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We present a design for an atom chip trap that uses the time-orbiting potential technique. The
design offers several advantages compared to other chip-trap methods. It uses a simple crossed-wire
pattern on the chip, along with a rotating bias field. The trap is naturally close to spherically
symmetric, and it can be modified to be exactly symmetric in quadratic order of the coordinates.
Loading from a magneto-optical trap is facilitated because the trap can be positioned an arbitrary
distance from the chip. The fields can be modified to provide a gradient for support against gravity,
and the three-dimensional trap can be adiabatically transformed into a two-dimensional guide.

Over the past two decades, atom chips have become a
critical technology for ultracold atom science [1–3]. An
atom chip consists of small current-carrying wires pat-
terned onto a planar substrate. Atoms near the wires
experience very large magnetic field gradients, which en-
ables the production of tightly confining magnetic traps
with relatively low electrical power consumption. Atom
chips are used in many research laboratories, they are
the basis for commercial ultra-cold atom systems [4, 5],
and they have enabled the production of cold atoms in
microgravity [6, 7].

Most implementations of an atom chip use the Ioffe-
Pritchard trap configuration [8]. This can be produced,
for instance, by a Z-shaped wire as in Fig. 1(a) [1]. Such a
“Z trap” is suitable for evaporative cooling and has been
used to produce quantum degenerate gases in many ex-
periments. It does, however, have some drawbacks that
our design aims to redress. First, the distance of the
atoms to the chip is constrained by the Z geometry: if
the center segment of the Z has length 2a, then the poten-
tial minimum cannot be located further than 1.2a from
the chip surface due to an inflection point in the field cur-
vature [9]. In contrast, for chip distances much smaller
than a the trap confinement is weak along the wire direc-
tion, leading to a highly asymmetric trap. This problem
can be addressed by adding more wires to the chip [1],
but in general it is challenging to implement an approx-
imately spherically symmetric trap over a wide range of
chip distances.

A second drawback of Z traps is that the atoms are
necessarily in a state with a non-zero magnetic moment,
making them sensitive to background field fluctuations.
This can be a limitation for experiments such as atom
interferometry [10] or entanglement [11] where the phase
evolution of the atoms must be carefully controlled. One
way to avoid this problem is with a Time-Orbiting Poten-
tial (TOP) trap [12]. Here a uniformly rotating bias field
is combined with a static or oscillating gradient field to
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produce a time-averaged potential that is approximately
harmonic. TOP traps are generally insensitive to static
or low-frequency field noise since the time average of the
atomic moments are zero. TOP traps also permit the use
of ac electronic techniques like transformers and resonant
circuits, which can simplify the current driver implemen-
tation.

TOP traps are typically produced using macroscopic
coils and are less confining than chip traps. For instance,
the atomic Sagnac interferometer demonstrated in [13]
used a TOP trap produced by cm-scale coils with max-
imum confinement frequencies of about 200 Hz [14] for
87Rb atoms trapped in the F = 2,m = 2 state. In com-
parison, chip traps can achieve confinement frequencies
of 1 kHz or more [1]. A tighter trap would be useful
for applications like the Sagnac interferometer since it
would increase the speed of evaporative cooling and thus
allow faster operation rates. The TOP technique has
been previously applied with atom chips for a few spe-
cial uses, either to make a torroidal ring trap [15] or to
reduce roughness in the potential produced by nearby
chip wires [16], but not to our knowledge to implement a
tightly confining trap.

We describe here an atom-chip TOP trap that pro-
vides tight confinement with no intrinsic geometry scale.
The chip wire configuration is shown in Fig. 1(b). The
concept of this trap is slightly different from that of a
conventional TOP trap: Consider first a dc current pass-
ing through the x wire of the cross in Fig. 1(b). Adding
a bias field β in the +y direction produces a line of field
zeros running above the x axis. An additional bias field
component γ along x converts this line into a harmonic
minimum, which provides confinement along the y and
z directions but a uniform potential along x. To gen-
erate three-dimensional confinement, the cross wires are
instead driven with oscillating currents cos Ωt and sin Ωt
while the bias fields rotate in sync. The shape of the
net field is not constant in time, but it approximates
a rotating two-dimensional trap. As long as Ω is suf-
ficiently large, the atoms experience the time-averaged
field, which results in a three-dimensional trap.

To analyze the system, we set the coordinate origin
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FIG. 1. Atom chip configurations. Thin lines represent wires
on the chip carrying current I, and thicker arrows represent
uniform field components. (a) Ioffe-Pritchard “Z trap” con-
figuration. The β field sets the distance of the trap from the
chip, while the γ field provides a non-zero bias at the trap
center. (b) Cross trap configuration. The β and γ fields play
similar roles as in the Z trap, but here the bias fields rotate
in sync with the oscillating wire currents. The diagram shows
the field and current directions when Ωt = π/4.

at the center of the cross. The fields involved can be
expressed as

B(t) =
µ0I0
2π

[
yẑ − zŷ
y2 + z2

cos Ωt+
zx̂− xẑ
x2 + z2

sin Ωt

]
+ β (ŷ cos Ωt− x̂ sin Ωt)

+ γ (x̂ cos Ωt+ ŷ sin Ωt) . (1)

The first line gives the field from the chip wires, which
are assumed to be long and thin. Here I0 is the current
amplitude, µ0 is the magnetic constant, and Ω is the
TOP frequency. The second line gives the bias compo-
nent perpendicular to the wires, with amplitude β. The
trap center will occur where the chip field and the β field
cancel, at distance

z0 ≡
µ0I0
2πβ

. (2)

We use z0 and β as independent variables in the following
since z0 is experimentally significant and the combination
leads to relatively simple expressions. We then take im-
plicitly I0 = 2πβz0/µ0. The third line in Eq. (1) is the
bias component γ that provides a non-zero trap mini-
mum. Although the decomposition shown here is conve-
nient for analysis, the total bias can be implemented as
a single rotating field

Bbias(t) =
√
β2 + γ2 [x̂ cos(Ωt+ θ) + ŷ sin(Ωt+ θ)] (3)

with phase θ = tan−1(β/γ) relative to the chip currents.

To characterize the trap, we Taylor expand the field
components around the trap center, with ζ ≡ z − z0.

The field magnitude is

B(t) =
√
B2
x +B2

y +B2
z

≈ γ +
β2

2γz20

(
x2 cos2 Ωt+ y2 sin2 Ωt+ ζ2

)
− 2β

z20
(x2 + xy − y2) sin Ωt cos Ωt (4)

to second order in the coordinates. Time averaging yields
the effective potential

V (r) = µ〈B〉 = µγ +
µβ2

4γz20

(
ρ2 + 2ζ2

)
(5)

where µ is the magnetic moment of the atomic state and
ρ2 = x2 +y2. The potential is confining and cylindrically
symmetric, with harmonic oscillation frequencies

ωρ =

√
µβ2

2mγz20
, ωz =

√
2ωρ (6)

for atomic mass m.
In comparison, a Z trap with chip distance z0 � a has

oscillation frequencies

ω(Z)
y = ω(Z)

z =

√
µβ2

mγz20
, ω(Z)

x =
2z20
a2

ω(Z)
z (7)

where β and γ are again the transverse and longitudinal
bias fields. Here we see that the net curvature ω2

x +
ω2
y + ω2

z is the same for both traps (neglecting z40/a
4),

while (ωxωyωz)
1/3 is larger in the cross trap by a factor

of (a/z0)2/3. The density of the trapped atom cloud is
set by the geometric mean, making it most relevant for
efficient evaporative cooling and many other applications.

Figure 2 compares the numerically calculated trap po-
tential to the harmonic approximation derived above. As
to be expected, the confining potential is harmonic only
very near the trap center. It is possible to extend the an-
alytical calculation to higher orders and extract the lead-
ing anharmonic terms. With the aid of symbolic math
software, we find the fourth-order expansion

〈B〉 ≈ γ +
β2

4γz20

{
ρ2 + 2z2 − 2

z0

(
ρ2z + z3

)
− 1

16z20

[(
20 +

3β2

γ2

)
ρ4 +

(
28 +

3β2

γ2

)
x2y2

+
8β2

γ2
(
xy3 − x3y

)
+ 8

(
β2

γ2
− 4

)
ρ2z2

+ 8

(
β2

γ2
− 12

)
z4

]}
, (8)

The anharmonic terms become important for coordinate
excursions on the order of z0 or γz0/β, whichever is
smaller.
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FIG. 2. Trapping potential for cross trap, for parameters
I0 = 20 A, β = 40 G, and γ = 4 G. These provide a po-
tential minimum at z0 = 1 mm. The heavier curves show
the time-averaged magnetic field magnitude and the lighter
curves are the quadratic approximation of Eq. (5). (a) Plot
of the average field and quadratic approximation along the x
axis at z = z0. (b) Plot of the average field and quadratic

approximation along the line x = y, for ρ =
√
x2 + y2 and

with z = z0. (c) Plot of the average field and quadratic ap-
proximation along the z axis, with ζ = z − z0.

The preceding results confirm that there is no intrin-
sic geometrical length scale for the cross chip TOP trap,
since z0 can be made as small or large as desired simply
by adjusting the field and current amplitudes. In prac-
tice, however, the range of z0 will be constrained on the
large side by the length L of the cross wires. The impact
of finite L will depend on how current is delivered to the
chip. If the current enters via long lead wires perpen-
dicular to the chip, the dominant effect is that the leads
contribute a field parallel to the β field, which moves the
trap minimum closer to the chip and makes the trap more
confining. If β is reduced to keep z0 constant, there is
a modest reduction in the confinement frequencies. For
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FIG. 3. Trap depth D for the cross trap, where D0 =√
β2 + γ2 − γ. For large γ/β, the depth approaches D0/3 =

β2/6γ, and for γ/β → 0, the depth approaches 2D0/π =
2β/π.

L/z0 > 4, the reduction is less than 10%. The range of
z0 is limited on the small side by the width w of the chip
wires, since the thin-wire approximation will fail. If the
wires are modeled as flat strips, we find that as z0 is re-
duced, the trap minimum moves closer to the chip than
z0 and the confinement becomes weaker. Both ∆z/z0
and ∆ω/ω remain less than 10% down to z0 = w.

Unlike a conventional TOP trap [12], the cross chip
trap has no field zero, so there is no “circle of death”
limiting the trap depth. Instead the depth D is set by
the time-averaged field above the wires far from the ori-
gin. The depth cannot be expressed as a simple analytic

function, but it is of order D0 ≡
√
β2 + γ2 − γ. A nu-

merical calculation of the depth is shown in Fig. 3.
Applications such as atom interferometry can make

use of a weakly confining trap, in which case it is nec-
essary to compensate for gravity. The cross trap can
achieve this by changing the relationship between the
chip fields and the bias fields. A convenient parametriza-
tion is via a phase φ in the γ field of Eq. (1), making
it γ[x̂ cos(Ωt + φ) + ŷ sin(Ωt + φ)]. In terms of the total
bias field of Eq. (3), this corresponds to correlated shifts

in amplitude and phase |Bbias| →
√
β2 + γ2 + 2γβ sinφ

and θ → tan−1[(β+γ sinφ)/(γ cosφ)]. Re-evaluating the
time-averaged field to second order yields

〈B〉 = γ + β sinφ
ζ

z0
+

(
β2

4γ
+

1

2
β sinφ

)
ρ2

z20

+

(
β2

2γ
cos2 φ− β sinφ

)
ζ2

z20
. (9)

The term linear in ζ can compensate for gravity in the z
direction.

We can also use this approach to model a case where
the γ field rotation rate is different from Ω, by setting
φ = ∆t for constant ∆. We then have 〈sinφ〉 → 0 and
〈cos2 φ〉 → 1/2, leading to a spherically symmetric trap
with isotropic frequency ω2 = µβ2/(2mγz20). One way to
achieve this is with ∆ = −Ω, corresponding to a static
field γ pointing in any direction parallel to the chip. Use
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of a static field, however, would re-introduce sensitivity
to dc background fields.

As an example of a potential application, we describe
an atom chip capable of capturing atoms from a MOT
located several mm from the chip, and then compressing
the atoms to a trap with confinement frequencies above
1 kHz for evaporative cooling. We consider a chip fab-
ricated from 100-µm thick direct-bonded copper on an
aluminum-nitride substrate [17]. The side of the chip
facing the atoms is patterned to produce cross wires that
are 100 µm wide. The opposite side is has a matching
cross pattern with wires 3 mm wide. The chip size L is
3 cm and the chip thickness is 1 mm. The wider cross is
used to produce a distant trap for loading. Using a cur-
rent amplitude I0 = 75 A, bias fields β = 20 G, γ = 2 G,
and a phase φ = 0.85 rad, the resulting trap is 7 mm
from the chip. For 87Rb atoms in the F = 2,mF = 2,
Zeeman state where µ is equal to the Bohr magneton,
this trap provides support against gravity and confine-
ment frequencies ωρ ≈ 2π × 18 Hz and ωz ≈ 2π × 13 Hz,
with a trap depth of 12 G ≈ 800 µK. These are appropri-
ate values for direct loading from a MOT [18]. The total
power consumption on the chip is about 10 W, which is
well within the capacity of this type of substrate [17].

Once the trap is loaded, current through the wide cross
can be adiabatically decreased, which reduces z0 and
compresses the trap. Once the atoms are within a few
mm of the chip, the current is adiabatically shunted to
the thin cross, supporting smaller z0. A current of 5 A
and bias fields β = 40 G, γ = 2 G would generate a trap
0.25 mm from the chip surface with ωρ ≈ 2π × 1 kHz
and ωz ≈ 2π × 1.4 kHz. This makes a suitable trap for
rapid evaporative cooling. Power dissipation on the chip
would be about 1 W. If a two-layer chip as described here
is undesirable, another way to support a wide range of
z0 values is with tapered wires whose widths decrease as
they approach the cross center. We note that the trap
considered here is far enough from the chip that rough-
ness of the wire and other surfaces effects are unlikely to
be significant [16, 19].

An important question for a TOP chip trap is the value
of the oscillation frequency Ω. The frequency must be
large compared to the highest confinement frequency of
the trap, ωm, so that atom motion is negligible during
the TOP period 2π/Ω. The frequency must also be small
compared to the Larmor frequency ≈ µBγ/~, so that the
TOP fields do not drive spin transitions. Typical TOP
frequencies are on the order of 10 kHz, while typical con-
finement frequencies are on the order of 100 Hz. Because
the atom-chip trap presented here can achieve confine-
ment frequencies above 1 kHz, it may be necessary to
use a correspondingly greater TOP frequency.

The minimum usable ratio of TOP frequency to con-
finement frequency has not, to our knowledge, been pre-
viously explored. The lowest ratio we find in the litera-
ture uses Ω/ωm ≈ 20 [20]. The trap described by Horne
and Sackett [14] uses a TOP field rotating at 10 kHz
and a maximum confinement frequency of 200 Hz, but

the plane of of the TOP field precesses at 1 kHz. The
potential experienced by the atoms is significantly mod-
ulated at the 1 kHz frequency without observable effects,
suggesting that Ω/ωm & 5 may be sufficient. These re-
sults indicate that a 1.4 kHz chip trap as described above
could use a TOP frequency below 30 kHz, and perhaps
as low as 7 kHz. TOP traps operating at 20 kHz have
been demonstrated [21], so we expect the drive require-
ments here to be achievable. At a bias field of 2 G, the
Larmor frequency for 87Rb is 1.4 MHz, so the parameters
proposed here do not approach the high frequency limit.

Another technical concern is how the chip current
sources could be implemented. Since the two chip wires
intersect, it is necessary either for the two driver circuits
to float with respect to ground, or for each driver to be
balanced so that the center of the cross is at a common
ground potential. Either of these solutions can be readily
achieved using isolation transformers, which are efficient
and stable at frequencies of order 10 kHz [22].

A final noteworthy feature of the cross TOP configu-
ration is that the three-dimensional trap can be adiabat-
ically converted to a two-dimensional guide. This can be
achieved by reducing the current through one of the wires
to zero along with the corresponding β field component.
For a guide along the x axis, the resulting field is

B(t) =β cos Ωt

[
ŷ +

z0(yẑ − zŷ)

y2 + z2

]
+ γ (x̂ cos Ωt+ ŷ sin Ωt) , (10)

with still z0 = µ0I0/2πβ for chip current amplitude I0.
The time-averaged field has the form

〈B〉 = γ +
β2

4γz20

(
y2 +

3

4
ζ2
)

(11)

with ζ = z−z0, and thus provides harmonic confinement
with ω2

y = µβ2/(2γz20) and ωz = (
√

3/2)ωy. For example,
if β = 40 G, γ = 2 G and I = 5 A as in the trap previously
considered, the guide distance remains at 0.25 mm and
the confinement frequencies for 87Rb are about 1 kHz
and 800 Hz. Power dissipation on the chip is reduced
by a factor of two compared to the equivalent trap. The
guide potential can again be modified to support gravity
by introducing a phase φ to the γ field as in Eq. (9),
resulting in

〈B〉 = γ +
1

2
β sinφ

ζ

z0
+

(
β2

4γ
+

1

2
β sinφ

)
y2

z20

+

[
β2

16γ

(
1 + 2 cos2 φ

)
− 1

2
β sinφ

]
ζ2

z20
. (12)

Linear guides are useful for many applications involving
atom transport [3], including atom interferometry [10,
23].

In summary, the cross TOP trap provides a chip-based
trap with confinement comparable or better than that of
typical Ioffe-Pritchard configurations. The confinement
is naturally cylindrically symmetric and can be readily
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modified to be spherically symmetric and to provide sup-
port against gravity. The trap center can be positioned
further from the chip than possible with conventional ap-
proaches, and the same chip geometry can provide a two-
dimensional atom guide. We expect that these features
will make the cross TOP useful for a variety of applica-
tions. One example is the atomic Sagnac interferometer
of [13], where the cross trap could significantly simplify
the apparatus and allow faster production of Bose con-
densates, thus increasing the sensing bandwidth. For this
purpose, the cylindrical symmetry of the trap is critical.
We are also exploring how the approach could be ex-
tended to produce bias fields with the chip itself, and

thereby remove the need for external coils. By such
means, we hope this method will facilitate the use of
ultracold atom techniques in practical applications.
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and P. Treutlein, Nature 464, 1170 (2010).
[12] W. Petrich, M. H. Anderson, J. R. Ensher, and E. A.

Cornell, Phys. Rev. Lett. 74, 3352 (1995).
[13] E. R. Moan, R. A. Horne, T. Arpornthip, Z. Luo, A. J.

Fallon, S. J. Berl, and C. A. Sackett, Phys. Rev. Lett.
124, 120403 (2020).

[14] R. A. Horne and C. A. Sackett, Rev. Sci. Instrum. 88,
013102 (2017).

[15] S. Gupta, K. W. Murch, K. L. Moore, T. P. Purdy, and
D. M. Stamper-Kurn, Phys. Rev. Lett. 95, 143201 (2005).

[16] J.-B. Trebbia, C. L. Garrido Alzar, R. Cornelussen,
C. I. Westbrook, and I. Bouchoule, Phys. Rev. Lett. 98,
263201 (2007).

[17] M. B. Squires, J. A. Stickney, E. J. Carlson, P. M. Baker,
W. R. Buchwald, S. Wentzell, and S. M. Miller, Rev. Sci.
Instrum 82, 023101 (2011).

[18] M. B. Squires, S. E. Olson, B. Kasch, J. A. Stickney, C. J.
Erickson, J. A. R. Crow, E. J. Carlson, and J. H. Burke,
Appl. Phys. Lett. 109, 264101 (2016).

[19] D. M. Harber, J. M. McGuirk, J. M. Obrecht, and E. A.
Cornell, J. Low Temp. Phys. 133, 229 (2003), cond-
mat/0307546.

[20] E. Hodby, G. Hechenblaikner, O. M. Marago, J. Arlt,
S. Hopkins, and C. J. Foot, J. Phys. B: At. Mol. Opt.
Phys. 33, 4087 (2000).

[21] M. Kozuma, L. Deng, E. W. Hagley, J. Wen, R. Lutwak,
K. Helmerson, S. L. Rolston, and W. D. Phillips, Phys.
Rev. Lett. 82, 871 (1999).

[22] P. Horowitz and W. Hill, The Art of Electronics, 2nd ed.
(Cambridge University Press, Cambridge, 1989).

[23] D. Müller, D. Z. Anderson, R. J. Grow, P. D. D.
Schwindt, and E. A. Cornell, Phys. Rev. Lett. 83, 5194
(1999).


