
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Reflected entropy: Not a correlation measure
Patrick Hayden, Marius Lemm, and Jonathan Sorce

Phys. Rev. A 107, L050401 — Published 30 May 2023
DOI: 10.1103/PhysRevA.107.L050401

https://dx.doi.org/10.1103/PhysRevA.107.L050401


MIT-CTP/5532

Reflected entropy: not a correlation measure

Patrick Hayden

Stanford Institute for Theoretical Physics, Stanford University

Marius Lemm

Department of Mathematics, University of Tübingen

Jonathan Sorce

Center for Theoretical Physics, Massachusetts Institute of Technology

1



Abstract
By explicit counterexample, we show that the “reflected entropy” defined by Dutta and Faulkner

is not monotonically decreasing under partial trace, and so is not a measure of physical correlations.

In fact, our counterexamples show that none of the Rényi reflected entropies S(α)
R for 0 < α < 2 is a

correlation measure; the usual reflected entropy is realized as the α = 1 member of this family. The

counterexamples are given by quantum states that correspond to classical probability distributions,

so reflected entropy fails to measure correlations even at the classical level.

I. INTRODUCTION

In [1], Dutta and Faulkner defined a function of bipartite quantum states called the

reflected entropy. For a density operator ρAB describing a quantum state on the bipartite

Hilbert space HA ⊗HB, the reflected entropy is denoted SR,ρ(A : B). For finite-dimensional

HA and HB, the reflected entropy can be described as follows.1 One considers the operator
√
ρAB as a member of the vector space HA ⊗ HB ⊗ H∗

A ⊗ H∗
B, where H∗ denotes the dual

space of H. Writing this in quantum mechanical notation as
∣∣√ρAB

〉
, it is easy to check

that this is a pure state that purifies ρAB in the sense that it satisfies

trA∗B∗ |√ρAB⟩⟨
√
ρAB| = ρAB. (1)

The state
∣∣√ρAB

〉
is called the canonical purification of ρAB. The reflected density operator

on the system HA⊗H∗
A, denoted ϕ(AB), is defined as the reduced state of

∣∣√ρAB

〉
on HA⊗H∗

A,

i.e.

ϕ(AB) = trBB∗ |√ρAB⟩⟨
√
ρAB| . (2)

The reflected entropy is defined as the von Neumann entropy of this state,

SR,ρ(A : B) = S(ϕ(AB)) = − tr
(
ϕ(AB) log ϕ(AB)

)
. (3)

The reflected entropy belongs to a natural family of reflected Rényi entropies S
(α)
R,ρ for α ∈

(0, 1) ∪ (1,∞), defined in terms of the standard Rényi entropies Sα [2] as

S
(α)
R,ρ(A : B) = Sα(ϕ

(AB)) =
1

1− α
log tr

(
(ϕ(AB))α

)
, (4)

1 While we will only be concerned with finite-dimensional systems in this paper, it is possible to define

reflected entropy for certain infinite-dimensional density operators; this is discussed in [1].
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with the ordinary reflected entropy being recovered in the limit α → 1.

In [1], Dutta and Faulkner showed that the reflected entropy has a natural physical in-

terpretation for certain states in holographic theories of quantum gravity. In [3], parametric

gaps between the reflected entropy and the mutual information2 in certain settings were

shown to be related to the presence of parametrically large amounts of tripartite entangle-

ment. The connection between reflected entropy and tripartite entanglement was studied

further in [4], where the authors considered the structure of states with reflected entropy

equal to the mutual information, and in [5], where the authors gave an interpretation of the

reflected entropy in terms of an information-theoretic reconstruction problem. A great deal

of work has been done to explore the physical properties of the reflected entropy in various

systems of interest, including holographic models in [3, 5–14] and many-body systems in

[4, 15–28]. None of these explorations, however, answers a basic physical question: does

the magnitude of SR,ρ(A : B) quantify the magnitude of the correlations between systems

A and B in the state ρAB? In the literature, it is commonly assumed that this is the case

— for example, in [1, 5, 10, 12, 13, 16–18, 21, 22, 26, 28], reflected entropy is referred to as

a “correlation measure,” a “measure of correlations,” or a “measure of entanglement.” The

purpose of this article is to show that the answer is no.

Let δρ(A : B) be a generic rule for assigning nonnegative numbers to bipartitions of

quantum states. What does it mean for δρ(A : B) to measure correlations between A and

B? One basic requirement is that in a quantum state ρABC with marginal ρAB, there should

be at least as much correlation between A and BC in the state ρABC as there is between

A and B in the state ρAB. So if δ is a measure of correlations, then it must satisfy the

inequality

δρ(A : BC) ≥ δρ(A : B) (5)

for any tripartite density operator ρABC . A function satisfying this inequality is said to be

monotonically decreasing under partial trace or simply monotonic. One famous example of

such a quantity is the mutual information,3 defined by

IρAB
(A : B) = S(ρA) + S(ρB)− S(ρAB) (6)

where S is the von Neumann entropy.
2 Mutual information is defined below in equation (6).
3 For a proof that mutual information is monotonically decreasing under partial trace, see theorem 11.15

of [29].
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Up until now, it has been common in the literature to refer to the reflected entropy as a

measure of correlations, despite it not being known whether it is monotonically decreasing

under partial trace. One primary reason is that in [1], Dutta and Faulkner proved that

the Rényi reflected entropies (cf. equation (4)) are monotonically decreasing under partial

trace for α an integer greater than or equal to 2, and so they can reasonably be thought

of as measures of physical correlations. Furthermore, as observed in [1], monotonicity of

reflected entropy for holographic states follows as a simple consequence of the “entanglement

wedge nesting” property of holography established in [30]. Monotonicity is not unique to

holography — in [23], Bueno and Casini showed that reflected entropy satisfies monotonicity

in certain free quantum field theories. Finally, it is clear from the observations in [3–5] that

the reflected entropy has a meaningful relationship to entanglement, so it seems natural to

believe that it should measure physical correlations.

This is not the case. In the next section, we provide explicit counterexamples for mono-

tonicity of the Rényi reflected entropies in the range 0 < α < 2, including the reflected

entropy itself. Our counterexamples are physical states on a system consisting of two qutrits

and a qubit. In fact, the states we construct are diagonal in a tensor product basis and hence

can be described by classical probability distributions, so reflected entropy fails to measure

correlations even in classical physics.4 For convenience, we state our main result clearly as

the following theorem.

Theorem 1

For any α ∈ (0, 2), there exists a density operator ρABC on HA ⊗HB ⊗HC = C3 ⊗C3 ⊗C2

for which the α-th Rényi reflected entropy (cf. equation (4)) satisfies

S
(α)
R,ρ(A : BC) < S

(α)
R,ρ(A : B). (7)

We recall that Dutta and Faulkner proved in [14] that Rényi reflected entropies at integer

values of α with α ≥ 2 satisfy monotonicity and so for these values of α the Rényi reflected

entropies are correlation measures. Nothing is currently known for non-integer values of α in

the range [2,∞); we did not find any counterexamples to monotonicity in this range. We also

wish to emphasize that the papers [1, 23] established monotonicity of reflected entropy for
4 By a continuity argument, our result also implies that there exist non-classical states that violate mono-

tonicity of reflected entropy. To see this, note that non-classical states can be found in an arbitrarily

small neighborhood of any classical one and the Rényi reflected entropies are continuous under small

perturbations of the state.
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certain states in free and holographic quantum field theories, and that [23, 24] established a

relationship in quantum field theory between the long-distance behavior of reflected entropy

and that of mutual information, which is a genuine measure of correlations. Consequently,

it is entirely possible that reflected entropy is generally useful as a measure of correlations

in physical states of continuum theories.

II. COUNTEREXAMPLES

We consider the tripartite Hilbert space HA⊗HB ⊗HC where HA and HB have complex

dimension 3, and HC has complex dimension 2. We will denote orthonormal bases of the

three spaces by

{|0⟩A , |1⟩A , |2⟩A},

{|0⟩B , |1⟩B , |2⟩B},

{|0⟩C , |1⟩C},

and will suppress the A,B,C indices. Our counterexamples are labeled by a single parameter

β, and are given by the expression

ρABC =
1

4β + 2

(
β
(
|000⟩⟨000|+ |110⟩⟨110|+ |200⟩⟨200|+ |210⟩⟨210|

)
+ |020⟩⟨020|+ |121⟩⟨121|

)
. (8)

It is a straightforward exercise to compute the reflected density operators ϕ(AB) and ϕ(ABC)

on the Hilbert space HA ⊗H∗
A. They are given by

ϕ(ABC) =
1

4β + 2

(
(1 + β) |00⟩⟨00|+ β

(
|00⟩⟨22|+ |22⟩⟨00|

)
+ (1 + β) |11⟩⟨11|

+ β
(
|11⟩⟨22|+ |22⟩⟨11|

)
+ 2β |22⟩⟨22|

)
(9)

and

ϕ(AB) = ϕ(ABC) +
1

4β + 2

(
|00⟩⟨11|+ |11⟩⟨00|

)
. (10)
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The eigenvalues of these operators can be found analytically. Each one has six degenerate

zero-eigenvalues, and nonzero eigenvalues given by

Eigenvalues(ϕ(ABC)) =

{
1 + β

4β + 2
,
1 + 3β +

√
1− 2β + 9β2

2(4β + 2)
,
1 + 3β −

√
1− 2β + 9β2

2(4β + 2)

}
,

(11)

Eigenvalues(ϕ(AB)) =

{
β

4β + 2
,
2 + 3β +

√
4− 4β + 9β2

2(4β + 2)
,
2 + 3β −

√
4− 4β + 9β2

2(4β + 2)

}
.

(12)

With these expressions, one can write down formulas for the Rényi reflected entropies using

equation (4), and compute them exactly for any α and any β. Figure 1, for example, shows a

plot of S(α)
R,ρ(A : BC)− S

(α)
R,ρ(A : B) for β = 10 in the range α ∈ (0, 3). The curve is negative

from α = 0 to a value slightly less than α = 1.9, indicating that monotonicity of Rényi

reflected entropies fails in this regime. This constitutes a counterexample to the conjecture

that reflected entropy is a correlation measure, since reflected entropy is given by the α → 1

limit of the Rényi family.

FIG. 1: A graph of the difference of the α-th Rényi reflected entropies S
(α)
R,ρ(A : BC) and

S
(α)
R,ρ(A : B) for the β = 10 case of the density matrix given in equation (8). It is negative

for α = 0 up to around α = 1.9, indicating that the Rényi reflected entropies are not

correlation measures in this range.

In fact, by changing β, we can find violations of monotonicity for any Rényi reflected

entropy with α ∈ (0, 2). It is easy to check numerically that as one increases β, the point

where the curve crosses from negative to positive values gets closer and closer to α = 2. We

will show analytically that for any fixed α ∈ (1, 2), there exists some value of β for which
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S
(α)
R,ρ(A : BC)−S

(α)
R,ρ(A : B) is negative. Since figure 1 gives an example where this difference

is negative for the entire range 0 < α ≤ 1, the analytic argument for 1 < α < 2 completes

the proof that Rényi reflected entropies are not correlation measures in the range α ∈ (0, 2).

We may write the difference as

S
(α)
R,ρ(A : BC)− S

(α)
R,ρ(A : B) =

1

1− α
log

tr
(
(ϕ(ABC))α

)
tr((ϕ(AB))α)

. (13)

In the regime 1 < α < 2, the coefficient 1/(1 − α) is negative, so the overall quantity

is negative when the argument of the logarithm is greater than one, i.e., when we have

tr
(
(ϕ(ABC))α

)
> tr

(
(ϕ(AB))α

)
. For fixed α > 1 and large β, it is easy to verify the asymptotic

approximations5

tr
(
(ϕ(ABC))α

)
=

1 + 3α

4α
− α

β

7 · 3α − 9

18 · 4α
+ o(1/β) (14)

and

tr
(
(ϕ(AB))α

)
=

1 + 3α

4α
− α

β

5 · 3α + 9

18 · 4α
+ o(1/β). (15)

One then simply checks that for any fixed α in the range 1 < α < 2, the number 5 · 3α + 9

exceeds 7·3α−9, which implies that for sufficiently large β equation (14) will exceed equation

(15), implying that the α-th Rényi reflected entropy is not monotonically decreasing under

partial trace.
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