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The deterministic generation of multi-excitation subradiant states proves to be challenging. Here,
we present a viable path towards their transient generation in finite sized ordered arrays of dipole-
dipole coupled quantum emitters, based on incoherent driving of the atomic ensemble. In particular,
we show that a maximal coupling to long-lived subradiant states is achieved if only half of the atoms
are initially excited. We characterize the nature of the resulting states by calculating the dynamic
fluorescence spectrum of the emitted light. Finally, we elucidate the role of coherent interactions
during the decay process of sufficiently dense atomic arrays, which result in a coherently-driven
radiation burst that leads to a subsequent reduction of the chances to prepare multi-excitation
subradiant states.

Introduction.—Recent developments in controlling and
manipulating atomic ensembles in predefined geome-
tries [1–3] open up promising avenues towards well-
controlled cooperative interactions between light and
matter, which are expected to be a fundamental building
block for future quantum technologies [4].

If the density of the atomic ensemble is increased such
that the spatial separation between atoms is smaller or
on the order of the atomic transition wavelength, light-
induced dipole-dipole interactions [5, 6] give rise to in-
triguing cooperative effects such as super- and subradi-
ance [7–11]. State of the art experiments [12–14] are now
able to reach this high-density regime, which has trig-
gered numerous studies of subradiance in ordered ensem-
bles of quantum emitters, as well as of its applications in
quantum metrology and sensing, quantum information
processing and efficient photon storage [15–26]. While
most of these works focus on the single-excitation man-
ifold where only one individual photon or excitation is
shared among all atoms at a time, the preparation and
analysis of subradiant states with multiple excitations
has proven elusive over the years. This is due to the un-
favorable scaling of the Hilbert space, as well as to the
complex and non-integrable nature of the underlying spin
model, which make a thorough study of large ensembles
of emitters difficult.

Here, we study this challenging multi-excitation regime
and focus on the transient generation of multi-excitation
subradiant states in periodic atomic arrays in free space.
The combination of the Monte Carlo wave function
(MCWF) method [27, 28] to solve the master equation
and a cumulant expansion of the Heisenberg-Langevin
equations up to third order [29, 30] allows us to analyze
large particle numbers in the multi-excitation regime, as
well as to characterize and understand the mechanisms
leading to many-body subradiance. Direct addressing of
individual subradiant states requires local phase and am-
plitude imprinting via the driving field at each atomic
position. While this is feasible for small numbers of
qubits coupled to waveguides, where driving can occur

Figure 1. (a) Sketch of a periodic chain of atoms with no
pair-correlations and only certain atoms excited (marked in
red) at t = 0. (b) Magnitude of the subradiant population
per particle psub/N , i. e., the excited population left in the
array by the time the instantaneous decay rate γinst = 0.1, as
a function of excitation density nexc for different array sizes
and geometries. Shaded regions encompass one standard de-
viation. The dashed and solid lines correspond to coherent
excitation and incoherent excitation, respectively. (c) psub/N
as a function of atom number N for a one-dimensional chain
(purple) and a two-dimensional square lattice (cyan) for an
initial checkerboard excitation distribution. Third order cu-
mulant expansions exhibit good agreement with the master
equation solutions (black dashed line). The inset shows the
decay of the atomic population for a one-dimensional chain of
ten atoms, as well as the time at which the system is consid-
ered to become subradiant (γinst = 0.1) and psub is extracted.
The lattice spacing is a = 0.15λ0 in panels (b) and (c).

both through the waveguide and through external side-
ports [25], it turns out to be elusive in free-space setups.
Therefore, alternative paths towards the dynamic popu-
lation of subradiant states have to be determined.

In this letter, we outline two fundamental criteria
that need to be fulfilled to dynamically populate multi-
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excitation subradiant states without requiring single site
addressability. First, the initially prepared state has to
have large overlap with the least radiative states of the
Lindbladian spectrum [31]. We show that this can be
achieved by exiting half of the atoms with no initial
coherences among them, which does not require single
site addressability [32]. In this case, the system nat-
urally evolves into a mixture of multi-excitation sub-
radiant states. The second criterium is that the dis-
tance between atoms must be large enough such that the
interaction-induced energy shifts do not lead to a pop-
ulation transfer from subradiant to superradiant states.
If the second condition is not fulfilled, the dynamic pop-
ulation of bright states due to the coherent part of the
atomic interactions gives rise to a rapid build-up of the
atomic coherences, and the subsequent appearance of a
coherently-driven superradiant burst. This results in an
optimal geometry or lattice spacing for which the popu-
lation of multi-excitation subradiant states is maximized.

Model.—We consider an ensemble of N identical two-
level atoms with resonance frequency ω0 = 2πc/λ0 that
interact with the three-dimensional vacuum radiation
field. Tracing out the photonic degrees of freedom under
the Born-Markov approximation, one obtains the master
equation for the atomic density matrix ρ̂ [5, 6, 33]

dρ̂

dt
= − i

~

[
Ĥ, ρ̂

]
+ L[ρ̂], (1)

where the Hamiltonian Ĥ describes the coherent interac-
tions between emitters

Ĥ = ~ω0

N∑
n=1

σ̂een + ~
N∑

n,m6=n

Jnmσ̂
eg
n σ̂

ge
m , (2)

and the Lindbladian L[ρ̂] characterizes the dissipative in-
teractions

L[ρ̂] =

N∑
n,m=1

Γnm
2

(2σ̂gen ρ̂σ̂
eg
m − σ̂egn σ̂gem ρ̂− ρ̂σ̂egn σ̂gem ) . (3)

Here, σ̂egm = |em〉〈gm| (σ̂gem = |gm〉〈em|) is the raising
(lowering) operator for atom m, and the coherent and
dissipative parts of the dipole-dipole interactions medi-
ated by the vacuum electromagnetic field are given by
Jnm− iΓnm/2 = − 3πγ0

ω0
d†G(rnm, ω0)d, [5, 6], where d is

the transition dipole moment of the atoms, G(r, ω) is the
Green’s tensor for a point dipole in vacuum [32, 34, 35],
and rnm = rn− rm is the vector connecting atoms n and
m. Γnn = γ0 is the spontaneous decay rate of a single
atom. The Lamb-shift Jnn is included in the definition
of the transition frequency ω0.

Typically, the dynamics of decaying atomic ensem-
bles are characterized by the excited state population
pexc(t) = Tr{ρ̂(t)

∑
n σ̂

ee
n } =

∑
n〈σ̂een 〉(t) and the total

photon emission rate γtot = −ṗexc. Here, we introduce

the instantaneous decay rate,

γinst ≡
γtot

pexc
= γ0 +

∑
n,m 6=n Γnm〈σ̂egn σ̂gem 〉∑

n〈σ̂een 〉
, (4)

as the figure of merit for characterizing photon emission.
Unlike γtot, γinst(t) is constant for a pure exponential
decay and directly reflects the superradiant (γinst > γ0)
or subradiant (γinst < γ0) character of the state ρ̂(t) at
each instant. In particular, the deviation from indepen-
dent decay (γinst = γ0) is determined by the second term
in Eq. (4) and arises from the buildup of two-body co-
herences 〈σ̂egn σ̂gem 〉.

We employ two different numerical methods to com-
pute the dynamics of the atomic system. For small
system sizes containing up to 10 atoms, we use the
MCWF technique to obtain the atomic density matrix
governed by the master equation (1) [27, 28]. In addi-
tion, we perform a cumulant expansion of the Heisenberg-
Langevin equations up to third order. To this end, we
derive the equations of motion for the expectation val-

ues 〈 ˙̂
O〉 = Tr{ ˙̂ρÔ} of all operators Ô containing at most

three atomic operators, i.e. 〈σ̂eei σ̂
eg
j σ̂

ge
k 〉, and expand the

averages of fourth-order operator products in terms of
products of third-, second- and first-order expectation
values [29, 30, 32, 36–39]. This approximate method al-
lows us to study systems containing up to 36 atoms with
remarkable accuracy. This is a three times larger sys-
tem size than what can be simulated using the MCWF
method.
Generating subradiant states.—To characterize the

many-body nature of the dynamically generated subra-
diant states, we define the subradiant population psub

as the total excited state population left in the array at
the time t̃ at which the instantaneous decay rate reaches
γinst = 0.1γ0. As illustrated in the inset of Fig. 1(c), this
marks the point in time at which the decay of the excited
state population has drastically slowed down, indicating
subradiance.

We calculate this subradiant population as a func-
tion of the excitation density nexc := Nexc/N , where
N is the total number of atoms and Nexc denotes
the number of initially excited emitters. First, we
choose a coherent spin state of the form |ψcoh〉 =∏
n

(√
1− nexc |gn〉+ eikrn

√
nexc |en〉

)
as an initial state,

which can be experimentally prepared by a coherent laser
pulse impinging on the atomic array [20] and is typically
used to study subradiance in atomic gases [23, 40]. For
any value of nexc, the initial excited state population is
coherently shared among the atoms. While we choose
k = 0 for the remainder of this work, the presented
results generally hold for all k within the light cone—
defined as |k| < 2π/λ0— that is, for any value of k that
can be achieved experimentally. The red dashed line
in Fig. 1(b) shows the subradiant population obtained
using the MCWF approach for a chain of ten atoms pre-
pared in |ψcoh〉. In this case, the subradiant population
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is maximal for a fully inverted system (nexc = 1.0). This
phenomenon can be understood by noting that such a
coherent initial state predominantly overlaps with the ra-
diative states of the Dicke ladder [32]. Decreasing nexc

simply reduces the overlap with highly excited radiative
states, which consequently diminishes the chance that the
excitation gets trapped in subradiant states while cascad-
ing down the ladder. Note also that, for coherent initial
states |ψcoh〉, the maximum subradiant population is well
below 10% of the total atom number. That is, once the
system becomes subradiant, there is on average less than
one excitation left in the system.

The value of psub can be increased if an optimized ini-
tial state is used. In particular, we find that this is the
case for partially and incoherently excited arrays, i. e., for
initial states of the form |ψincoh〉 =

∏
n∈E σ̂

eg
n |G〉, where

|G〉 corresponds to the state where all atoms are in the
ground state and E denotes the set of initially excited
atoms. Unlike |ψcoh〉, |ψincoh〉 has no correlations at ini-
tial times and only atomic populations are nonzero at
t=0 [32]. This state can thus be experimentally realized
by either destroying the spatial coherence of the imping-
ing laser via a speckle pattern or by applying a large de-
tuning on random atoms during the coherent excitation
pulse (see supplemental material [32]).

The solid lines in Fig. 1(b) show the subradiant popu-
lation for different lattice dimensions and sizes averaged
over fifty random distributions of incoherent excitations.
psub is maximal if half the atoms are incoherently ex-
cited (nexc = 0.5), both for one dimensional chains and
two-dimensional square lattices, and larger values are ob-
tained in the case of two-dimensional geometries. In any
case, the fraction of atoms that remain excited for long
times is on the order of 15–20% of the total atom number,
which is substantially higher than for coherently excited
arrays [red dashed lines in Fig. 1(b)].

The improved behavior of the incoherent initial condi-
tion can be understood from the spectrum of the Lind-
bladian. As opposed to |ψcoh〉, |ψincoh〉 has an overlap
with all states within its corresponding excitation man-
ifold, which ultimately increases the probability of dy-
namically populating subradiant states. The fact that
the maximum psub is reached at nexc = 0.5 also makes
sense intuitively, as it corresponds to the excitation man-
ifold with the largest number of states. As a result, the
overlap of the initial state with the most radiative decay
channels is minimal and the probability to dynamically
reach subradiant states maximal.

One can further increase the subradiant population by
determining an initial state that has a larger overlap with
the least radiative decay channels than the random con-
figurations considered in Fig. 1(b). Based on intuition
gained from the single-excitation manifold, where the
most subradiant state is always a checkerboard pattern
of positive and negative phases, we now choose initial
states where only atoms located at even lattice sites are

Figure 2. (a) Overlap with the different excitation mani-
folds over time for a ten-atom chain (a = 0.15λ0), with half
the atoms initially excited in a checkerboard pattern. A sig-
nificant contribution from multi-excitation subradiant states
(Nex. > 1) is observed at times t′ � 1/γ0. (b) Overlap of the
dynamically populated state at the times indicated by black
stars in panel (a) with each individual state contained in a
given excitation manifold. Only the most subradiant states
are dynamically populated. (b) Instantaneous emission spec-
trum at different times of the decay process. At early times
(blue curve), the fast decaying superradiant states generate
a broad background. The most subradiant modes persist at
late times (green filled curve) and result in a discrete set of
very narrow lines at fixed frequencies.

excited initially. This state can still be readily prepared
without single site addressability (see supplemental ma-
terial for details [32]). In Fig. 1(c), we show psub as a
function of atom number N . The achieved subradiant
population is substantially larger than the maxima ob-
served in Fig. 1(b), and reaches values well above 20% of
the total atom number even for small systems. That is,
at the time t̃ where the instantaneous decay rate is be-
low 0.1γ0, a chain with ten atoms has an average of more
than two excitations left. This illustrates the efficient
population of two-excitation subradiant states.
Spectrum.—To quantify the population that is dynami-

cally trapped in each excitation manifold, we additionally
compute the overlapONexc

(t) =
∑
|ψi〉∈ΨNexc

〈ψi| ρ̂(t) |ψi〉
of the state ρ̂(t) with the set of eigenstates of the Hamilto-
nian containing Nexc excitations, ΨNexc = {|ψ1〉 ... |ψM 〉}.
For an atomic array initially prepared in an incoher-
ent checkerboard configuration, the overlap of the many-
body state with manifolds containing more than one ex-
citation (Nexc > 1) is finite at long times, as shown
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by the black dash-dotted curve in Fig. 2(a). This in-
dicates that the system naturally evolves into a mixture
of multi-excitation subradiant states, even for moderate
array sizes of just ten atoms. As shown in Fig. 2(b) and
in the supplemental material [32], the dynamically gener-
ated states exhibit a large overlap with the most subradi-
ant states in each excitation manifold. This effect is par-
ticularly pronounced due to the employed checkerboard
initial state, as can be seen by comparing our results to
a recent work studying subradiant state generation using
a statistical mixture as an initial state [40, 41].

A relevant experimental observable that character-
izes the subradiant nature of the state ρ̂ is the dy-
namic fluorescence spectrum S(ω, t′). If measured along
the direction perpendicular to the array, the spectrum
is simply given by the Fourier transform of the two-
time correlation function, i. e., S(ω, t′) =

∑
i Sn(ω, t′) =∑

n2Re
[∫∞

0
dτe−iωτ 〈σegn (t′+τ)σgen (t′)〉

]
[42]. In Fig. 2(b),

we plot the dynamic spectrum for different times t′ at
which the spectrum measurement begins. At early times
(blue and orange curves), the fast-decaying superradiant
states result in a broad background. The narrow peaks
correspond to the long-lived subradiant states that are
dynamically populated during the decay process. The
late-time spectrum obtained at a finite time t′ � 1/γ0

does not contain any contribution from the initial su-
perradiant decay. Hence, the broad background gets
strongly suppressed and only the narrow lines remain in
the spectrum. Interestingly, the frequencies of these lines
do not change over time and are simply determined by
the energy shifts associated to the populated subradiant
eigenstates of the Hamiltonian. They therefore open new
avenues for cooperatively enhanced sensing protocols.

Role of coherent dynamics.—Cooperative effects typi-
cally become stronger for decreasing lattice constant a.
In particular, the Lindbladian in Eq. (3) approaches the
Dicke limit for a/λ0→ 0. Intuitively, this suggests that
the overlap of the initial state |ψincoh〉 with the subradi-
ant manifold increases for decreasing a and that the sub-
radiant population psub consequently increases, as shown
in Fig. 3(a) for atomic chains with a > 0.15λ0. If one
further decreases the lattice spacing, however, the co-
herent dipole-dipole interactions in Eq. (2) become the
largest energy scale of the system and start inducing a
strong coupling between different states in the same ex-
citation manifold. This results in a population transfer
from subradiant to superradiant states, which ultimately
reduces psub for small a [see Fig. 3(a)]. Thus, there is not
only an optimal initial condition to dynamically populate
subradiant states, but also an optimal lattice spacing or
geometry.

Additionally, the appearance of large coherent interac-
tions modifies the emission properties at early times. As
shown in the top panel of Fig. 3(b), the total emission
rate γtot initially decreases for states with nexc = N/2
independent of lattice spacing. That is, the dissipative

Figure 3. (a) Subradiant population psub for an atomic chain
with ten atoms as a function of lattice spacing a for a checker-
board exciation pattern (blue) and sets of five randomly ex-
cited atoms (red). The black dashed line is obtained via the
master equation. (b) Normalized emission rate as a function
of time for atomic chains with ten atoms and a checkerboard
excitation pattern. A radiation burst emerges for small lattice
spacings a = 0.075λ0 (red curve), and disappears if coher-
ent dipole-dipole shifts are turned off (dashed red curve). No
peak appears for larger spacings (a = 0.1λ0 in solid green and
a = 0.15λ0 in solid blue). For comparison, we also plot the
superradiant peak for a fully inverted array with a = 0.15λ0

(dash-dotted grey curve). The upper panel shows the total
photon emission rate γtot at early times. (c)-(d) Populations
(diagonal values) and two-body coherences 〈σ̂eg

n σ̂
ge
m 〉 at the

time of the burst for an atomic chain with a = 0.075λ0 (c)
with (Jij 6= 0) and (d) without (Jij = 0) coherent shifts.

channels of the system cannot generate a fast build-up
of atomic coherences to trigger the onset of a radiation
burst. While this results in a monotonic decrease of the
total emission at early times for a > 0.15λ0, a radiation
peak emerges for small enough lattice spacing [see solid
red curve in Fig. 3(b)]. This radiation burst originates
from an excitation transfer from subradiant to superra-
diant states, mediated by the coherent interactions be-
tween atoms. The burst vanishes if coherent interactions
(Jnm = 0) are artificially put to zero, as evinced by the
dashed red curve in Fig. 3(b).

The effect can also be understood based on the two-
body correlation matrix 〈σ̂egn σ̂gem 〉 at the instant where
the burst takes place. As shown in Fig. 3(c)-(d), the co-
herences required to observe a peak are only dynamically
generated in the presence of coherent dipole-dipole inter-
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actions (Jnm 6= 0). This phenomenon is therefore differ-
ent in nature from standard Dicke superradiance, where
the build-up of correlations and the appearance of a ra-
diation peak occurs due to collective dissipation, and we
hereby refer to it as “coherently-driven superradiance”.
Additionally, these findings show that the two-photon
correlation function at zero time [20] can fail to capture
the existence of radiation bursts for certain initial condi-
tions of the atomic array. Finally, it is worth noting that
the Hamiltonian evolution of the system can be partially
engineered by adding spatial modulations of the atomic
detunings, which modify the coupling between dark and
bright states [21, 22] and can consequently enhance or
suppress the coherently-driven superradiant peak [32].

Conclusions and Outlook.—We introduced a viable
path towards the dynamic population of multi-excitation
subradiant states in atomic emitter arrays that does not
require local phase imprinting [25]. Our approach is
based on determining an experimentally feasible initial
configuration such that the dynamics results in multi-
excitation subradiance. We show that incoherently ex-
citing half of the atoms in the array and choosing a suf-
ficiently large lattice spacing lead to a significant sub-
radiant state population at late times. The resulting
states can be characterized by means of the dynamic
fluorescence spectrum, which features a peak with nar-
row linewidth for each subradiant state populated at
late times. These states with cooperatively reduced
linewidths are a promising resource for future quantum
sensing protocols involving sub-wavelength emitter ar-
rays. To obtain a good estimate of achievable sensitivi-
ties, a detailed study of realistic coherence times, the sta-
bility with respect to position fluctuations of the atoms
and the role of lattice vacancies is required [43].

We further show that a smaller atom spacing does
not necessarily lead to improved multi-excitation sub-
radiance. This occurs due to an increase of the co-
herent dipole-dipole interactions, which strongly couple
subradiant and superradiant states and may result in a
coherently-driven superradiant outburst. Due to its co-
herent nature, this effect can be compensated and en-
gineered by applying local AC Stark shifts to different
atoms in the array [44, 45]. Combining such atomic de-
tuning patterns with tailored driving fields remains an
important, mostly unexplored avenue to prepare multi-
excitation subradiant states [46, 47].
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Caixa” (LCF/BQ/AA18/11680093). S.O. is supported
by a postdoctoral fellowship of the Max Planck Harvard
Research Center for Quantum Optics. SFY would like
to acknowledge funding from NSF through the PHY-
2207972 and the QSense QLCI as well as from AFOSR.

O.R.B. and S.O. contributed equally to this work.

∗ orubies@mit.edu; equal contributor
† stefanostermann@g.harvard.edu; equal contributor

[1] D. Barredo, S. de Léséleuc, V. Lienhard, T. La-
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