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We study the application of a square perturbing lattice to the naturally forming hexagonal arrays
of dipolar droplets in a dipolar Bose-Einstein condensate. We find that the application of the
lattice causes spontaneous pattern formation and leads to frustration in some regimes. For certain
parameters, the ground state has neither the symmetry of the intrinsic hexagonal supersolid nor the
symmetry of the square lattice. These results may give another axis on which to explore dipolar
Bose-Einstein condensates and to probe the nature of supersolidity.

Geometric frustration is important throughout nature,
and is particularly relevant to the study of many-body in-
teracting systems such as spin liquids and spin glasses.
One of the hallmarks of frustration is the inability of the
system to find a unique and fully periodic ground state
configuration [1]. Frustration occurs when conflicting in-
teractions between discrete constituents each favor some
specific configuration, and yet no regular configuration is
found. A famous example is antiferromagnetic order on
a triangular lattice, where pairs of neighboring spins can-
not all be anti-aligned simultaneously [2]. For frustrated
Ising spins on a square lattice [3], ferromagnetism sud-
denly vanishes below a certain interaction strength. Part
of the ongoing interest in quantum simulation is to gen-
erate frustrated systems under carefully controlled con-
ditions, such as in ion crystals [4] or optical lattices [5],
which mimic the properties of frustrated magnetic sys-
tems, in order to glean some of their elusive properties.

Here we consider a system that is already self-
organizing in interesting ways, namely, a Bose-Einstein
condensate (BEC) whose constituent atoms are magnetic
and hence interact via dipolar interactions, as is relevant
in Dysprosium [6], Erbium [7], or Chromium [8]. Such
a BEC can be coaxed into a supersolid state [9–12], ex-
hibiting periodic ordering while retaining the coherence
properties of the superfluid. The observation of this state
was a major experimental milestone [9, 12–14], realizing
predictions going back to speculations in superfluid he-
lium [15]. Under other circumstances, other novel con-
figurations of density are predicted [16, 17].

We return to the supersolid state for inspiration, not-
ing that not all solids are crystalline in nature. Density
modulations may be aperiodic, as in a glassy state; or
they may have spatially distinct regions of differing sym-
metries, indicating frustration. Here we place uncom-
fortable stress of the DBEC’s native sixfold structure, by
subjecting it to an optical lattice of fourfold symmetry, as
shown schematically in Fig. 1. In the process, a rich va-
riety of states occurs, including some that are frustrated
by this competition.

In typical treatments of DBECs, such as the approach
we apply here, one considers only a single order parame-

FIG. 1. A schematic illustration of the unperturbed droplet
ground state, shown by blue isodensity surfaces, with the ap-
plied perturbing lattice, shown in purple. The lattice has
an incommensurate symmetry with the natural ground state,
and thus the droplets struggle to simultaneously fulfill the
constraints of their interactions and of the lattice.

ter to represent the many-body wavefunction, where each
atom in the DBEC has the same wavefunction. The long-
range phase coherence between spatially distinct droplets
has been experimentally verified in 1 dimensional sys-
tems [9], and is seen here numerically in 2 dimensional
states. Frustration, on the other hand, relies on distinct
components having competing interactions with one an-
other, where no such phase coherence is required. Here,
we describe a distinctly quantum mechanical version of
frustration in a single coherent field, where different spa-
tial regions of the field organize according to different
governing principles.

The depth of individual lattice sites and the spac-
ing between them become essential for determining the
ground state. Frustration may occur due to the dif-
ference, or competition, between the optimal geometry
of the system without the lattice, and the geometry of
the lattice. For certain lattice depths and spacings, the
ground state energetic manifold may become highly de-
generate due to the application of the lattice. We exam-
ine ground state morphologies as a function of the lattice
spacing and lattice depth. We map out several different
phases in this regime, where, in particular, the density
forms checkerboard, stripe, and frustrated patterns.
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Model.— DBECs can be described by the extended
Gross-Pitaevskii equation (EGPE) [18], where the
ground state condensate order parameter ψ obeys

µψ(~r) =

[
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∫
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]
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Here µ is the chemical potential and V = Vext + Vlat the
external potential, which may include both a harmonic
trap Vext and an applied lattice Vlat
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where ωx,y,z gives the trap frequency along the corre-
sponding direction. 2π/k gives the lattice spacing and
V0 the peak-to-trough lattice depth. In the above equa-
tions, g = 4π~2a/m is the contact interaction strength,
with a the s-wave scattering length. Udd accounts for the
long range dipole-dipole interaction, and is given by

Udd(~r) =
3~2add
mr3

(
1− 3 cos2(θ)

)
, (4)

where add = mµ0µ
2/12π~2 is the dipole length, r the

distance between two interacting dipoles, and θ the angle
between ~r and the dipole alignment axis, here taken to
be ẑ. γQF arises from the local-density approximation to
quantum fluctuations [19–22], and is
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For time-dependent calculations, we simply replace µψ
by i~ ∂ψ/∂t in Eq. (1). The EGPE energy functional is
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(6)

We numerically minimize this functional using a limited-
memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS)
algorithm [23] optimized on a graphics processing unit
(GPU). We use PyTorch’s LBFGS algorithm taking ad-
vantage of automatic differentiation. We solve for the
ground state on a cubic grid of 128×128×96 grid points
of size 28 × 28 × 28 aho, with aho the oscillator length.
A large enough grid is used along with a cut-off in the
maximum size of the dipolar interaction, i.e. Udd(~r) = 0
for |~r| > 14 aho. As long as the grid as twice is large as
the cutoff, and the ground state density all lies within a
sphere of radius 14 aho, then this ensures that “phantom

condensates” are not considered [24] while introducing
no other effects.

Due to the elaborate energy landscape, there are some-
times many metastable states where the energy func-
tional has zero gradient. Moreover, some of these
metastable states appear highly attractive to initial con-
ditions with added Perlin [16, 25] and uniform noise,
where the minimization procedure can find a metastable
state instead of the true ground state. Such states are
verified to be metastable by performing time-evolution
via a time-splitting pseudospectral method [26]. In order
to address the complicated energy landscapes, we first
perform a minimization with over 50 random initial con-
ditions for each set of parameters. Then, we identify
the prominent morphologies seen over all lattice depths
and spacings. The wavefunctions of these distinct mor-
pohlogies are then used to re-seed the minimization at all
of the considered sets of parameters. Procedures which
do not follow such an iterative method may misidentify
some phase boundaries. Henceforth, we consider 162Dy
atoms in a (ωx, ωy, ωz) /2π = 125 × 125 × 250 Hz trap.
The dipole length of 162Dy is add = 131a0 and we use
a scattering length a = 85a0. The atom number cru-
cially determines the density profiles of the DBEC, and
we choose the total atom numbers of N = 105. For this
system, aho =

√
~/mω = 0.71 µm and ~ωx/kB = 6 nK.

Lattice.— We consider the effect of applying a weak
lattice with 4-fold symmetry to the supersolid ground
state. Figure 2 shows the resulting phase diagram as well
as select states that occur under the conditions indicated
by the red lines. This diagram is based on a grid with 100
values of lattice depth from top to bottom, and 10 values
of lattice spacing from left to right. Within this res-
olution, the different colored regions represent different
phases of organization of the DBEC, which are labeled to
indicate their general character. On left and right of this
figure, selected density profile along 2D slices through the
center of the trap are shown. The central figure shows
the four distinct phases this state as the lattice depth
and spacings are varied.

Along the top of the diagram, the blue section labelled
SSD shows the parameters for which the DBEC is in a 6-
fold symmetric state, closely resembling the unperturbed
ground state. This occurs when the lattice is fairly weak,
or when the lattice is so tightly spaced the the ener-
getic cost of dipolar droplets sitting in the lattice minima
would be quite large, as is true for a lattice spacing of
1.6 aho up to a depth of 1.31 ~ω. An unperturbed SSD
density profile is shown in Fig. 2(a).

In the opposite limit, of deep lattices (lower right cor-
ner), the lattice dominates the physics. When the lat-
tice spacing becomes comparable to the intrinsic spacing
of 3.2aho, the DBEC transitions abruptly to the 4-fold
symmetric state with each lattice minima occupied by a
dipolar droplet (lattice, orange). Density slices of two
such states are shown in Fig. 2(e) and Fig. 2(h), the first
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FIG. 2. The supersolid droplet phase for N = 100000 162Dy atoms in 125×125×250 Hz trap, when a square perturbing lattice
potential is applied. Sample phases are shown on the left and right, showing density slices in the xy plane through the center
of the trap. The lattice parameters used to generate these phases given by the tail of the red arrows, and the patterns formed
are colored accordingly.

at a lattice spacing of 3.2 aho and depth of 0.71 ~ω, and
the second at a lattice spacing of 2.31 aho and depth of
3.18 ~ω. Here, either 9 or 13 droplets form. Similar states
were seen to be metastable in the absences of an lattice
potential [27]. The SSD and lattice phases indicate no
frustration; the density profiles entirely satisfy one of the
constraints placed on them. Between these regimes, the
DBEC cannot ignore the lattice, nor is it completely in
thrall to it.

In this intermediate regime, one find a class of states
that have a checkerboard density pattern, prominently
featured in the diagram (checkerboard, pink). Here, the
lattice spacing is somewhat smaller than the SSD spac-
ing of around 3.2 aho. Thus, the DBEC can maintain a
larger spacing between droplets by simply filling every-
other lattice site while partially satisfying the constraints
of the lattice. An example checkerboard density profile
is shown in Fig. 2(g), for a lattice depth of 1.06 ~ω and
spacing of 2.13 ~ω. Here, there are four unoccupied lat-
tice sites within the trap, which for comparison are seen
to be filled in Fig. 2(h), at the same the spacing but a

depth of 3.18 ~ω. Here, the repulsion between droplets is
strong enough at this short-range that the energetic cost
of occupying adjacent lattice sites would be too high.
The checkerboard state belies a competition between the
interatomic forces and the applied lattice, however there
are not distinct regions of space with different density
patterns, as one might expect from a frustrated system.

SSD, lattice, and checkerboard phases all retain some
symmetry, but in the regime between these, anomalous
phases appear. As the lattice depth increases from 0.2 ~ω
to 0.3 ~ω at spacings around 2 aho the DBEC transi-
tions between the SSD and checkerboard state. In this
regime, the DBEC becomes frustrated, forming the den-
sity pattern shown in Fig. 2(f). In the top half of this
density profile, the density closely resembles that of the
SSD state, as shown in Fig. 2(a), while in the bottom half
of this density profile, the density resembles the checker-
board, as in Fig. 2(g). The energy of this frustrated
state is lower than either the checkerboard or the SSD
at this lattice depth. Here, the inter-droplet repulsion is
so strong that several lattice sites being empty between
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FIG. 3. The energies as a function of increasing lattice depth,
at the fixed lattice spacing of 2.31 aho, with the minimization
seeding by the three dominant morphologies in that region:
the SSD, the frustrated state, and the checkerboard state.

droplets may be energetically favorable. Different spa-
tial regions form distinct density patterns, one preferred
by the SSD morphology and the other by the checker-
board. Typical densities between droplets is 0.1 − 10%
of the peak density, which acts as evidence of the phase
coherence in these systems.

The detailed transition from the SSD to checkerboard
phase is traced in the high-resolution slice of the data
in Fig. 3, for fixed lattice spacing of 2.31 aho. This in-
cludes states similar to the three shown in Figs. 2(a), 2(f),
and 2(g). By seeding, the minimization can be forced to
find any of the three shown states, one of which is al-
ways the ground state. Thus, we can extract the energy
of these three states, where the details of the state are
re-optimized for the specific system parameters, yet the
overall morphology is unchanged. We indeed find a re-
gion where the frustrated state is the lowest energy, with
the SSD being lower energy at smaller depths, and the
checkerboard being lower energy at large depths. Be-
tween these different regimes, we find discontinuities in
the derivative of the ground state energies, indicating
second-order phase transitions. Such phase transitions
as a function of lattice depth appear through the dia-
gram.

At smaller lattice spacing (left side of Fig. 2), the
DBEC forms states with one or more stripes (brown,
stripe), that again have neither 4− nor 6−fold symmetry.
Stripe states were also seen at slightly higher atom num-
ber in an unperturbed DBEC [16]. Two such states are
shown in Fig. 2(b) and Fig. 2(d), where there are large
gaps between sometimes connected filled lattice sites.

Between the stripe and checkerboard regime, we find
another frustrated ground state, indicated by the green
region in Fig. 2. This frustrated state is shown in
Fig. 2(c), where the bottom portion of the density pro-

FIG. 4. A histogram of different energies found by the min-
imization procedure showing a subset of 100 different initial
conditions, at a lattice depth of 1.94 ~ω and spacing of 1.6 aho.
Three example densities are shown as insets, with the corre-
sponding energies indicated by red arrows.

file, below the dotted white line, closely matches that of
Fig. 2(d), while the top portion, above the dotted white
line, matches the density of both a checkerboard state at
this smaller lattice spacing and the stripe phase seen in
Fig. 2(b), with alternating filled lattice minima. Here,
the boundary between these two morphologies does not
pass through the center of the trap, but instead is slightly
above it. Given that we seed the entire phase diagram
with all stripe states, this frustrated intermediate state is
lower energy than either of the two halves which comprise
it.

The stripe regime is emblematic of the complicated
energy manifold that arises when the lattice is applied.
In the SSD regime, without a lattice, the ground-state
is energetically well-separated from metastable states.
However, in the stripe regime, there are a plethora of
metastable states with small energy spacings from the
ground state. This is shown in Fig. 4, where a histogram
of energies found by the minimization is shown, along
with three example states, at a lattice spacing of 1.6 aho
and depth of 1.94 ~ω. Here, the ground state finds a
different stripe phase than shown in either Fig. 2(b) or
Fig. 2(d). The nearest distinct state has a spacing of
7×10−4 ~ω from the ground state. In some cases, nearby
states are similar to the ground state, while in others they
are entirely unrelated, as shown by the inset density pro-
files. The shape of the histogram belies that the lowest
energy state may not always be the most energetically
attractive local minimum to a random initial state, and
in this case the ground state is not the most likely state
for the minimizer to find.

Outlook.— We have investigated the effect of a per-
turbing lattice on the supersolid ground state of a DBEC.
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In some cases the DBEC has neither the symmetry of its
natural ground state nor the symmetry of the lattice.
Undiscovered states may yet exist outside of the bound-
aries of our phase diagram, between points in the scan,
or in isolated regions of the energy landscape. This sets
off the exploration of a vast phase space, where different
lattices or other perturbing potentials could be applied
to the self-organizing patterns of a DBEC. One could be-
gin from the labyrinthine superglass or honeycomb pat-
tern [16], and consider the effects of a lattice on that
system. The application of a time-dependent lattice, ei-
ther adiabatically or via a quench, additionally remains
unexplored.

This material is based upon work supported by the
National Science Foundation under Grant Number PHY
1734006.
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