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We unravel the existence and stability properties of dark soliton solutions as they extend from
the regime of trapped quantum droplets towards the Thomas-Fermi limit in homonuclear symmetric
Bose mixtures. Leveraging a phase-plane analysis, we identify the regimes of existence of different
types of quantum droplets and subsequently examine the possibility of black and gray solitons and
kink-type structures in this system. Moreover, we employ the Landau dynamics approach to extract
an analytical estimate of the oscillation frequency of a single dark soliton in the relevant extended
Gross-Pitaevskii model. Within this framework, we also find that the single soliton immersed
in a droplet is stable, while multisoliton configurations exhibit parametric windows of oscillatory
instabilities. Our results pave the way for studying dynamical features of nonlinear multisoliton
excitations in a droplet environment in contemporary experimental settings.

I. INTRODUCTION

Multicomponent cold atom macroscopic systems pro-
vide the possibility to assess quantum fluctuation phe-
nomena within the weakly interacting regime [1–4]. A
recent intriguing manifestation constitutes the formation
of self-bound quantum droplets owing to the presence of
the first-order quantum Lee-Huang-Yang (LHY) correc-
tion term [5] acting repulsively in higher than one dimen-
sion to prevent the collapse potentially favored by the
mean-field interactions. Such states of matter have been
originally observed in dipolar gases [6] and afterwards in
relevant mixtures [4]. Recently, they were also realized in
short-range attractively interacting two-component, both
homonuclear [7–9] and heteronuclear [10, 11] bosonic
mixtures. Other proposals also suggest the existence of
these states in Bose-Fermi mixtures [12, 13] under the
presence of three-body interactions [14–16], optical lat-
tices [17] and spin-orbit coupling [18, 19]. Besides atomic
platforms, droplet configurations can also be generated,
e.g., in photonic systems [20], vapors [21, 22] and liquid
Helium [23, 24], further promoting their broader rele-
vance.

The theoretical modeling of droplets in atomic systems
is achieved through an extended Gross-Pitaevskii (eGPE)
framework [1, 25] which has been utilized to probe a
plethora of their properties. In short-range bosonic mix-
tures that we investigate herein, these include, but are
not limited to, their inelastic collisions [26, 27], struc-
tural deformations from a Gaussian-shape to a flat-top
profile [27], the behavior of their collective modes [27–
32], the triggering of modulational instability events [33]
and their statistical mechanics [34], as well as the ef-
fects of thermal instabilities [35–37]. Beyond LHY cor-
relation effects have also been discussed by considering

self-consistently higher-order corrections [38–42] reveal-
ing, for instance, slight alterations in the breathing fre-
quency or an enhancement of the expansion velocity.

The focus of the vast majority of the above investi-
gations was on the ground state properties, collective
excitations and dynamical response of droplets. Yet, it
is natural, motivated also from corresponding analysis
of simpler, mean-field-driven dynamical settings [43], to
examine excited states and their dynamical stability in
such mixtures. This concerns in particular, the existence
of nonlinearity-driven coherent structures, in the form of
dark solitons [18, 44] and vortices [45–50], as well as vor-
tex rings [51] embedded in these self-bound states, a topic
which has been touched upon only very recently. For in-
stance, in the one-dimensional (1D) geometry which is
the central focus of the present study, the crossover from
dark solitons at weak repulsive couplings to dark quan-
tum droplets at attractive interactions in free space was
demonstrated [44]. However, it remains elusive under
which conditions dark soliton states persist in the pres-
ence of the external trap, a common feature of relevant
experiments [7, 9, 10], and importantly whether addi-
tional solutions, e.g., gray solitons [45, 52] occur as it was
argued recently for dipolar as well as in spin-orbit cou-
pled [53] condensates in the presence of the LHY correc-
tion [54]. Additionally, an analytical prediction regarding
the dark soliton in-trap oscillation frequency similar to
the one known in repulsive condensates [55, 56] consti-
tutes a central question.

Another intriguing aspect, that we tackle herein, con-
cerns the existence, stability and dynamics of relevant
multisoliton configurations especially so due to the pres-
ence of beyond mean-field nonlinearities in the mixture
setting. On a different note, we remark that recently
there is renewed interest on the experimental realization
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of a diverse array of solitonic structures in repulsive con-
densates [57–61] which is expected to lead to interesting
extensions for self-bound droplet environments.

To address the questions posed above we leverage a
variety of theoretical and numerical tools. These in-
clude (i) a phase-plane analysis of the ensuing dynam-
ical system, (ii) a computational analysis of its excita-
tion spectrum deploying the eGPE framework explor-
ing the regime from the quantum droplet, low-density
limit, to the Thomas-Fermi (TF), large-density limit,
and (iii) direct numerical simulations in the context of
dynamically unstable solutions. Specifically, we con-
sider a homonuclear symmetric bosonic mixture show-
casing the existence of various localized solutions in free
space. We go beyond the well-studied conventional bright
droplets [2, 3] and the largely unexplored dark quantum
droplets (referred to as bubbles hereafter) [44], examin-
ing black [44] and gray solitons [45]. Notice that while
the existence of a fraction of these nonlinear structures
has been recently discussed in Refs. [44, 45], here we un-
ravel their origin from a completely different perspective.
Namely, we rely on solutions of the dynamical system but
also expose their persistence in the presence of the trap,
as well as investigate their spectrum. The coexistence of
multiple of the aforementioned waveforms is elucidated,
as are their dynamical properties and the regimes where
quantum fluctuations are central to their persistence.

Moreover, utilizing the Landau dynamics ap-
proach [62], the LHY-dependent oscillation frequency
for a single dark soliton is extracted recovering the
standard mean-field prediction in the appropriate
large density limit [63–65]. Exploring the underlying
excitation spectrum reveals that single dark solitons are
stable structures for varying chemical potential, trap
and LHY strengths. Strikingly, the interplay between
the attractive in 1D LHY term (dominating for small
chemical potentials) and the repulsive cubic nonlinearity
(prevailing for large chemical potentials) is central
for understanding the behavior of solitonic branches.
For instance, a dark soliton in this setting bifurcates
from the linear limit (either from the band edge in the
absence of the trap, or from the first excited state in its
presence) and tends to the soliton-inside-a-droplet for
decreasing chemical potentials before turning around so
as to acquire a TF-type background for larger chemical
potentials. Along these transitions, the dark soliton
experiences modifications in its intensity and thus its
core size. A summary of the bifurcation structure for
the multisoliton configurations is depicted in Fig. 1. It
is found that the aforementioned turning point which
is a direct imprint of quantum fluctuations depends on
the strengths of the LHY term and the trap but also on
the soliton number. Turning to the largely unexplored,
in this context, multisoliton solutions, we showcase that
their turning points are shifted and, importantly, these
states experience parametric windows of oscillatory in-
stabilities. These manifest through the amplification of
their out-of-phase vibration accompanied by a breathing

of the entire configuration.
The content of this work unfolds as follows. Section II

introduces the model under investigation and the relevant
theory framework based on the eGPE and its hydrody-
namic form. Section III unveils the phase-plane analy-
sis of the underlying dynamical system enabling, among
others, to identify their in-trap oscillation frequency. In
Sec. IV we discuss in detail the excitation spectrum, exis-
tence and stability properties of the single soliton with re-
spect to variations of the chemical potential, the strength
of the LHY and the trap frequency. Section V elaborates
on the persistence of multisoliton configurations and un-
veils their parametric windows of instability. Finally, in
Sec. VI we summarize our results and offer future per-
spectives and challenges.

II. ATTRACTIVE BOSE MIXTURE AND ITS

HYDRODYNAMIC FORMULATION

We consider a harmonically trapped homonuclear
Bose-Bose mixture with equal masses (m1 = m2 ≡ m)
and intra-species repulsive interactions (g11 = g22 ≡
g). The inter-component couplings lie in the attrac-
tive regime (g12 < 0), such that droplet configurations
are generated depending on the value of the chemi-
cal potential. Due to these symmetry considerations
it has been argued that the description of the genuine
two-component system reduces to an effective single-
component one [1, 25, 27], so that the two components are
described by the same wave function, i.e., ψ1 = ψ2 = ψ.
Such a setting has been suggested as accessible to ex-
perimental realizations via the utilization of two hyper-
fine states, |F,mF 〉, of 39K, e.g. |1,−1〉 and |1, 0〉 as it
was done in Refs. [7–9]. Nevertheless, we should mention
that, although this setting has been considered experi-
mentally in the above works for three-dimensional quan-
tum droplets, we are not presently aware of a genuine 1D
experimental realization in the realm of the above model.
This remains an important outstanding challenge for the
current experimental state-of-the-art.
The corresponding dimensional effective eGPE de-

scribing droplet configurations and including the first-
order LHY quantum correction [25] has the following
form [29]

i~ψt = − ~
2

2m
ψxx +

δg

2
|ψ|2ψ −

√
m

π~
g3/2|ψ|ψ + Vtr(x)ψ,

(1)
where the subscripts denote partial derivatives, δg =
g12 + g quantifies the deviation from the mean-field bal-
ance point δg = 0 (see the Supplemental material of
Ref. [7] for the dependence and controllability of δg based
on external magnetic fields), and Vtr(x) is the (usually
parabolic) external trapping potential. The results to
be presented in all the figures below are provided in di-
mensional units in order to be directly comparable with
current state-of-the-art experiments. However, for ease
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FIG. 1. Schematic representation of the underlying bifurcation diagram of the particle number N(µ) as a function of the
chemical potential µ for the droplet ground state as well as the single, two and three droplet dark solitons for δ = 1. Vertical
dashed lines indicate the turning point, µcr, and the corresponding linear limit, µlin = (n + 1/2)Ω of the adimensionalized
model, where Ω = 0.1 denotes the trap frequency. The solution (Hermite-Gauss state) departs from the linear limit and for
decreasing chemical potential acquires a droplet background since the LHY dominates until it reaches µcr. Afterwards, the
configuration gradually deforms from a Gaussian-type backdrop towards a TF-type one bearing one or more strongly localized
dark soliton(s) for increasing µ where the cubic nonlinearity prevails. Characteristic density profiles of the ensuing localized
waveforms at specific chemical potentials (see ellipse markers) are also provided. The latter correspond to µ = −0.175 and
0.115 for the ground states, µ = −0.06 and 0.2 for the single, µ = 0.02 and 0.25 for the two, and µ = 0.17 and 0.3 for the three
dark soliton solutions respectively. Note that for visualization purposes the curves are slightly shifted upwards from N = 0.
Namely, all the lower curves asymptote to N = 0 as µ → ∞.

of exposition, all the theoretical analysis will be provided
using the corresponding adimensional 1D eGPE [25, 45]

iψt = −1

2
ψxx + |ψ|2ψ − δ|ψ|ψ + Vtr(x)ψ. (2)

Here, energy, time, space, and interaction strengths
are respectively measured in units of E0 ≡ ~ω⊥, ω

−1
⊥

,
√

~/(mω⊥), and
√

~3ω⊥/m. The atomic mass is m and
ω⊥ refers to the confinement frequency in the transversal
direction which can be experimentally tuned with the aid
of confinement induced resonances [66]. Importantly, the
parameter δ (with δ > 0) describes the “strength” of the
LHY contribution [25, 45] and it is given by

δ =
1

π

[

2g3

E0 (g12 + g)

]1/2

. (3)

It is evident that δ depends on the involved interaction
strengths (which can be routinely adjusted in the ex-
periment through Fano-Feshbach resonances [7, 8, 67])
and also on the transverse confinement via E0. It is a
main focus of this work to expose the impact of the LHY
“strength” on the solitonic solutions, see for instance
Sec. IV. Notice that for δ = 0 the eGPE reduces to the
common Gross-Pitaevskii equation [64, 65]. Moreover,
we chose a standard parabolic external trapping poten-
tial Vtr(x) = (1/2)Ω2x2, with Ω = ~ω0/E0 and ω0 is the
trap frequency in the longitudinal direction. To restrict
the atomic motion in a 1D geometry, where transversal

excitations do not play any role, we employ parametric
variations in the interval 0 ≤ Ω ≤ 0.1.
To begin our analysis, we first employ the Madelung

transformation [64, 68], ψ =
√
ρ exp(iφ), where ρ(x, t)

and φ(x, t) denote, respectively, the 1D density and phase
of the gas. This way, Eq. (2) is expressed in the following
hydrodynamic form

ρt + (ρφx)x = 0, (4a)

φt +
1

2
φ2x + ρ− δ|ρ1/2| − 1

2
ρ−1/2(ρ1/2)xx + Vtr(x) = 0.

(4b)

The above coupled system of equations can be used for
the derivation of stationary states of the system in free
space [Vtr(x) = 0], as well as its ground state in the
presence of the trap [Vtr(x) 6= 0].

III. PHASE-PLANE ANALYSIS

A. Stationary states in free space

Assuming that the potential Vtr(x) can be ignored in
order to assess the model properties in free space, we
may seek stationary solutions of the form ρ = ρ(x) and
φ(x, t) = φ(x) for the system of Eqs. (4). In such a
case, integrating Eq. (4a) leads to φx = C1/ρ, where
C1 is a to-be-determined constant. It is important to
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note at this stage that the Madelung transformation al-
lows us to identify the gradient of the phase, φx, as the
velocity of the traveling stationary states under consid-
eration. Therefore, configurations with C1 = 0 corre-
spond to fixed (non-traveling) steady states while the
case C1 6= 0 corresponds to co-traveling configurations.
The equation for φx in conjunction with Eq. (4b) leads

to the following expression for the phase

φ(x, t) =

∫

C1

ρ(x)
dx− µt+ θ0, (5)

where µ plays the role of the chemical potential and θ0 is
an integration constant. From this expression it becomes
evident that the phase of the solution can be determined
by the form of ρ(x) (and the constants C1, µ, and θ0).
The density ρ(x), on the other hand, can be found from
Eq. (4b), upon substituting the expression (5). Indeed,
introducing the auxiliary field q = ρ1/2, Eq. (4b) takes
the form1

qxx + 2µq + 2δ|q|q − 2q3 − C2
1

q3
= 0, (6)

which can be viewed as the equation of motion of a unit
mass particle in the presence of the effective potential

V (q) = µq2 +
2δ

3
q2|q| − 1

2
q4 +

C2
1

2q2
. (7)

Notice that integration of Eq. (6) leads to the equation

1

2
q2x + V (q) = E,

where E is the total energy of the system. This equa-
tion can be readily integrated, resulting in the implicit
solution

∫

dq
√

2[E − V (q)]
= x− x0,

where x0 is an integration constant. In what follows,
we provide a systematic study of the structure of the
phase plane (q, qx) associated with the dynamical system
of Eq. (6) focusing, in particular, on localized waveforms
q(x) corresponding to homoclinic [i.e., tending asymptot-
ically to the same steady state from the Greek “κλινω”
(to tend) and “oµoιo” (same)] or heteroclinic orbits [from
“κλινω” and “ǫτǫρo” (different), i.e., tending asymptot-
ically to different steady states] in the (q, qx) plane.
Let us initially, for simplicity, consider the case of non-

traveling configurations, C1 = 0. The co-traveling case
for C1 6= 0 is considered for completeness in Appendix A.
For C1 = 0, the extrema of the potential, that set the

1 This substitution seems to suggest that q > 0. Yet, a careful
inspection of the original model leads to the conclusion that q

simply needs to be assumed to be real.

fixed points of the system, are determined by dV/dq = 0,
i.e., by q(−q2+ δ|q|+µ) = 0. To solve this equation, it is
necessary to distinguish the cases with q > 0 and q < 0,
and with µ < 0 and µ ≥ 0. In particular, for q ≥ 0 and
µ ≤ 0, the fixed points are given by

q = 0, q± =
1

2

(

δ ±
√

δ2 − 4|µ|
)

. (8)

This implies that there exist

(a) one fixed point, at q = 0, for δ2 < 4|µ|,

(b) two fixed points, at q = 0 and q = δ/2, for δ2 =
4|µ|,

(c) three fixed points, at q = 0 and q =
1
2

(

δ ±
√

δ2 − 4|µ|
)

, for δ2 > 4|µ|,

while for q ≥ 0 and µ ≥ 0 there exist two fixed points
corresponding to

q = 0, q =
1

2

(

δ +
√

δ2 + 4µ
)

.

Finally, in the case of q < 0, and due to the fact that
the potential is an even function of q, the fixed points
are mirror symmetric to the ones above, namely a fixed
point qfp for q > 0 maps to −qfp for q < 0.
The structure of the effective potential and its asso-

ciated phase plane become particularly interesting when
µ = µ⋆ = −2δ2/9. For this value, δ2 > 4|µ⋆|, and hence
there exist five fixed points, namely three saddle points
(associated with potential energy maxima) and two cen-
ters (associated with potential energy minima) at the or-
dinary differential equation level. The effective potential
in this case factorizes as

V (q) = −1

2
q2

(

|q| − 2δ

3

)2

,

and the fixed points share the same energy, E = 0. The
relevant form of the potential (exhibiting two wells at
q = ±δ/3) and the associated phase plane are depicted
in Fig. 2(b) for δ = 1. Therefore, for µ = µ⋆ there ex-
ists a quartet of heteroclinic orbits, which correspond to
kink -type shapes of q(x); see the relevant wave function
depicted in red in the bottom panel of Fig. 2(b) and in
Fig. 3(b). All these heteroclinic orbits can be found by
direct integration, in an explicit analytical form (see, e.g.,
also Refs. [27, 33]), namely

q kink(x) = ± δ
3

[

1± tanh

(

δ

3
x

)]

. (9)

Notice that, inside the eight-shaped pattern that is
formed by the quartet of the heteroclinic orbits, periodic
solutions are present (that can be expressed in terms of
the Jacobi elliptic functions [33]), while outside of this
region all trajectories are unbounded. We remark that
in the case of µ < −δ2/4 for our setting of δ = 1, a
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FIG. 2. Potential V (q) (top panels), respective phase planes (middle panels) and bounded orbits (bottom panels) for C1 = 0
and δ = 1 for which µ⋆ = −2/9. The different columns of panels correspond to representative cases, for the values of µ
indicated, for all the qualitative different scenarios that produce bounded orbits. Bounded (unbounded) orbits are depicted
with solid (dashed) lines in the middle panels. For clarity of exposition, when symmetric (q ↔ −q) solutions exist, only positive
bounded orbits are shown in the lower panels. Case (a) corresponds to −δ2/4 < µ < µ⋆ which gives rise to homoclinic orbits
supported by a non-zero background. Case (b) corresponds to µ = µ⋆ where the two homoclinic orbits of case (a) collide
and give rise to heteroclinic orbits connecting zero and non-zero backgrounds. Case (c) corresponds to µ⋆ < µ < 0 where the
heteroclinic orbits of case (b) merge into heteroclinic orbits connecting non-zero backgrounds. Case (d) corresponds to µ > 0
where the homoclinic orbits of case (c) disappear while the heteroclinic orbits connecting non-zero backgrounds are preserved.
Note that in order to better relate our results to experimental conditions, we opt to display in this figure (as it is the case for
all subsequent figures) all of the relevant quantities in full dimensional units as indicated in the labels.

straightforward analysis shows that all emergent trajec-
tories, q(x), are unbounded for |x| → ∞, since there
is only a potential energy maximum at the origin. For
−δ2/4 < µ < µ⋆, the situation is akin to the one pre-
sented in Fig. 2(a). In this case, that merits separate
investigation, there exist homoclinic solutions. How-
ever, rather than these being homoclinic to the vanishing
background, as the well-studied case of bright droplets,
these are homoclinic to the potential maxima at ±q+,
hence representing so-called bubble solutions [69]. Fur-
thermore, even though both bubbles and dark solitons
exist on top of a finite background, bubbles do not fea-
ture a phase jump (and an accompanying sign change)
as dark solitons do. In fact, bubbles are states which
commence and return to the same nontrivial equilibrium
state (either q+ or −q+) and as such are homoclinic; see
red curve in Fig. 2(a) and also Fig. 3(a). On the other
hand, dark solitons commence from one of the nontriv-
ial fixed points (say q+) and end on the other (in this
example, −q+, or vice-versa starting at −q+ and end-
ing at q+) and, thus, correspond to heteroclinic orbits;
see red curves in Fig. 2(c)-(d) and also Figs. 3(d)-(e).
Bubble configurations and their (in)stability will be the
subject of a separate study. Indeed, here, as concerns

droplets, we will examine solely the bright ones present
for µ⋆ < µ < 0 and the dark solitonic excitations poten-
tially present therein.
Turning to µ > µ⋆, the value of the two maxima of the

potential on either side of q = 0 increases as µ increases
while the central peak at q = 0 remains unchanged. Pre-
cisely at µ = µ⋆ the two side peaks have the same height
as the central peak creating the quartet of heteroclinic
orbits mentioned above [see Fig. 2(b)]. For larger val-
ues of µ, the central peak becomes shallower than the
side peaks resulting in the emergence of a pair of homo-
clinic orbits to the origin, i.e., the well-recognized bright
quantum droplets [27, 29, 33] [see light blue curves in
Fig. 2(c)]. These can be found as exact analytical solu-
tions:

qdroplet(x) = ∓3µ

δ

1

1 +
√

1 + 9µ
2δ2 cosh(

√−2µx)
, (10)

with the − and + signs corresponding to the homoclinic
orbit with q > 0 and q < 0, in line with what was re-
ported, e.g., in Refs. [27, 29, 33] for δ = 1. Notice that,
as mentioned above, bright droplets exist within the in-
terval µ⋆ = −(2/9)δ2 < µ < 0. A characteristic exam-
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FIG. 3. “Zoo” of nonlinear waves in the crossover from the droplet to the TF regime. Top and bottom sets of panels depict,
respectively, the wave function, q, and the relevant density profiles, |q|2. (a) Bubble wave function for µ = −0.23 referring to a
homoclinic solution anchored at q+. Bubbles are found within the interval −δ2/4 < µ < µ⋆ where q+ exists and V (0) > V (±q+),
see also Fig. 2(a). (b) Kink solution corresponding to a heteroclinic connection between 0 and q+ (or −q+), occurring solely
for µ = µ⋆ = −2δ2/9. Here, the maxima of the effective potential have the same height (energy), i.e., V (0) = V (±q+) [see
Fig. 2(b)]. (c) Bright droplet for µ = −0.2. These states form for µ⋆ < µ < 0 when V (0) < V (±q+) and are homoclinic
solutions at q = 0 [see also Fig. 2(c)]. (d) [(e)] Dark soliton configuration for µ = −0.222 [µ = 0] being a heteroclinic orbit
connecting −q+ and q+. These structures arise when µ > µ⋆ and, as µ → µ+

⋆
, they become wider due to the bottleneck induced

by the potential maximum at q = 0 as evidenced in panel (d). In all cases, C1 = 0 and δ = 1.

ple of the bright droplet solution [Eq. (10)] is depicted
in Fig. 3(c) [see also the orbit depicted in light blue in
Fig. 2(c)]. Obviously, the presence of the LHY term in
our extended mean-field model is essential for the exis-
tence of such bright droplet waveforms.

Finally, let us focus on the dark soliton solutions. In
general, for µ⋆ < µ (still for C1 = 0), the potential V (q)
features two outer extrema ±q+ associated with a pair of
saddle fixed points on either side of q = 0 [top panels in
Figs. 2(c) and (d)]. These outermost saddle fixed points
are connected by a pair of heteroclinic orbits producing
dark soliton structures, see red curves in the middle and
bottom panels of Figs. 2(c) and (d). However, as long as
µ < 0 there exists also a saddle point at the origin. Due
to the presence of this saddle point at q = 0, the relevant
pair of heteroclinic orbits exhibits a local minimum in
qx. As a result, the corresponding dark solitons do not
have a tanh-shaped profile as is the case of the usual dark
solitons of the defocusing nonlinear Schrödinger equation
(NLS) [56], but change their slope in the vicinity of the
origin. In fact, due to the bottleneck induced by the
effective potential maximum at q = 0, the width of the
dark soliton may be rendered arbitrarily large in the limit
µ→ µ+

⋆ [44]. A dark soliton profile with an enlarged core
is depicted in Fig. 3(d) for µ = −0.222, which should
be contrasted with the case when the maximum of the
effective potential at q = 0 is absent, namely for µ ≥ 0.
In this latter case [see, e.g., Fig. 3(e) for µ = 0], the dark
(black) soliton has a profile closer to the familiar tanh-
shaped one (with minimum density equal to zero) yet
not precisely the same due to the presence of the LHY
correction term; see Eq. (11).

Even though the profiles of these dark soliton states
are far more complex than the standard NLS dark soli-
tons [56], they can still be obtained analytically using the

following formula

qdark(x) = q+ +
−B(µ) +

√

B2(µ)− 4A(µ)C(µ)
2A(µ)

, (11)

where A(µ) = B2 − 4A tanh2(
√
A(x)), B(µ) =

4AB sech2(
√
A(x)), and C(µ) = 4A2 sech2(

√
A(x)), with

A = 4µ + (1 +
√
1 + 4µ) and B = 2(1

3
+

√
1 + 4µ). The

expression of Eq. (11) is valid for x such that q(x) > 0,
while the other “half” of the solution (when q(x) < 0) is
obtained by anti-symmetrizing the wave’s profile past the
point of its zero-crossing. In the above expression, q+ is
given by Eq. (8), while it should be noted that for all the
solutions discussed in the absence of the trap [cf. also the
kinks of Eq. (9) and droplets of Eq. (10)], their invariance
with respect to translation allows to center them at any
position x0, even though in the above analytical expres-
sions we have implicitly assumed that they are centered
at x0 = 0. Note also, that despite the similarity between
the kink structure of Fig. 3(b) and the dark soliton of
Fig. 3(e) at the wave function level, the former solution
exists only for µ = µ⋆ and, additionally, the two states
have well distinguished asymptotics.
Summarizing, the systematic analysis of the behavior

of the dynamical system associated with the stationary
solutions of the eGPE of Eq. (2) for Vtr(x) = 0 reveals
a wealth of localized stationary states. These include
bubbles, kinks, bright quantum droplets, dark (black)
solitons, and (as discussed in the Appendix A) gray soli-
tons. The kink-like structures, bubbles, as well as the
bright quantum droplets can only be supported in the
system due to the presence of the LHY quadratic nonlin-
earity term. Notice that periodic nonlinear waves, such
as the sn-, cn- and dn-type Jacobi elliptic functions, also
exist but are not the focus of this work (see oscillatory,
periodic, solutions in the bottom panels of Fig. 2). More-
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over, it is particularly relevant to investigate interactions
among the above-discussed entities in order to under-
stand their character and whether they bear similarities
with interacting solitons. This is discussed in detail in a
forthcoming work [70].

B. The ground state of the trapped system

Let us now consider the ground state of the sys-
tem in the presence of the external trapping potential
Vtr(x) 6= 0. Within the large density TF limit, we seek
solutions of Eqs. (4) having the form ρ = ρ0(x), φt = −µ
and φx = 0. In this regime, the quantum pressure
term (1/2)ρ−1/2(ρ1/2)xx can be neglected, and the perti-
nent ground state is obtained upon solving the reduced

Eq. (4b) for ρ
1/2
0 . Namely

∣

∣

∣
ρ
1/2
0 (x)

∣

∣

∣
=
δ

2
+

[

(

δ

2

)2

+ µ− Vtr(x)

]1/2

, (12)

which is the only relevant solution since µ − Vtr(x) > 0.
Notice that in the absence of the LHY term (δ = 0), the
well-known form of the TF cloud [64, 65] is retrieved.
A careful inspection of the solution (12) for the ground
state in the large density limit unveils that it does not
vanish for any x [as in the case with δ = 0, where
ρ0(±

√
2µ/Ω) = 0], but it rather takes the constant value

ρ0 = δ/2 for |x| ≥
√

δ2/2 + 2µ/Ω. An intriguing mathe-
matical question concerns the decay of the trapped state
for large µ > 0 towards zero. To address this question,
one needs to carefully consider the turning point region
where µ− Vtr(x) ≈ 0. A linear approximation thereof is
expected to lead to a variation of the Painlevé-II equa-
tion [71] that should be leveraged in order to identify the
decay towards vanishing amplitudes. While this is an
avenue that we do not pursue herein, we recognize this
as a fruitful direction for further mathematical studies
associated with the relevant ground state.
Below we focus on the large density limit, investigat-

ing the stability spectrum of the ground state since our
aim is to embed dark solitons on top of such a back-
ground. The stability can be checked upon consider-
ing small-amplitude perturbations on the ground state
density ρ0(x) by substituting in Eqs. (4) the ansatz
ρ(x, t) = ρ0(x) + ǫρ1(x, t) and φ(x, t) = −µt + ǫφ1(x, t)
where 0 < ǫ ≪ 1 is a formally small perturbation pa-
rameter. In this sense, keeping terms of order O(ǫ) the
following linear equation for ρ1(x, t) is derived

ρ1,tt − c2ρ1,xx +
1

4
ρ1,xxxx = 0.

The above equation admits plane wave solutions ∝
exp[i(kx− ωt)], where the wavenumber k and frequency
ω obey the Bogoliubov dispersion relation

ω2 = c2k2 +
1

4
k4, (13)

while c2(x) = ρ
1/2
0 (x)

(

ρ
1/2
0 (x)− δ/2

)

is the square of

the local speed of sound [72]. This reveals how the lo-
cal speed of sound depends on the “strength” of the first
order quantum correction. Note also that the relevant
expression is in line with earlier ones for this setting; see,
e.g., Eq. (10) of Ref. [51], upon accounting for the den-
sity expression of Eq. (12). Therefore, by measuring the
speed of sound, it is possible to quantify the presence
of quantum fluctuations. Additionally, as dictated by
Eq. (13), the frequency is always real for every wavenum-
ber and thus, as it should be expected, the ground state
is always stable in the TF limit.
As a final remark regarding the pertinent trapped

ground state, it is also of interest to consider its low-
density limit in the vicinity of negative chemical poten-
tials, in connection with the relevant continuation illus-
trated in the bifurcation diagram of Fig. 1. Here, in line
with earlier works [45], we see that the trapped ground
state branch does not bifurcate from µ = 0 as in the pure
cubic NLS model, but rather starts, as one might expect,
from the ground state of the quantum harmonic oscillator
at µ = Ω/2. The effective focusing nature of the model
for small/intermediate intensities (due to the dominance
for such amplitudes of the quadratically nonlinear term)
leads to the formation of a droplet-like state. The latter
is strongly reminiscent of the analytically obtained one in
Refs. [27, 33], yet it is “compressed” in comparison (i.e.,
narrower) due to the effect of the trapping potential. The
resulting branch of solutions accordingly does not have
a termination point at µ = −2δ2/9. Rather, the corre-
sponding solutions encounter a turning point µcr > µ⋆,
and subsequently turn and head towards the TF limit
discussed above. Indeed, one can identify this turning
point as the parametric threshold where the cubic non-
linearity term takes over, eventually leading (for higher
values of the chemical potential) to the asymptotic large
density regime.

C. Landau dynamics of dark solitons

In the homogeneous case of Vtr(x) = 0 and in the ab-
sence of the LHY correction, the setting at hand reduces
to the completely integrable NLS equation, characterized
by the energy

H =

∫ +∞

−∞

[

|ψx|2 + (µ− |ψ|2)2
]

dx. (14)

Furthermore, the NLS equation possesses the following
exact analytical dark soliton solution [73]

ψ(x, t) =
{

√

µ− v2 tanh
[

√

µ− v2(x−X0)
]

+ iv
}

e−iµt,

(15)
whereX0 is the soliton center and dX0/dt = v denotes its
velocity [43, 56]. The energy of the dark soliton, can be
found upon substituting Eq. (15) into Eq. (14), leading
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to

EDS =
4

3
(c2 − v2)3/2, (16)

where c2 = µ in this limit.
Let us now consider the dynamics of the dark soliton

in the TF limit, in the presence of both the LHY term
and the external potential. For this purpose, we treat
the LHY term as a small perturbation and we assume
the potential to be slowly varying on the soliton scale. In
such a case, we may employ the so-called Landau dynam-
ics approach [62] (see also Ref. [74]), according to which
the soliton energy (14) is treated as an adiabatic invari-
ant in the presence of perturbations. Namely, the back-
ground density µ will be slowly varying according to µ→
µ − Vtr(x), while c

2 → c2(x) = ρ
1/2
0 (x)

(

ρ
1/2
0 (x) − δ/2

)

accounting for the LHY contribution.
Then, assuming the adiabatic invariance of the soliton

energy in Eq. (16), i.e., c2(x) − v2 = [(3/4)EDS]
2/3 ≈

const., using v = dX0/dt = Ẋ0, and considering
a parabolic trap with strength Ω, namely Vtr(x) =
(1/2)Ω2x2, we derive the following nonlinear evolution
equation for the dark soliton position

Ẍ0 +
Ω2

2

{

1 +
δ

4

[

δ2

4
+ µ− 1

2
Ω2X2

0

]−1/2
}

X0 = 0.

Supposing that the soliton motion takes place in the
vicinity of the trap center, we extract the oscillation fre-
quency, Ωosc, of the dark soliton in the presence of quan-
tum fluctuations as

Ωosc =
Ω√
2



1 +
δ

4
√

δ2

4
+ µ





1/2

. (17)

Notice that in the absence of the LHY contribution (i.e.,
δ → 0), as well as in the large density limit (with
µ → +∞), the oscillation frequency of the dark soliton

retrieves the well-known value Ωosc = Ω/
√
2 [43, 56]. As

we will explicate later on, this analytical estimate cor-
rectly captures the trend of Ωosc in terms of µ as pre-
dicted from the numerical solution of the eGPE. How-
ever, deviations occur especially as µ decreases and as
we depart from the TF regime. Indeed, as expected, the
relevant frequency in the low density, near-linear limit
tends to Ωosc = Ω, with the anomalous mode (see the
discussion below) interpolating between these two dis-
tinctive limits of small and large µ.

IV. EXCITATION SPECTRUM OF SINGLE

DARK SOLITON SOLUTIONS

Having identified through the aforementioned phase-
space analysis a plethora of localized solutions that exist
in the setup at hand, let us now study stationary single

and multiple (see Sec. V) dark soliton solutions in the
presence of parabolic confinement [43]. The incorpora-
tion of the external trapping potential is of relevance for
contemporary experiments [7–9] dealing with homonu-
clear BEC mixtures. In practice, we obtain the relevant
trapped solutions by solving the time-independent ver-
sion of the eGPE (2) using a fixed point iterative scheme
of the Newton type [75]2. Specifically, stationary states
are found upon varying the chemical potential, µ, ad-
dressing both the small and large (TF) density limit for
different strengths of the LHY contribution, δ, spanning
low, intermediate, and comparable to the standard cubic
nonlinearity interactions. Characteristic density profiles
of the droplet ground state as well as the different single
and multiple dark soliton configurations are depicted as
insets in Fig. 1.
To address the stability of the above obtained solu-

tions, the following ansatz is introduced in the time-
independent eGPE (2)

Ψ(x, t) =
[

ψ0(x) + ǫ

(

a(x)e−iΩosct + b∗(x)eiΩosct

)

]

e−iµt,

(18)

where ψ0(x) is the iteratively found equilibrium solution
and ǫ denotes a small amplitude (formal) perturbation
parameter. Additionally, Ωosc are the eigenfrequencies

and
(

a(x), b∗(x)
)T

the eigenfunctions of the eigenvalue
problem, which to O(ǫ) reads

Ωosc

[

a
b

]

=

[

L11 L12

−L∗
12 −L11

] [

a
b

]

, (19)

where (·)∗ denotes complex conjugation. Here, the block
matrix elements are [29]

L11 = −1

2
∂2x + Vtr − µ+ 2 |ψ0|2 −

3

2
δ |ψ0| ,

L12 = |ψ0|2 −
1

2
δ |ψ0| .

Notice that the latter expression for L12 notably hinges
on the fact that the solution ψ0 is real.
Recall, that in the absence of beyond mean-field cor-

rections (i.e., for δ = 0), the dark solitons of the cu-
bic NLS are well-known to interpolate between the lin-
ear limit of the first excited state [76, 77], with energy
E = µ = Ω(n + 1/2) for n = 1 and the TF limit
of large density for large values of the chemical poten-
tial µ. Similarly to the ground state of the system (see
Sec. III B), the relevant waveform is dynamically stable

2 For the results presented throughout this work we use a spatial
discretization of dx = 10−4 with a second (crosschecked with the
outcome of a fourth) order finite differences scheme in space and
a fourth order Runge-Kutta method for the dynamical evolution
of the system with temporal discretization dt = 10−5.



9

for all values of µ. However, contrary to what is the
case for the ground state, the linearization around such a
waveform bears a negative energy (negative Krein signa-
ture) [78, 79] mode that interpolates between the linear
limit of frequency Ωosc = Ω and the highly nonlinear
TF limit of Ωosc = Ω/

√
2 [80]. The Krein signature

for the eGPE model under consideration is defined as
K = Ωosc

∫

dx
(

|a|2 − |b|2
)

. It constitutes a key quantity
of the Bogoliubov de Gennes stability analysis since it
identifies the energy contribution of each mode to the un-
perturbed system. Specifically, depending on the eigen-
vectors (a, b) such a mode can have a positive frequency
Ωosc but a negative energy K < 0 or negative Krein sig-
nature. It is these modes that, in what follows, are called
anomalous modes (alias negative energy modes).

A natural question here concerns how the relevant
bifurcation structure may change in the presence of
the quadratic nonlinearity of the LHY term. Indeed,
Figs. 4(a) and (b) illustrate that the picture is drasti-
cally different when the LHY strength is present. Con-
trary to the defocusing (repulsive) cubic nonlinearity
case, which induces a bifurcation towards values of µ > E
(i.e., to the right of the linear eigenvalue of the quantum
harmonic oscillator) [43], in the 1D geometry at hand,
the focusing (attractive) nature of the LHY [2, 42] cor-
rection is the dominant one for small intensities. The
corresponding bifurcation diagram of the particle num-
ber, N =

∫

|ψ(x)|2dx, as a function of µ is depicted in
Fig. 4(a) for a pair of values of the LHY correction and a
fixed trapping strength Ω = 0.1. As it can be seen, for in-
creasing N , eventually, the defocusing nature of the large
amplitude solutions “takes over” and leads to the emer-
gence of a turning point, for δ = 1, at µ = µcr = −0.085.
After this turning point, the dependence of N on µ be-
comes monotonically increasing, as is representative of a
defocusing nonlinearity [43, 77]. Interestingly, the rele-
vant critical point when concerning the ground state of
the droplet is shifted to more negative values of µ as com-
pared to the dark droplet soliton solution [see Fig. 1].
Naturally, as the trap strength tends to vanishing, ac-
cordingly both the starting point of the branch and its
µcr shift to the left approaching the homogeneous limit
values. Therefore, when lowering Ω, the region of exis-
tence of the droplet background becomes larger, a state-
ment that holds independently of the number of embed-
ded solitons.

It is also relevant to follow the dependence of the
corresponding “anomalous” (negative energy or negative
Krein sign) spectral mode; see Fig. 4(b). The relevant
(rescaled) eigenfrequency, at the linear limit bifurcates
from the value of Ωosc/Ω = 1 when µ = µlin = (3/2)Ω.
Initially, once again, the effective focusing nature of the
nonlinearity leads to larger values of Ωosc/Ω, but eventu-
ally the defocusing character of the large amplitude (high
nonlinearity) limit leads Ωosc/Ω to turn around and start
decreasing as shown in Fig. 4(b). In the large µ (TF)
limit, the corresponding eigenfrequency asymptotes to-
wards the constant value Ωosc/Ω = 1/

√
2. In this latter

case, the solution is largely reminiscent of the correspond-
ing cubic problem, while near the linear limit of low den-
sity, the solution resembles a first-excited Hermite-Gauss
eigenmode; see the relevant profiles in Fig. 1. Indeed,
residing on the upper (lower) branch, the soliton core
widens for smaller (larger) µ since the atom number is
significantly reduced. The same overall phenomenology
occurs also for intermediate strengths of the LHY term
as depicted also in Figs. 4(a) and (b) for δ = 0.5. Notice
however, that for smaller values of the parameter δ, the
turning point, appearing at µcr = 0.091 for δ = 0.5, is
shifted towards more positive values.

The significance of the LHY contribution on the sta-
bility properties of a single dark soliton is further elu-
cidated by treating this term as a (weak) perturbative
one. Namely, when considering significantly lower val-
ues of the relevant interaction coefficient such as δ = 0.1
and 0.01; see Figs. 4(c) and (d). Evidently, since re-
pulsion prevails in both cases, N(µ) is a monotonically
increasing function as µ increases from the linear limit of
µ = 3Ω/2; see Fig. 4(c). This monotonicity for small δ is
also present in the relevant dependence of the anomalous
mode for each of the distinct values of δ; see Fig. 4(d).
In cases of higher δ, as shown in Fig. 4 [see, e.g., panel
(b)], the asymptotics of the relevant anomalous mode still

approach the same (scaled) limit of 1/
√
2 [as is also pre-

dicted by Eq. (17)] for large µ. Yet, they do so through a
multivalued µ-dependence, reflecting in this way the cor-
responding N(µ) curve. Finally, Fig. 4(d) also depicts
the results for the prediction of the dark soliton oscilla-
tion frequency using the Landau dynamics approach as
per Eq. (17). As the figure suggests, the Landau pre-
diction correctly captures the qualitative tendency of the
oscillation frequency for increasingly larger values of µ
albeit with a noticeable discrepancy for small µ values as
depicted in the inset. In that vein, it is relevant to recall
that the relevant prediction is expected to be asymptot-
ically valid in the limit of large chemical potential.

Next, we aim to determine the impact of the LHY
strength on the location of the critical point of the bi-
furcation diagram N(µ) for distinct trap frequencies and
soliton numbers. To this end, we initially obtain dark
soliton solutions upon varying δ in the interval [0, 1] cov-
ering this way the small, intermediate and large density
limits and identify the relevant turning point µ = µcr.
Focusing on the single soliton case, the behavior of µcr

in terms of δ is depicted in Fig. 5(a) not only for Ω = 0.1
that is typically utilized herein, but also upon varying
the trapping frequency. It becomes apparent that, irre-
spective of the trap strength, µcr decreases for increasing
δ. Additionally, for fixed Ω, µcr is shifted to more posi-
tive values as δ → 0 whilst for looser traps µcr → −0.2
for δ → 1, approaching this way the value of µ⋆ = −2/9
found in our previous phase-plane analysis in free space.
Furthermore, it is possible to infer from which strength
of the LHY contribution onward, N(µ) features one in-
stead of two (i.e., lower and upper) branches. For in-
stance, when Ω = 0.1 and δ ≈ 0.2, µcr ≈ µlin = 0.15,
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FIG. 4. (a), (c) Bifurcation diagram of the particle number, N , for the single dark soliton solutions as a function of the
chemical potential, µ, for different values of the LHY correction as indicated. (b), (d) Corresponding dependence of the internal
(anomalous) mode of eigenfrequency Ωosc/Ω vs. µ. Notice, than in addition to the dipolar mode of frequency Ωosc/Ω = 1 (see
the horizontal black line), the anomalous mode starts from the linear limit µlin = (3/2)Ω. As N is increased, for small enough
δ values (see cases δ = 0.01 and δ = 0.1), the anomalous mode decreases and then asymptotes to Ωosc/Ω = 1/

√
2 for large µ

values [see the horizontal dashed black line in (d)]. The inset in panel (d) corresponds to a magnification at small chemical
potentials where also the difference from the prediction of Eq. (17) is maximal. In contrast, for large enough values of δ (see
cases δ = 0.5 and δ = 1), the anomalous mode frequency first increases and then decreases as N increases while the chemical
potential also reaches a turning point for a minimal critical value of µ at µcr (µcr = −0.085 for δ = 1 and µcr = 0.091 for
δ = 0.5). The trapping strength for all cases is fixed at Ω = 0.1.
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FIG. 5. Critical value of the chemical potential, µcr, versus the LHY strength, δ, for (a) single dark soliton solutions and
different trap frequencies Ω (see legend) and (b) distinct dark soliton complexes ranging from one to three (see legend) and
for Ω = 0.1. Evidently, for fixed δ the turning point gets shifted to lower chemical potentials, either by decreasing the trap
frequency or the soliton number. In, all cases larger δ reduces µcr. The dashed horizontal line at µcr = 0 is added as a guide
to the eye.

and thus for δ . 0.2 the bifurcation diagram consists
only of the upper branch. A similar behavior of µcr(δ)
takes place for higher soliton numbers, see in particular
Fig. 5(b). As can also be seen, µcr is larger for fixed (Ω,
δ) when increasing the number of solitons; see also the
relevant discussion of such solutions in the next section.
We remark that in the absence of a soliton the respective
critical point of the emergent droplet occurs at lower µ,
e.g., when δ = 1 then µcr ≈ −0.183; see leftmost curve

in Fig. 1.

Since dark solitons and bright quantum droplets co-
exist, in what follows we explicitly depict in Figs. 6(a)
and (b) representative droplet-dark soliton density pro-
files for different µ values upon considering variations of
the trapping frequency for δ = 1. In all cases, we have
verified the spectral stability of these solutions as the
homogeneous limit is approached. In line with our pre-
vious findings, solutions bearing smaller µ values, such
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FIG. 7. Dependence of the anomalous mode, Ωosc/Ω, for (a) two and (b) three dark soliton solutions as a function of µ for
δ = 1. The relevant turning points, being shifted to more positive µ values for higher soliton complexes, appear at µc = 0.014
and µcr = 0.115. In both cases the collision of the second anomalous mode (green and purple lines) with the background ones
(black lines) signals the occurrence of an oscillatory instability.

as µ = −0.15, persist for trap frequencies ∼ 10−4 but
they cease to exist for Ω ∼ 10−2. While traversing the
relevant branch, the density profiles gradually alter their
shape from a configuration proximal to the first-excited
Hermite-Gauss eigenstate to a progressively wider dark
droplet configuration; see Figs. 6(a) and (b). Further-
more, looser traps lead to droplet-dark configurations
with a wider flat-top portion, being more pronounced for
smaller values of µ. Notice that the droplet background
is modified [see Figs. 6(a) and (b)] when compared to the
homogeneous case [29, 44] due to the presence of the trap
as has been also observed for dipolar bosons in Ref. [81].
Furthermore, a sharp decay of the density, with respect to
the size of the condensate, can be observed at the edge of
the cloud. This sharp transition, when compared to the
entire domain, forces the numerical characterization of
the corresponding solutions to contain a large number of
mesh points in order to keep a fine enough discretization
to resolve the solution over the entire domain as depicted
in the zoomed panel of Fig. 6(c). It is exactly in this turn-
ing point region where an analysis tantamount to that of

Ref. [71] is relevant to perform, a topic of interest for
future mathematical studies.

V. MULTISOLITON SOLUTIONS AND THEIR

DYNAMICS

Let us now consider a homonuclear harmonically con-
fined BEC mixture, in which the LHY contribution is
taken on equal footing with the cubic nonlinearity (i.e.,
δ = 1), and offer a generalization of our findings of the
preceding section to multisoliton complexes; see Fig. 1.
Note here that, although we restrict ourselves to con-
figurations consisting of two and three dark solitons,
our results can be generalized to N -dark soliton states.
Starting with a general qualitative remark, we note that
higher-order dark solitons (2-solitons, 3-solitons, etc.)
are progressively higher excited states of the system; see
the relevant discussion of Ref. [82] for the cubic nonlin-
earity case. As such, each of them bears a progressively
higher number of negative Krein-sign eigenvalues. As has
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anomalous modes initialized with an amplitude of ǫ = 0.3 and then allowed to evolve in time. Panels (a)–(d) correspond to
stable modes while (e) and (f) pertain to unstable modes for the two-soliton [(a) and (c)] and the three-soliton [(b), (d)–(f)]
configurations. The anomalous modes in panels (a) and (b) represent in-phase oscillations while in panels (c) and (d) correspond
to out-of-phase oscillations. The unstable cases depicted in panels (e) and (f) for two and three solitons, respectively, showcase
the destabilization of the second anomalous mode (AM2) through a complex eigenfrequency quartet. It is observed that the
dynamical evolution of this instability is manifested as amplified out-of-phase vibrations that eventually saturate and are
subsequently subject to recurrence.

been proved in the work of Ref. [83], the number of such
negative Krein-sign modes is equal to the number of the
solitons in the configuration. While this does not, a pri-
ori, render the state dynamically unstable, it renders it
far more prone to so-called oscillatory instabilities aris-
ing from the collisions of such modes with the rest of the
excitation spectrum. The latter, asymptotically, resem-
bles that of the ground state configuration. In short, an
N -dark-soliton state bears N “excitation modes” (per-
taining structurally to in-phase, out-of-phase, and mixed-
phase motions of the dark solitons) which may contribute
to its potential instability.

The stability analysis outcome of the identified multi-
soliton solutions is showcased in Fig. 7. Similarly to the
bifurcation diagram of Fig. 4, also here, the dominant
attractive role of the LHY term for small µ values and
the repulsive nature of the cubic term for large ones lead
to the appearance of a turning point in N(µ) both for
the two- and the three-dark soliton configurations. This
turning point appears at µcr = 0.014 for the two-soliton
states while it occurs at µcr = 0.115 for the three-soliton
complexes. However, in contrast to the single dark soli-
ton case, the corresponding spectrum of these higher soli-
ton complexes is more involved as can be seen by in-
specting the behavior of the anomalous modes shown in
Fig. 7. Here, the lowest lying anomalous mode (desig-
nated by AM1) for these multisoliton configurations fol-
lows a similar trend as the one found in the single dark
scenario. This is natural to expect as this mode pertains
to the in-phase motion of the dark solitons (see, e.g., also
Ref. [84]). In this case, the distance between the solitons
does not change and hence the oscillation frequency is

tantamount to that of the motion of a single soliton in
the trap, i.e., effectively of the center of mass. The low-
est lying spectral modes depart from the linear limit of
Ωosc/Ω = 1 when µ = µlin = 5Ω/2 and µ = µlin = 7Ω/2
for the two- and three-dark soliton solutions respec-
tively. Additionally, the two and all three anomalous
modes turn simultaneously at each of the aforementioned
critical points; notice the relevant “loops” present for
the second (AM2) and the second and the third (AM3)
modes for the two- and the three-dark solitons respec-
tively. In particular, the higher modes for both two- and
three-soliton configurations, bearing negative Krein sig-
nature (K < 0), undergo collisions with the background
modes that are characterized by a positive Krein signa-
ture (K > 0). Such collision events give rise to complex
eigenfrequency quartets signaling the presence of an os-
cillatory instability [79] for the ensuing configuration; see
also the discussion in Refs. [43, 82, 84]. The relevant in-
stability windows for the two-soliton states appear for
µ ∈ [0.037, 0.249] and µ ∈ [0.482, 0.636] whereas they oc-
cur for µ ∈ [0.129, 0.349] and µ ∈ [0.650, 0.925] for the
three-soliton ones.

Dynamical evolution of the steady states perturbed by
the anomalous modes is showcased in Fig. 8. Specifi-
cally, the system is initialized with a perturbed density
|Ψ(x, t)AMi

|2 where, as per Eq. (18), the initial condition
is given by Ψ(x, 0)AMi

= ψ0(x) + ǫ[ai(x) + b∗i (x)] with
the subscript i indicating the anomalous mode number
and ǫ = 0.3 is chosen so as to observe the ensuing oscilla-
tions already at an early stage within the dynamical sim-
ulation. The dynamics of the ensuing anomalous mode
perturbations for i = 1, 2, 3 of the different multisoliton
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configurations depicted in Fig. 8 confirms the above sta-
bility analysis results, while exposing the internal type
of motion that each of the modes induces. Particularly,
for both two- and three-soliton states, the lowest lying
anomalous eigenfrequency (AM1) leads, once activated,
i.e., upon adding to the stationary solution the eigenvec-
tor associated with it, to the in-phase vibration of these
entities. This is illustrated in Fig. 8(a) [Fig. 8(b)] when
µ = 1 [µ = 1.5] and δ = 1 for the two- [three-]soliton
configuration. On the other hand, AM2 triggers the out-
of-phase oscillation of the two soliton solution [Fig. 8(c)].
The same type of motion but in a pairwise fashion is acti-
vated when exciting the three-soliton state through AM3

[Fig. 8(d)]. The remaining anomalous mode, AM2, in
the three-soliton case produces an out-of-phase motion
of the outermost dark solitons while the central one is
unaffected throughout the evolution (results not shown
here). Note that for the stable configurations in Fig. 8,
we verified that the evolution remained coherent up to
times t ∼ 3× 103.
Finally, let us briefly describe the typical dynamics

ensuing from the instabilities of multisoliton configura-
tions. Specifically, for parameter values residing in the
above-discussed instability windows, we find that, irre-
spectively of which mode is added to the initially sta-
tionary two- and three-soliton configuration, the resonant
(unstable) second mode is eventually excited. The ac-
tivation of this mode is depicted in Figs. 8(e) and (f),
respectively, for two and three dark soliton solutions
and for chemical potentials corresponding to the max-
imum instability growth rate. Namely, for µ = 0.08 and
µ = 0.2 having an imaginary part Im(Ωosc/Ω) ≈ 0.013
and Im(Ωosc/Ω) ≈ 0.048, respectively. In both cases, the
amplification of the out-of-phase vibration is triggered
and progressively leads to an overall breathing of the en-
tire configuration. This overall breathing pattern of the
background is more transparent in the three dark soli-
ton state, when compared to the two soliton one, with
the central wave remaining nearly unaffected. The im-
pact of this breathing is also reflected on the occurrence
of “beats” present, for instance, at the contraction inter-
vals around t ≈ 700 or t = 1650 in Fig. 8(e). These beats
stem from resonances between the anomalous modes of
dark solitons and those associated with the background
state (on which these solitons are placed). This is a fun-
damental feature pertaining to such oscillatory instabili-
ties [43].

VI. CONCLUSIONS AND PERSPECTIVES

We have investigated the existence and stability prop-
erties of single- and multi-solitonic configurations in the
presence of quantum fluctuations as captured by the LHY
contribution both in free space and under the influence
of a harmonic trap in one spatial dimension. Our anal-
ysis covers the regime from the quantum droplet (low
density) to the TF (large density) limit. The hydrody-

namic formulation of the eGPE describing a homonuclear
symmetric bosonic mixture is utilized delivering insights
on the existence of localized solutions of the underlying
dynamical system.

In free space, the respective phase-plane analysis re-
veals a variety of localized waveforms such as black and
gray solitons, kink-type structures, as well as bright
droplets, and the most recently found bubbles (alias dark
quantum droplets). These are identified in the relevant
phase portraits as either homoclinic or heteroclinic orbits
and analytical solutions for the kinks, the bright droplets,
and the dark solitons are discussed. It should be em-
phasized that kink, bright quantum droplet, and bubble
configurations arise exclusively due to the presence of the
LHY term.

For harmonically trapped configurations, the so-called
Landau dynamics approach which treats the soliton en-
ergy as an adiabatic invariant, is employed to obtain
a generalized, LHY-dependent, internal oscillation fre-
quency of the dark soliton. This altered frequency bears
the imprint of quantum fluctuations, and can be traced
back to the already modified local speed of sound, which
can be used to diagnose beyond mean-field effects.

The validity of the aforementioned theory is compared
with the numerical evaluation of the corresponding eGPE
excitation spectrum. In particular, the stability analysis
unveils that single dark solitons are stable configurations
upon chemical potential and trap variations for differ-
ent strengths of the LHY interaction parameter. Impor-
tantly, the interplay of the LHY (dominating for small
chemical potentials) and the cubic nonlinearity (prevail-
ing for large chemical potentials) leads to the existence
of a turning point as the number of particles is increased.
This turning point is associated with the structural defor-
mation of the configuration from a Hermite-Gauss linear
state to a TF-like dark soliton solution, and depends on
both the LHY and the trap strength, as well as the soliton
number. As such, the presence of the LHY term alters
the structure of the dark soliton spectrum as compared
to the mean-field outcome providing another imprint of
quantum fluctuations. Furthermore, spectral stability is
retained for different chemical potentials independently
of the trap strength. Multisoliton solutions feature a sim-
ilar phenomenology as the single dark soliton ones, but
with their respective turning points shifted towards more
positive chemical potentials for increasing number of soli-
tons in the complexes. Interestingly, multisoliton config-
urations experience parametric windows of oscillatory in-
stabilities displaying a gradually amplified out-of-phase
motion of the individual entities leading to a periodic
overall breathing of the entire entity.

There is a plethora of future research directions which
can be pursued based on our findings. For instance,
a direct extension would be to study in further detail
the involvement and influence of dark-droplet states in
more practical applications as, e.g., in scattering prob-
lems since they are expected to act as material barri-
ers/absorbers. A further understanding of the differ-
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FIG. 9. The potential V (q) (top panels) and respective phase planes (middle panels) and orbits (bottom panels) for C1 = 0.1
and δ = 1. Same layout and notation as in Fig. 2. For (a) µ = −0.5 and (b) µ = −0.2018, all trajectories are unbounded.
For values of µ larger than case (b) (µ = −0.2018) there exist bounded periodic and homoclinic orbits. For example, for (c)
µ = −0.15 and (d) µ = 0.5 there exist homoclinic orbits corresponding, respectively, to a shallow and a deep (almost black)
gray soliton solution; see the relevant solid red curves in each case.

ence between the analytical prediction of the dark soli-
ton oscillation frequency compared to the eGPE numer-
ical prediction might be fruitful using other perturba-
tion/analytical schemes. It still remains an open question
whether the presence of the trap impacts the Bogoliubov
modes and thus the LHY term or to what extent higher-
order quantum corrections will play a crucial role as ar-
gued in Ref [85]; see also the review of Ref. [42]. Also,
it is particularly relevant to extend the present consid-
erations to higher-dimensional settings, e.g., for configu-
rations bearing solitonic stripes where transverse excita-
tions can play a crucial role and induce further instabil-
ities. Certainly, the investigation of soliton and vortex
structures and interactions thereof in higher dimensions
is of interest. Moreover, the generalization of our results
to heteronuclear mixtures where more complex nonlinear
structures such as dark-bright and dark-antidark solitons
can be formed is another intriguing aspect.
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Appendix A: Traveling configurations in free space

To complement the study of non-traveling configura-
tions for C1 = 0 in Sec. III A, here we turn our attention
to the case of traveling configurations corresponding to
C1 6= 0 (still in free space, i.e., Vtr = 0). In this case,
the fixed point at q = 0 disappears due to the emergent
singularity: in particular, V (q) diverges in the vicinity of
q = 0; see the top panels in Fig. 9. In this parameter
regime, the dynamical system can have zero, two, or four
fixed points, depending on the values of µ, δ and C1.

Since analytical solutions are not straightforward to
obtain, we will proceed by providing representative exam-
ples corresponding to different values of µ, for fixed δ = 1
and C1 = 0.1. We have checked that other choices of the
aforementioned parameters lead to qualitatively similar
results. For these parameter values, we find that in the
interval µ . −0.2018, all trajectories are unbounded for
|x| → ∞; a pertinent example is given in Fig. 9(a) for
µ = −0.5 while the threshold case for µ = −0.2018 is de-
picted in Fig. 9(b). On the other hand, for larger values
of µ, see for instance panels (c) and (d) (corresponding,
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respectively, to µ = −0.2 and µ = 0.5), center and saddle
fixed points on either side of q = 0 emerge.

Importantly, in these cases, such an arrangement of
fixed points allows for the appearance of homoclinic or-
bits, with the absolute maximum of q(x) occurring closer
to the origin as µ is increased. The relevant forms of
q(x) resemble gray solitons of the usual defocusing NLS

equation, which are characterized by a nonzero density
minimum. Accordingly, the gray soliton corresponding to
the homoclinic orbit for µ = −0.15 depicted in panel (c)
of Fig. 9 is a shallow one, while the soliton correspond-
ing to µ = 0.5, depicted in panel (d) of Fig. 9, is almost
black. A detailed study of these gray solitons, including
their stability, falls outside of the scope of this work and
will be presented elsewhere.
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