Similarly, the comparison between experimental and
theoretical results for the case of γT ≈ 6.7 and θB = 55◦ is
shown in Fig. 3(b). For these parameters, we estimate the
intertube DDI energy to be ∼5.5% of the sum of kinetic,
interaction, and trap energies of the 1D gases. The theo-
retical distributions follow the experimental ones, though
less closely than in Fig. 3(a)]; they predict a lower occu-



4

γT (55°) � 16

γT (55°) � 6.7

γT (55°) � 3.2

γT (55°) � 16

γT (55°) � 6.7

γT (55°) � 3.2
(a) (b)Momentum Rapidity Momentum Rapidity

FIG. 4. (a) Measured momentum and rapidity distributions at field angles θB = 0◦ (red), 35◦ (orange), 55◦ (green), and 90◦

(blue) with γT(θB = 55◦) ≈ 3.2, 6.7, and 16. θ denotes either momentum or rapidity. (b) Corresponding simulation curves.
The insets in (a) show the total (interaction plus kinetic) energy that has been experimentally estimated from the rapidity
distributions. Insets in (b) show the theoretically estimated total DDI energies, intertube plus short-range intratube. The
θB-dependence comes from the contribution to g1D from the short-range part of the intratube 1D DDI. Note that the theory
curves are missing for the case of γT(55◦) ≈ 3.2 and θB = 0◦ because g1D becomes negative and we cannot simulate that regime.

pation of high momenta and a narrower rapidity distri-
bution.

Figure 4 reports our main results, the momentum and
rapidity distributions of 1D dipolar quantum gases upon
changing the contact and DDI strengths (and DDI sign).
To reduce systematic variation, we always start from
the same state—the one in Fig. 3(b)—when producing
1D gases with different interactions. That is, we begin
with intratube nondipolar gases (θB = 55◦) at the back-
ground scattering length (yielding γT ≈ 6.7) before we
then change the magnetic field strength and θB to the
desired final setting. No additional fitting is used to pro-
duce the theory curves because the number of atoms and
entropies of the 1D gases at decoupling were already com-
puted. Hence, we need to calculate only the temperature
of the 1D gases for the experimental parameters after the
change in magnetic field angle and/or strength.

The experimental [theoretical] results are shown in
Fig. 4(a) [Fig. 4(b)]. The experimentally observed broad-
ening of the momentum and rapidity distributions for

increasing γT at fixed θB and/or increasing θB at fixed
γT is qualitatively captured by our theoretical model. It
can be understood to be the result of increasing total
(interaction plus kinetic) and kinetic energies through
the increase of g1D by way of the Feshbach resonance or
short-range DDI.

We find that the rapidity and momentum distributions
depend weakly on θB in the strongly correlated (γT = 16)
TG regime. They exhibit larger changes versus θB as
γT decreases. The insets in Fig. 4(a) show the changes
with θB of the experimental estimation of the sum of
the interaction and kinetic energies, calculated using the
measured rapidity distributions. The insets in Fig. 4(b)
show the changes with θB of our theoretical estimation
of the total DDI energies, intertube plus short-range in-
tratube. One can see that the changes in the total en-
ergy in the experiment become larger as γT decreases,
and they parallel the larger changes observed in the esti-
mated DDI energy. Our results illustrate how the nature
of the equilibrium state changes as one tunes γT. When
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the contact interactions are strong, particles avoid each
other and the 1D densities are lower, resulting in weaker
dipolar interactions. As one decreases γT, particles in
the equilibrium state of the integrable system are likelier
to overlap; therefore, the 1D densities increase, and with
them, the strength of the DDI. Remarkably, all these
variations are accessible in our experimental apparatus.

In summary, we showed that the DDI significantly ef-
fects the equilibrium rapidity and momentum distribu-
tions of dipolar 162Dy gases as one departs from the
strongly correlated TG regime, suggesting that an in-
creasingly stronger dressing of the quasiparticles takes
place. Our model captured the main experimental
trends, but quantitative differences remain. This is likely
due, in part, to not accounting for the effect of the long-
range aspect of the DDI. It couples different 1D gases as
well as bosons that are far away within each 1D gas. The
long-range DDI produce correlations and slow dynamical
processes that go beyond what can be computed using
state-of-the-art numerical methods. Another potential
source of discrepancy are the nonthermal effects related
to the near-integrability of the 1D gases as well as to
heating, which we neglected. Nevertheless, it is remark-
able that we are able to closely describe the experimen-
tal results in such a complex, strongly-interacting system
despite the above-mentioned omissions in our modeling.
Notably, our largest “theoretical error” for the results
reported in Fig. 4 is only ∼11%.

We hope our findings will motivate studies to incor-
porate the long-range part of the DDI in arrays of 1D
gases described by otherwise integrable models [21], both
to understand and quantify how they dress the quasi-
particles in equilibrium and to clarify the role of near-
integrability nonthermal effects during the initial state
preparation. Such endeavors may usher a new direc-
tion for precision quantum many-body physics involving
near-integrable models with short-range interactions per-
turbed by long-range interactions.
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