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Strontium clock atom interferometry is a promising new technology, with multiple experiments
under development around the world to explore its potential for dark matter and gravitational
wave detection. In these detectors, large momentum transfer (LMT) using sequences of many laser
pulses is necessary, and thus high fidelity pulses are important since small errors become magnified.
Quantum Optimal Control (QOC) is a framework for developing control pulse waveforms that
achieve high fidelity and are robust against experimental imperfections. Resonant single-photon
transitions using the narrow clock transition of strontium involve significantly different quantum
dynamics than more established atom interferometry methods based on far-detuned two-photon
Raman or Bragg transitions, which leads to new opportunities and challenges when applying QOC.
Here, we study in simulation QOC pulses for strontium clock interferometry and demonstrate their
advantage over basic square pulses (primitive pulses) and composite pulses in terms of robustness
against multiple noise channels. This could improve the scale of large momentum transfer in Sr
clock interferometers, paving the way to achieve these scientific goals.

I. INTRODUCTION

Light-pulse atom interferometry is a technology that
uses laser pulses to split, manipulate, and recombine the
motional states of atoms so that precise measurements
can be made from their interference. It has proven it-
self a powerful tool for precision metrology and sensing,
with applications including tests of quantum mechan-
ics and the equivalence principle [1–16], terrestrial and
spaceborne gravitational wave detection [17–26], preci-
sion measurements of the fine structure constant [27–29]
and gravity [30, 31], searches for dark matter [32–34] and
dark energy [35], and mobile surveying [36, 37]. The most
sensitive interferometers employ large momentum trans-
fer (LMT) techniques, which increase the enclosed space-
time area with additional laser pulses. Typical LMT
atom optics utilize far-detuned, multi-photon transitions
[38–48], where two ground states are coupled via a short-
lived excited state. The scaling of such pulse sequences is
limited by spontaneous emission, which can only be mit-
igated so long as additional laser power is available. STI-
RAP has been used in atom interferometry but does not
currently match the performance of other state-of-the-art
atom optics, limited by other detuned excited states [49].

In contrast, alkaline earth atoms such as Sr possess
long-lived excited states, which have been leveraged to
achieve state-of-the-art atomic clocks [50, 51]. In 87Sr,
the 1S0 → 3P0 clock transition has a lifetime over 100 sec-
onds, allowing resonant, single-photon atom optics with
greatly reduced spontaneous emission losses. This affords
an enormous increase in available pulse area, potentially
scalable to thousands of pulses before significant sponta-
neous emission losses [26, 52].

A clock interferometer is a specific type of atom in-
terferometer using such resonant, single-photon transi-
tions. It offers improved laser phase noise rejection in
differential measurement configurations comparing mul-
tiple interferometers over a long baseline [19] [53], which
is essential for dark matter and gravitational wave de-
tection. Moreover, the clock transitions in alkaline earth

atoms are orders of magnitude less susceptible to mag-
netic fields than in the alkalis [54]. This new generation
of recently demonstrated single-photon clock atom inter-
ferometers [52, 55–57] is poised to study hitherto elu-
sive phenomena such as ultralight, wavelike dark mat-
ter [23–26, 32–34], tests of atom charge neutrality [58],
mid-band gravitational wave detection [23–26], and tests
of quantum mechanics at unprecedented delocalization
scales [26].

In practice, the performance of atom interferometers is
also limited by the noise in the driving field and inhomo-
geneities across the atom cloud. Atom losses and phase
errors caused by these effects accumulate with repeated
pulses and thus limit the scaling of LMT systems. Sim-
ple robust control pulses for two-level quantum systems
under detuning and amplitude errors were developed for
nuclear magnetic resonance (NMR) spectroscopy [59–61]
and have more recently found popularity in quantum
computation [62, 63]. More sophisticated pulse shap-
ing algorithms, such as gradient ascent pulse engineering
(GRAPE) [64] and chopped random basis (CRAB) opti-
mization [65, 66], minimize a cost function that quantifies
the infidelity of the operation. As this may be an arbi-
trary function of hundreds of parameters, highly modu-
lated control pulses can now be tailor-made for driving
particular quantum dynamics with an appropriate cost
metric. For instance, quantum optimal control (QOC) is
a powerful tool for realizing high-fidelity gates in quan-
tum computing [67–71] and levitated nanoparticle con-
trol [72, 73].

In the field of atom interferometry, quantum con-
trol schemes including composite pulses [74–76], shaped
pulses [77], adiabatic rapid passage [46, 78], and numeri-
cal optimal control [79–83] have been applied to Raman
and Bragg transitions with alkalis, and Floquet pulse en-
gineering has been applied to single-photon atom optics
on the 1S0 → 3P1 transition of 88Sr [57]. In this pa-
per, we report simulation studies of numerical optimal
control’s applications to 1S0 → 3P0 clock interferometry
with 87Sr. Using the gradient-based optimization tools in
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Q-CTRL’s BOULDER OPAL package [84], we design op-
timized analogs of π pulses which are robust to as many
as five simultaneous noise channels. Sequences of many
of these pulses can be used to achieve enhanced LMT
[18]. Under an experimentally relevant range of noise,
we find that the optimized pulses have fidelity improved
beyond that of basic square (primitive) pulses by an or-
der of magnitude or more. Successful implementation of
these pulses may allow atom interferometers to overcome
unavoidable limitations and realize their full potential.

A challenge in clock interferometry is that imperfec-
tions during laser beam delivery or local changes to the
quantization axis from stray magnetic fields can intro-
duce undesired polarization components, which couple
transitions to additional magnetic sublevels (Fig. 1(a)).
Larger bias fields can suppress errors in the quantization
axis, but are unfavorable due to quadratic Zeeman shifts
[26] and cannot mitigate errors already present in the
beam. It is therefore a valuable application of quantum
optimal control to design pulses that are insensitive to
polarization defects, reducing the atom loss and phase
errors arising from the population of other sublevels.

II. OPTIMIZATION PROTOCOL

In the interferometry scheme studied here, a cloud of
87Sr atoms is initialized in the

∣∣1S0;mF = 9/2
〉
state and

driven to the
∣∣3P0;m = 9/2

〉
state on the 698 nm clock

transition, which has a natural linewidth of 1 mHz [26].
For optimization, we split a pulse of fixed duration uni-
formly intoN time segments, whose amplitude and phase
become the 2N independent variables—hereafter referred
to as c—which are modified during optimization. The
pulse duration and the number of segments are chosen
before optimization, as is the learning rate (step size
in the gradient-based search). We vary these parame-
ters between optimization runs to determine what gives
the best results (Fig. 1(b)). We choose maximum Rabi
frequencies of several kHz [26] and find pulse lengths
of 2 ms or longer best for optimizing against all noise
channels. With the many-second interferometer dura-
tion in tall atomic fountains [26] or spaceborne detectors
[17, 22, 23], sequences of thousands of pulses may be
performed, further increased by future upgrades to laser
power [85, 86]. In the optimized pulse, the segment time
is approximately 17 µs, which is significantly longer than
the response time of an acousto-optic modulator (AOM).

To achieve robust control, we use a cost function based
on random samplings of noise trajectories (one trajec-
tory is the Hamiltonian with a particular set of noise pa-
rameters) [87]. We include five channels of static noise:
σ+ and σ− polarization components, which couple sub-
levels outside the desired two-level system; amplitude
noise on the drive; detuning errors from Doppler shifts in
the atom cloud; and variation in the bias field, which
changes the Zeeman splitting of the sublevels. Each
noise channel is associated with a Hamiltonian term

FIG. 1. (a) Substructure of the 1S0 and 3P0 manifolds, with
transition strengths indicated. Parasitic σ+ and σ− polariza-
tions couple to states outside the desired mF = 9/2 → m′

F =
9/2 two-level system. (b) Optimization procedure. Randomly
sampled noise values for multiple noise channels define a batch
of noise trajectories. The unitary evolution of the system is
calculated under each, yielding a batch of infidelities which are
averaged to give the final cost function. The scope of robust-
ness is tuned by modifying the sampling distributions. (c)
The optimized pulse starts and ends with a smooth switching
(shown in the insets). The phase and amplitude modulation
are smoothed with a Gaussian-weighted moving average fil-
ter. The frequency components higher than 4 × 104 Hz are
filtered out. The frequency spectrum is within the modula-
tion bandwidth of acousto-optic modulators (AOMs), and the
switching on and off process is within the rise time achievable
by AOMs. The smoothed pulse is used for all simulations.

(see Appendix A). For each of these operators, we ran-
domly sample NB sets of noise amplitudes—denoted as

β(i) = (ϵ
(i)
+ , ϵ

(i)
− , β

(i)
A , β

(i)
v , β

(i)
B ) for the ith noise trajectory

in the batch—from Gaussian distributions whose prede-
fined width determines the scope of desired robustness.

For each of these Hamiltonians Ĥ(i)(c, t), we calculate
the unitary evolution, from which we determine an infi-
delity I(i)(c). The infidelity is defined as

I(i)(c) = 1−

∣∣∣∣∣∣
Tr

(
U†
target U

(i)(c)
)

Tr
(
U†
target Utarget

)
∣∣∣∣∣∣
2

, (1)

where Utarget is the target state evolution, and U (i) is the
evolution due to the Hamiltonian under the ith noise tra-
jectory [84]. This metric is sensitive to both the popula-
tion transfer and the phase imprinted by the pulse, which
is important for atom interferometry. All 20 ground and
excited sublevels are included in our simulations. To con-
struct the total cost function, we average the infidelities
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FIG. 2. Comparison of the optimized pulse to primitive pulse and various composite pulses [59, 79]. Single pulse infidelity
with noise parameters’ variation are compared among the optimized pulse, primitive pulse, and composite pulses. ∆B is the
deviation of the bias magnetic field from its nominal value B0 = 1 G, so that the total bias field is B = B0 + ∆B. βv is
the detuning due to the Doppler shift in units of 100 Hz. The units of the horizontal axes for the polarization and amplitude
plots correspond to fractional errors. In contrast to all other pulses, the optimized pulse maintains a high degree of robustness
against all noise channels and outperforms all other pulses in robustness against polarization noise.

from all trajectories:

C(c) = 1

NB

NB∑
i=1

I(i)(c), (2)

where we typically use a batch size NB of 200. We found
that increasing to a larger batch size did not provide
significant improvement. The gradient-based optimizer
in BOULDER OPAL determines the control variables
c which minimize this cost function. Thus, the pulse
waveforms (Fig. 1(c)) are determined which retain low
infidelity even in the presence of noise.

Alternative methods of optimizing composite pulses for
multilevel systems have also been previously investigated
by other groups. Caneva et al. [66] investigated the ef-
ficiency of the chopped random basis (CRAB) technique
in optimizing different quantum processes. Genov and
Vitanov [88] also used composite pulses to achieve ef-
ficient population transfer in multi-state quantum sys-
tems. Compared to this study, our QOC method, in-
stead of analyzing the system’s mathematical process in
a Taylor expansion approximation to determine the op-
timal pulses, numerically searches in a large parameter

space to find the most robust pulse shape. In the fu-
ture work, it will be interesting to compare the results
of different optimization methods applied to clock atom
interferometers.

III. RESULTS AND COMPARISON

A. Single optimized pulse

To visualize the performance of various pulse schemes,
we scan the infidelity across values of one (Fig. 2) or two
(Fig. 6) noise channels. In Fig. 2, the optimized pulse
performs up to an order of magnitude (or more) better
than the primitive and composite pulses for the range
of polarization errors considered here while maintaining
strong robustness against amplitude and detuning errors.
The range of noise values in optimizations and these plots
follow what is expected in relevant experiments. In dark
matter and gravitational wave experiments, it is favor-
able for the atom cloud’s spatial extent to remain within
the central region of the laser beam to help mitigate sys-
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FIG. 3. Phase deviation induced by single optimized pulse.
In the optimized pulse, time-dependent noises are included
(the root mean square (RMS) of the noises is 0.5% in the
amplitude and 1% in the phase). A set of 10 simulations are
performed with random time-dependent noises for different
noise parameters. (a), (c), (e) are mean values, and (b), (d),
(f) are corresponding standard deviations of the simulation
set.

tematic errors such as those due to laser wavefront per-
turbations and residual AC Stark shifts from far-detuned
transitions [26]. Therefore the laser amplitude variation
across the atom cloud is assumed to be within several
percent. We also assume detunings to be on the order
of 100 Hz, which is consistent with atom clouds lensed
to sub-nK effective temperatures [26, 89, 90] that are de-
sirable for systematic error mitigation [26]. A 0.1 polar-
ization amplitude error gives a reasonable 1% of optical
power in unwanted components. In general, the ampli-
tudes of the σ+ and σ− polarization components can be
complex. While Fig. 2 plots values of these amplitudes
over a real domain to ease visualization, we note that us-
ing complex values for these coefficients does not signifi-
cantly affect the scale of the infidelities. We also evaluate
the impact of variations in the bias magnetic field on the
infidelity compared with other noise channels.

In Fig. 3, we show the phase deviation induced by

FIG. 4. Time-dependent noise impact on infidelities. For
the same optimized pulse, adding noise in the control pulse
will negatively impact the robustness which is determined by
measuring the effective area (red) where the infidelity is a
certain value (0.0007 for the polarization map (b), 0.0004 for
the amplitude/detuning (βv) map (d) and 0.0002 for the σ−
polarization/field deviation ∆B map (f). The robustness on
the polarizations [(a)], the amplitude/detuning [(c)], and po-
larization/magnetic field [(e)] are worse if RMS of the noise
increases. A value x of the RMS of noise on the horizontal axis
of the plot corresponds to RMS fractional amplitude noise of
x and RMS phase noise of x rad. We note that the response
to noise is not perfectly symmetric. We do not necessarily
expect the optimization to provide perfect symmetry here as
we might for a two-level system since the dynamics are sig-
nificantly more complex, with many different states that have
different coupling strengths and different detunings.

a single optimized pulse as a function of different noise
channels (i.e., the difference between the actual and ideal
final state phase value). An atom interferometer with
∼1000 optimized pulses would introduce a total ∼ rad
scale phase deviation, due to the ∼ mrad scale phase
deviation of each pulse for the various noise channels.
Atomic dark matter and gravitational wave detectors
typically look for time varying signals in a particular fre-
quency band, such as 0.3 - 3 Hz [26]. If, for example,
the fractional fluctuation of the polarization errors are at
the level of 0.1%/

√
Hz in this frequency band, the corre-

sponding interferometer phase noise would be at the level
of ∼ mrad/

√
Hz. Such phase fluctuations may be further

suppressed if both arms of the interferometer, or both in-
terferometers in a differential gradiometer configuration
[26], experience close to the same errors.

Since time-dependent noise in the laser amplitude and
phase will also occur in the physical system, we studied
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FIG. 5. (a) A schematic diagram of momentum change in
both arms of the interferometer. Primitive pulses are used in
the highlighted parts to avoid unwanted off-resonant interac-
tion with the untransferred arm. The maximum momentum
in our simulation setup is 500 ℏk. (b) A schematic diagram of
a differential measurement between two interferometers spa-
tially separated over a baseline.

its impact on the infidelity of the optimized pulse. The
added white noise is constructed separately for amplitude
and phase by

f(t) =

1000∑
i

Ai cos(ωit) +Bi sin(ωit), (3)

where Ai and Bi are randomly generated amplitudes and
ωi are random frequencies uniformly distributed from 50
Hz to 105 Hz. We normalize each f(t) to the desired root
mean square (RMS) value. The spectrum of the noise is
chosen in this range since lower or higher frequencies are
tested to have less impact on the robustness. A thousand
frequency components are used to guarantee sufficient
sampling density in the targeted noise spectrum. Higher
sampling numbers do not change the result significantly.
Due to the randomly generated noise for each simulation,
the impact on the infidelity undergoes fluctuations be-
tween different simulation runs. We measure this impact
by observing the trend of the area in the contour plot
whose infidelity is under a certain value (effective area).
By repeating the simulation, the impact fluctuations are
indicated by the standard deviation as error bars, and the
trend is shown in Fig. 4(a), (c), (e). Overall, with bigger
noise both in amplitude and phase, the effective area is
smaller in the infidelity map for different noise channels
(Fig. 4(b), (d), (f)). For the noise RMS of approxi-

FIG. 6. Full interferometer simulation. The results from
the optimized pulse are presented. The time-dependent noise
level is the same as in Fig. 3. (a), (d), (g): the transfer
efficiencies (including the net effect of all pulses) with static
noise on polarizations, Doppler detuning, magnetic field devi-
ation, and amplitude. (b), (e), (h): the mean phase difference
(rad) between two arms in the interferometer. (c), (f), (i): the
standard deviation of the phase difference (rad) with random
noise (half percent RMS in the amplitude and one percent
RMS in the phase).

mately 1 percent (defined in Fig. 4 caption) which is an
achievable level in experiments [91], the effective area re-
duction is relatively modest (a factor of approximately 2
or less), indicating that the optimized pulses can remain
effective in the presence of noises. This is further veri-
fied by the full interferometer simulation described below,
which shows that good total transfer efficiency (includ-
ing the net effect of all pulses) and well-controlled phase
deviations can be maintained for experimentally relevant
combinations of static and time-dependent noises, even
for interferometers with thousands of total pulses.

B. Full interferometer

The optimized pulse has been tested in a full atom in-
terferometer simulation (Fig. 5(a)) with total 2000 pulses
(each arm experiences 1000 resonant pulses and 1000 off-
resonant pulses) as a final feasibility test. In the simula-
tion, we calculate the finite time step unitary evolution
of the states using

u(j) = e−iĤ(tj)∆tj/ℏ, (4)

Ψf = u(M)...u(2)u(1)Ψi, (5)

where Ψi and Ψf are initial and final states. In the fi-

nite time approximation, the Hamiltonian Ĥ(tj) keeps
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FIG. 7. The impact of different noise channels on interference contrast in a full interferometer. The time-dependent noise level
is the same as in Figs. 3 and 6. In each panel, the vertical axis is the interference contrast and the horizontal axis is the
width w of the zero-centered Gaussian probability distribution from which the corresponding noise parameter xi is sampled.
An example of a simulated interference pattern is shown (at the upper-right corner, below the legend) to illustrate the contrast
calculation. In contrast to other pulses, the optimized pulse maintains a high degree of robustness against all noise channels,
and the optimized pulse outperforms all other pulses in robustness against polarization noise.

the same from tj to tj + ∆tj , so that the evolution op-

erator for the finite time ∆tj is u(j). We calculate the
full evolution by applying a chain of finite time operators
(Eq. (5)). The optimized pulse is divided into M = 2500
segments (step time is 0.8 µs, further time step decrease
does not significantly influence the results). Since the
switching on and off are faster than pulse variations, 50
segments are specially assigned on each switching process
to assure their smoothness (see Fig. 1 (c)). In our LMT
scheme for clock interferometry [18] (Fig. 5(a)), we uti-
lize 20 primitive pulses for initial momentum splitting,
480 optimized pulses for continuing the atoms’ accelera-
tion, 480 optimized pulses for deceleration, and 20 prim-
itive pulses for symmetrical deceleration. Then, the laser
is tuned to be resonant with the other arm, and the same
process is repeated on the other arm. During the LMT
process, pulses are applied from alternating directions
[18]. The arms are recombined at the end, and we mea-
sure the total transfer efficiency and the phase difference
between the two arms. The reason for including the prim-
itive pulses is that, in creating the full interferometer, the
optimized pulses have unwanted off-resonant interaction
with the untransferred arm when the relative Doppler

shift between the two arms is small. This effect can be
reduced by using primitive pulses with appropriate Rabi
frequency at small momentum separation. As the rela-
tive velocity between the arms increases, the increasing
relative Doppler shift causes the pulses to become further
detuned from the other arm, and the deleterious effect on
the untransferred arm decreases. At this point, we switch
to the optimized pulse to boost the momentum splitting
to large values.

The time-dependent noise composed from Eq. (3)
varies in each pulse in one simulation run. We keep it
the same for different simulation runs within a single
static noise channel scan, in which we vary two static
noise parameters while keeping others the same (Fig. 6).
We carry out repeated static noise channel scans, each
with randomly generated time-dependent noise, to evalu-
ate the phase difference between the interferometer arms.
Typical applications of clock interferometry involve dif-
ferential measurements between two atom interferome-
ters in a gradiometer configuration using a common laser
(see Fig. 5(b)) [18, 32]. Therefore, in each scan, a differ-
ential phase is calculated by subtracting out the phase of
an interferometer with zero static noise (i.e. set the cen-
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ter of the map as zero). The mean value and the standard
deviation of the differential phase are computed for each
static noise point. If two interferometers in a gradiome-
ter experience the same static noise, the influence of the
time-dependent noise on the phase will completely cancel
as a common mode [18]. By comparing different static
noise points, one can determine the residual differential
phase noise if the two interferometers in the differential
measurement are not matched perfectly in terms of po-
larization, amplitude, detuning, and magnetic field.

To demonstrate the advantage of the optimized pulse,
following a similar approach to other papers studying the
application of quantum optimal control to atom interfer-
ometry in different contexts [79, 83], the contrast of the
interference pattern after the full interferometer (Fig. 7)
is compared with primitive and other composite pulses.
The interference pattern is a probability summation of
the single-atom interference patterns from an ensemble
of atoms. Each atom in the ensemble experienced dif-
ferent static noise according to a particular distribution.
For a certain noise channel, we use a Monte Carlo method
to construct the interference pattern F (Φ) by

fi(Φ) =
1
2 + 1

2T (xi) cos (Φ +∆ϕ(xi)) , (6)

F (Φ) = 1
N

∑N
i=1 fi(Φ), (7)

where Φ is in a range bigger than 2π to show the inter-
ference pattern contrast. In a single-atom interference
pattern fi(Φ), we assign a Gaussian probability distri-
bution whose width is w and pick noise parameter xi

randomly according to the distribution. The transfer ef-
ficiency T (xi) is the probability of atoms being in the
correct state to contribute to the contrast (for exam-
ple, Fig. 6 (a), (d), (g)). The phase deviation ∆ϕ(xi)
is a value sampled from a Gaussian distribution whose
mean value and standard deviation are determined by
the noise parameter xi (for example, Fig. 6 (b), (e), (h)
for mean value, and (c), (f), (i) for standard deviation).
The sampling number N = 50000 is big enough to give
small statistical fluctuation in determining the contrast.
The normalized interference pattern F (Φ) (an example is
shown in Fig. 7) is the probability summation of a large
number of fi(Φ). The contrast we measure is

C = Fmax − Fmin. (8)

where Fmax and Fmin are the maximum and the mini-
mum values of F (Φ). The contrast value C and its change
with the width w for every static noise channel are pre-
sented in Fig. 7.

IV. CONCLUSION

In summary, we composed an optimized pulse for 87Sr
clock interferometry to improve the robustness against
multiple noise channels using the QOC method. This
work demonstrates the promise of quantum optimal con-
trol for extending the scientific reach of strontium clock

atom interferometers, potentially paving the way for
these interferometers to detect gravitational waves at cur-
rently unexplored frequencies and wavelike dark matter.
We will study the experimental implementation of the
optimized pulses in the future. To achieve the best per-
formance, it may prove valuable to tailor the noise model
used in the optimization algorithm to specific, experi-
mentally measured noise properties and spectra. The
application of closed-loop quantum optimal control [92],
in which experimental measurements of pulse fidelities
guide the optimization process, to atom interferometry
has the potential to offer further improvements.
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Appendix A: System Hamiltonian

We break the Hamiltonian in a rotating frame into two
constant terms HB (Zeeman shifts) and HD (Doppler
shifts) corresponding to free evolution, and a time-
dependent control term Hc:

H(β) = HB(βB) +HD(βv) +Hc(ϵ+, ϵ−, βA), (A1)

where βv changes the Doppler shift, βB is the fractional
change of the magnetic field, βA is a complex coefficient
that characterizes the deviation of the amplitude and the
phase of the actual control drive from those of the ideal
control drive, and ϵ± are fractional amplitudes of σ± po-
larization terms.

The Hamiltonian term denoted as HB can be math-
ematically divided into two distinct components. The
first component is responsible for determining the en-
ergy splitting of the 3P0 and 1S0 hyperfine levels, assum-
ing that the laser is resonant with the transition from
|1S0; 9/2⟩ to |3P0; 9/2⟩. This resonance condition en-
sures that the energies of these two levels are equal in
the rotating frame and are therefore set to zero in the
Hamiltonian. The energy ladder of the sublevels can be
expressed as follows:〈

mF ;
1S0 |HB1| 1S0;mF

〉
−Bℏµ0gS

(
9

2
−mF

)
, (A2)

〈
mF ;

3P0 |HB1| 3P0;mF

〉
= −Bℏµ0gP

(
9

2
−mF

)
,

(A3)
where B = B0 + ∆B = (1 + βB)B0 is the total mag-
netic field, mF is the magnetic quantum number, ℏ is
the reduced Planck constant, µ0 is the vacuum perme-
ability, and gS , gP are the Landé g-factors for the 1S0

and 3P0 states, respectively. To fully evaluate robust-
ness against magnetic field changes ∆B, we consider the
impact of such a magnetic field change for a fixed laser
frequency. As a result of the associated Zeeman shift,
the magnetic field change causes the laser to become
slightly off-resonant by inducing additional energy shifts
of ∆BgSµ09/2 and ∆BgPµ09/2 for the |1S0; 9/2⟩ and
|3P0; 9/2⟩ energy levels, respectively. Consequently, it
becomes necessary to introduce a second component in
the Hamiltonian to account for these energy shifts. To
maintain clarity, the energy shift is symmetrically divided
between the ground and excited states, as only the total
energy difference ∆E = ∆BgPµ09/2 − ∆BgSµ09/2 ≡
βBB0ℏωB between the two levels affects the evolution
results. Therefore, the complete Hamiltonian term HB

can be written as

〈
mF ;

1S0 |HB | 1S0;mF

〉
= −βBB0

ℏωB

2

− (1 + βB)B0ℏµ0gS

(
9

2
−mF

)
,

(A4)

〈
mF ;

3P0 |HB | 3P0;mF

〉
= βBB0

ℏωB

2

− (1 + βB)B0ℏµ0gP

(
9

2
−mF

)
,

(A5)

where B0 = 1 G is the nominal bias field and ωB =
2π × 491 Hz/G. In the second term µ0gS = 2π × 182
Hz/G, and µ0gP = 2π × 291 Hz/G [93]. This term gives
the energy ladder of all sublevels with a fractional field
change of βB .
Similarly, the HD matrix elements are given by

〈
mF ;

1S0

∣∣∣ĤD

∣∣∣ 1S0;mF

〉
= −βvℏωD/2, (A6)

〈
mF ;

3P0

∣∣∣ĤD

∣∣∣ 3P0;mF

〉
= βvℏωD/2, (A7)

where ωD = 2π × 100 Hz is chosen as a factorization so
that βv is in units of 100 Hz in all the figures. This term
accounts for the energy shift due to the Doppler effect.
The sign of HD term will flip in the rotating frame when
the laser pulse direction switches.

For the laser control Hamiltonian term HC , the matrix
elements are

〈
mF ;

3P0

∣∣∣ĤC

∣∣∣ 1S0;mF

〉
= (1 + βA)

Cπ
mF

Cπ
9/2

ℏΩ(t)
√
1− ϵ2

2
,

(A8)

〈
mF + 1; 3P0

∣∣∣ĤC

∣∣∣ 1S0;mF

〉
= (1 + βA)

C+
mF

Cπ
9/2

ℏΩ(t)ϵ+
2

,

(A9)

〈
mF − 1; 3P0

∣∣∣ĤC

∣∣∣ 1S0;mF

〉
= (1 + βA)

C−
mF

Cπ
9/2

ℏΩ(t)ϵ−
2

,

(A10)
where ratios Cπ

mF
, C+

mF
, C−

mF
are Clebsch-Gordon coef-

ficients accounting for the different transition strengths
which are derived from the electric dipole matrix ele-
ment between the 1S0 and 3P0 states. These elements
arise from an admixture between 1P1 and 3P0 states
due to spin-orbit coupling and hyperfine interactions (the

dipole matrix elements
〈
3P0

∣∣∣ĤC

∣∣∣ 1S0〉 are proportional

to
〈
1P1

∣∣∣ĤC

∣∣∣ 1S0〉) [93]. The calculation of such elec-

tric dipole moments is described, for example, in Metcalf
and Van der Straten’s book [94]. βA(t) is composed of a
constant deviation βA0 and white noises on both ampli-
tude and phase (see Eq. (3)). Ω(t) is the Rabi frequency
which varies with the control pulse amplitude, and its
peak value is 2π × 3 × 103 Hz. ϵ2 = |ϵ−|2 + |ϵ+|2 con-
serves the total amplitude. All other matrix elements not
explicitly listed are zero.
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A. Freise, R. Geiger, et al., Sci. Rep. 8, 1 (2018).

[22] J. M. Hogan, D. Johnson, S. Dickerson, T. Kovachy,
A. Sugarbaker, S.-w. Chiow, P. W. Graham, M. A. Kase-
vich, B. Saif, S. Rajendran, et al., Gen. Relativ. Gravit.
43, 1953 (2011).

[23] Y. A. El-Neaj, C. Alpigiani, S. Amairi-Pyka, H. Araújo,
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