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We experimentally study three-body energy exchange during Rydberg excitation near a two-
body Förster resonance. By varying the excitation pulse duration or Rabi frequency, we coherently
control the excitation of three-atom entangled states. We prove coherence using an optical rotary
echo technique, and compare with a model for excitation in a three-atom basis. Our results suggest
a robust way to implement a three-body entangling operation.

I. INTRODUCTION

Interactions among ultracold atoms have enabled an
explosion of progress in fundamental physics [1] and
quantum technologies [2]. Close-range interactions in
quantum degenerate gases have revealed exotic phases of
matter like Effimov states [3] and the Tonks-Girardeau
gas [4]. They have also given insight into quantum dy-
namics, including phase transitions [5, 6], wavepacket
transport [7], Anderson localization [8], and quantum
thermalization [9, 10]. Ultracold Rydberg atoms are
particularly useful because of their long-range cou-
plings [2]. Dipole-dipole interactions in Rydberg sys-
tems have been used to create neutral atom quantum
gates [11–13], flexible quantum simulators [14, 15], sin-
gle photon sources [16, 17], and single photon switches
and transistors [18, 19]. These long-range interactions
have also opened new avenues to study few-body physics,
including Rydberg molecules [20, 21], facilitated excita-
tion [22, 23], and few-photon optical nonlinearities [24–
26].

There has been significant recent interest in non-
radiative, dipolar energy transfer. This transfer occurs
most readily at Förster resonance, or a near-degeneracy
between multi-atom Rydberg states. The process is
reminiscent of fluorescence resonance energy transfer
(FRET), proposed by Förster to explain energy trans-
port in biological systems [27–29]. State-changing energy
transfer has been studied for several decades near two-
atom Förster resonances, but beyond two-body effects
have been difficult to confirm [30–33]. This work was
recently extended to three- and four-atom Förster reso-
nances [34–39], and the Borromean nature of one such
resonance was demonstrated [35, 36]. Energy exchange
near few body resonances may shed light on many-body
localization [40] and quantum thermalization [39]. It has
also been proposed as an entangling operator for quan-
tum computation and simulation [36–38]. However, co-
herent dipole-dipole energy exchange has not been pre-
viously observed at the three-atom level.

In most recent work, the energies of Rydberg states
were manipulated via the DC Stark effect to fulfill a
precise resonance condition. Here, we demonstrate con-
trollable three-body energy exchange near a two-body

Förster resonance. This process, 2 × nD5/2 → (n −
2)F7/2+(n+2)P3/2, is nearly resonant in rubidium near
n = 43. We see strong evidence of coherent excitation
of three-atom entangled states in zero applied field. The
mechanism we study is particularly robust, since it is in-
sensitive to the precise value of the energy defect.
We study the process proposed by Pohl and Berman

in Ref. [41]. Consider Rydberg excitation of three atoms
from a ground state, |g⟩, to a target state, |d⟩, via a reso-
nant optical pulse. Near Förster resonance, two- particle
states |dd⟩ are coupled to nearby product states, |pf⟩ and
|fp⟩, and the energy defect ∆E = 2×Ed−(Ep+Ef ) ≈ 0.
An optical pulse can drive transitions between the three-
atom ground state |ggg⟩ and a triply-excited state, |M3⟩,
through virtual levels whose populations follow the pulse
envelope. This entangled state has zero energy shift,
and has the form |M3⟩ = c1|dpf⟩ + c2|dfp⟩ + c3|pdf⟩ +
c4|fdp⟩+ c5|pfd⟩+ c6|fpd⟩, where ci are probability am-
plitudes. Given appropriate values for the pair-state de-
tuning, pulse duration, and Rabi frequency, |M3⟩ should
be excited with high probability [41].

Previous work has shown that when one excites 85Rb
atoms to nD5/2 Rydberg states (|d⟩) near n = 43, a
large fraction of Rydberg atoms are detected in (n+2)P
(|p⟩) and (n− 2)F (|f⟩) states immediately after excita-
tion [42–45]. We recently developed a method to de-
termine if the energy exchange is two- or three-body
in nature [45]. In the present work, we use this tech-
nique to establish control of excitation into the triply
excited states, |M3⟩, as we vary excitation pulse dura-
tion or Rabi frequency. We employ an optical rotary
echo [47–51] to prove coherence, and we find good agree-
ment between our data and the model of Ref. [41]. The
coherent signal remains very strong, even when exciting
multiple excitation domains with a spatially inhomoge-
neous laser, in a disordered density distribution, and with
uncontrolled mj . Therefore, excitation of |M3⟩ might be
useful as a three-body entangling operator in situations
with less-than ideal control over experimental parame-
ters. This is promising, because systems with single-
atom control are difficult to achieve. Examples of tech-
nologies requiring three interacting atoms include Toffoli
and Fredkin gates [52, 53], or quantum simulations of
exotic spin Hamiltonians [54–56]. A Toffoli gate based
on non-radiative three-body energy transfer, rather than
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FIG. 1. (a) Schematic of the experiment. Optical pulses are
created by amplitude modulating radiofrequency (RF) signals
driving acousto-optic modulators (AOMs). The phase of the
RF signal driving the lower transition (LT) AOM is constant.
At time t′, the phase of the RF signal driving the upper transi-
tion (UT) AOM is shifted by π. This (b) flips the phase of the
UT optical pulse, and the effective Rabi frequency switches
from Ω to −Ω, where Ω = ΩLΩU/2∆. (c) Side view of the
apparatus, illustrating state-selective field ionization.

the usual dipole blockade, was recently proposed [37].

II. EXPERIMENTAL PROCEDURE

Our setup is described elsewhere [45]. Briefly, we col-
lect ultracold 85Rb atoms in an optical dipole trap. We
control the ground state atom density by turning off
the dipole trap beam and allowing the atoms to freely
expand before they are excited to Rydberg states [43].
We use a relatively low density: ρ ∼ 5 × 1010 cm−3.
We apply coincident pulses of duration τ to drive the
5S1/2 → 6P3/2 → 42D5/2 transitions, with an interme-
diate state detuning ∆ = 50 MHz. Since τ ≤ 2 µs, the
atoms are effectively frozen during Rydberg excitation.
The σ+ polarized lower transition beam is derived from
a MOGLabs external cavity diode laser. The π polarized
upper transition beam is derived from a MOGLabs cat-
eye laser that is frequency stabilized to a pressure-tunable
Fabry Pérot cavity [57]. The beams are perpendicular to
each other and to the long axis of our dipole trap. Pulses
are created by amplitude modulating the radiofrequency
(RF) signal driving acousto optic modulators (AOMs) in
each beam, as shown in Fig. 1a.

We detect atoms using state-selective field ionization

(SSFI) spectroscopy, outlined in Fig. 1c. A high voltage
ramp is applied to electrodes above and below the atom
cloud, 50 ns after each excitation sequence. Atoms with
different binding energies will ionize at different electric
fields, and the liberated electrons are detected by a dual
stage microchannel plate detector (MCP). For each of
1001 shots of our experiment, we use a pulse counter to
record the number of excitations in each of two inde-
pendent timing gates. The “P Gate” counts atoms in
44P3/2, or |p⟩, while the “T Gate” counts all Rydberg
atoms. From this data, we construct a “sorted graph,”
or a 2D histogram of the total number of excitations as
a function of the number in |p⟩. We fit each sorted graph
to a linear function. The slope tells us how many addi-
tional Rydberg excitations are created each time an atom
is detected in |p⟩. A small value of slope indicates that
the energy exchange is dominated a two-body process,
since one additional Rydberg atom (in |f⟩) is created for
each atom in |p⟩. A large value of the slope indicates the
presence of three-atom entangled states of the type |M3⟩,
because two additional Rydberg atoms (in |d⟩ and |f⟩)
are created for each atom in |p⟩ [45].
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FIG. 2. Sorted graphs for excitation to the 42D5/2 state with
fixed Ω = 1 MHz with (i) τ = 200 ns, (ii) τ = 500 ns, (iii)
τ = 2000 ns, and (iv) τ = 500 ns; phase flip at t′ = 250 ns (see
Fig. 3). These graphs show the total number of excitations,
NT , as a function of the number in |p⟩, NP . The false color
indicates how many of each {NP , NT } were detected. The
green line is a fit, from which we extract the slope. Since
there is less spread in {NP , NT } in panel (i), all values have
been divided by 2 to match the common false color scale.

Example sorted graphs are shown in Fig. 2 for fixed
Rabi frequency Ω = ΩLΩU/2∆ = 1 MHz. The green
lines are the least-squares linear fit to the data. In pan-
els (i) through (iii) the pulse duration, τ , is increased
from 200 ns to 500 ns to 2000 ns. The slope of the
sorted graphs clearly increase and then decrease. This
suggests that the mechanism causing energy exchange
near Förster resonance is highly sensitive to pulse dura-
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tion.

III. RESULTS AND DISCUSSION

To explore further, we measured the slopes of the
sorted graphs as a function of τ for fixed Ω and as a
function of Ω for fixed τ . The results are shown as black
diamonds in the top two panels of Fig. 3. We also plot
two other quantities: the Mandel Q parameter and the
mixing fraction. The Mandel Q parameter represents the
width of the distribution of number of excitations. It is
defined as Q = σ2/N̄T − 1, where σ2 is the dispersion
and N̄T is the mean number of total excitations. The
mixing fraction is defined as the fraction of Rydberg ex-
citations found in |p⟩ and |f⟩ [46]. It indicates the frac-
tion of Rydberg excitation events that result in energy
exchange, and increases monotonically with pulse dura-
tion and Rabi frequency. In contrast, the slopes of the
sorted graphs and the Mandel Q parameter go through
clear relative maxima.
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FIG. 3. Slopes of the sorted graphs, Mandel Q, and mixing
fraction for atoms excited to the 42D5/2 state. In panels
(a)-(c) Ω = 1 MHz, and τ is varied. In panels (d)-(f) τ =
400 ns, and Ω is varied. The black diamonds are for excitation
with no upper transition phase flip. The purple circles are for
excitation with a phase flip at t′ = τ/2. Error bars are the
one-sigma uncertainty resulting from a least-squares fit to our
raw data.

To test the coherence of the process causing these
maxima, we implemented an optical rotary echo tech-

nique [43, 47, 48, 50]. The sequence, shown schemati-
cally in Figs. 1a and b, is similar to rotary spin echo in
nuclear magnetic resonance [47]. At a variable time, t′,
within our upper transition excitation pulse, we reverse
the phase of the RF signal driving an AOM. This reverses
the sign of the excitation Rabi frequency, Ω. Independent
of the value of Ω, the system should undergo reverse evo-
lution and arrive back to its ground state at a time 2t′,
unless some dephasing has occurred. The plots of slope,
Mandel Q, and mixing fraction using a phase flip at half
the pulse duration (t′ = τ/2) are shown in Fig. 3 as pur-
ple circles. A sorted graph with phase flip at τ/2 is shown
in panel (iv) of Fig. 2. In both Figs. 2 and 3 it is clear
that, while the phase flip does not significantly change
the fraction of atoms excited into product states, it dra-
matically reverses the evolution into multiparticle states
that lead to large slope and Q. Thus, we conclude that
the excitation of these multiply excited states is coherent
over most of the range of x-axis values.
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FIG. 4. Slopes of the sorted graphs with no upper transition
phase flip from Fig. 3 (black diamonds) along with the results
of a Monte Carlo model (red triangles). The model accounts
for the effect of atom number fluctuations and non-unity de-
tector efficiency on the slopes. In panel (a) Ω = 1 MHz, and
τ is varied and in panel (b) τ = 400 ns, and Ω is varied.

To determine the nature of the multiply-excited states,
we compare the measured values of the slopes of the
sorted graphs with the results of a Monte Carlo simula-
tion. We account for the effects of non-unity detector effi-
ciency and shot-to-shot fluctuations in excitation number
on the slopes. We assume each excitation event results
in either one atom in |d⟩ or three atoms, one each in |p⟩,
|d⟩, and |f⟩. The model then predicts a value for the
slope, given the Q-value and mixing fraction present in
the experiment (see Ref. [45] or the appendix for details).
Figure 4 shows the no-phase flip data from Figs. 3a and
d, along with the predictions of our Monte Carlo model.
The peaks in our data are consistent with the creation of
triply-excited states. In the case of a phase flip at τ/2,
there is no significant peak in the slope, as seen in Fig. 3.
In this case, triply-excited states are not created with
high probability.
To determine if the peaks in Figs. 3 are due to ex-

citation of |M3⟩, we implemented the model described
in Ref. [41]. This model describes excitation in a three
atom basis, and we modified it by adding always reso-
nant “hopping” couplings |d⟩ ↔ |f⟩ and |d⟩ ↔ |p⟩. We
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numerically solved the time-dependent Schrödinger equa-
tion (TDSE) for various coupling strengths Vi,j (or dis-
tances ri,j), where {i, j} ∈ {1, 2, 3}. We first placed the
atoms on an equilateral triangle and calculated the max-
imum probability to find the system in a state with one
atom each in |d⟩, |p⟩ and |f⟩ as τ was varied. The prob-
ability to create triply-excited states is a sharply peaked
function of the triangle’s side length, r, with a maximum
value at rmax = 3.25 µm and full width at half maximum
(FWHM) 1.07 µm for Ω = 1 MHz. We then solved the
TDSE, averaging over random atom placements within
the experimental distribution of Rabi frequencies. We
placed the atoms inside a shell of radius rmax and width
equal to the FWHM. This is the volume inside of which
the excitation of triply-excited states will be most prob-
able. We recorded the probability to detect one atom
each in |d⟩, |p⟩, and |f⟩. For Ω = 1 MHz there are, on
average, about 8 atoms inside of the shell. We accounted
for the fact that there are N =

(
8
3

)
possible triples which

could be excited within this volume. Since each of these
excitation channels is independent and do not interfere,
we multiplied the triple excitation probability by the ap-
propriate value of N for each Rabi frequency.
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FIG. 5. Calculated probability to excite a state with one atom
each in |d⟩, |p⟩, and |f⟩, using to the model in Ref. [41]. The
black solid line is for no phase flip and the purple dashed line
is for a phase flip at t′ = τ/2. Panel (a) is for Ω = 1 MHz
and panel (b) is for a pulse duration of 400 ns.

The results of the calculation are shown in Fig. 5. The
black curves are for no Rabi frequency inversion and the
purple dashed curves are for an inversion at t′ = τ/2. It
is notable that the Rabi oscillation shows only moder-
ate damping, despite the fact that we average over many
random placements in an inhomogeneous intensity dis-
tribution. For no rotary echo, the maximum probability
occurs at approximately the same pulse duration (panel
a) as the data in Fig. 3a, but at a larger Rabi frequency
(panel b) than the data in Fig. 3d. For Rabi frequency
inversion at t′ = τ/2 the calculated maxima occur at
even longer times (panel a) and higher Rabi frequencies
(panel b). In Figs. 3a and d we don’t see strong evi-
dence of these peaks. Any disagreements between the-
ory and experiment have a common cause. Whenever
we drive our atoms strongly (long pulses or large Rabi
frequency), excitation of doubly-excited states contain-
ing terms like |pf⟩ or |fp⟩ dominates over the coherent
excitation of |M3⟩. We increase the probability of excit-

ing close pairs into unshifted branches of the molecular
potential curves [44, 45, 58]. Whenever this happens, it
causes the slope and Mandel Q to decrease. Nonetheless,
the agreement between the data in Fig. 3 and the shapes
of the calculated curves in Fig. 5 indicates that we are
exciting the entangled state |M3⟩.
Interestingly, if we repeat the experiments described

in this paper when exciting to 43D5/2 states, we don’t
see any coherent features in our graphs of slope vs. pulse
duration or Rabi frequency. Since the magnitude of the
Förster defect is much smaller for n = 43 than for n = 42
(-11 vs. -97 MHz), one would naively expect a higher
probability to excite |M3⟩. However, this is not the
case. The reason is that, for n = 43, molecular potential
branches cross zero at larger separations, and with larger
overlap with the asymptotic state [45]. Therefore, atoms
are readily excited into two-body states featuring terms
like |pf⟩ or |fp⟩. The unfavorable molecular potential
curves dominate the dynamics, no matter our choice of
experimental parameters.
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FIG. 6. Slopes of the sorted graphs (a) and Mandel Q (b)
with fixed Ω = 1 MHz and τ = 500 ns. The time, t′, of the
upper transition phase inversion is varied.

To further demonstrate the coherence of the evolution
into |M3⟩, we vary the echo time, t′, for fixed Ω = 1 MHz
and τ = 500 ns. Thus, we should excite |M3⟩ for a time t′

and reverse the evolution for a time τ − t′. The slopes of
the sorted graphs and the Mandel Q are shown in Fig. 6.
The clear relative minimum gives strong evidence of the
reversibility of the evolution. Note that in this graph, as
in the previous graphs, the Mandel Q closely follows the
behavior of the slopes of the sorted graphs. Excitation
events may always produce single |d⟩ excitations or pairs
of atoms in |p⟩ and |f⟩ (due to short-range molecular po-
tential zero crossings). However, as the probability to
excite three-body entangled states increases, the fluctu-
ations in excitation number also increase. This broadens
the excitation number distributions.

IV. CONCLUSION

We have demonstrated coherent excitation of three-
atom entangled states near Förster resonance. This is
the first observation of coherent dipole-dipole energy ex-
change beyond two atoms. Coherence was proven using
an optical rotary echo technique. We used a Monte Carlo
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method to demonstrate that coherent features in our data
are consistent with the excitation of triply excited states.
Finally, we showed that our data is well-described by the
model of Ref. [41]. The demonstrated coherence of |M3⟩
in a bulk gas suggests that this state might find applica-

tion in quantum technologies, in situations where exper-
imental conditions cannot be carefully controlled.
Acknowledgements. The authors acknowledge valu-

able input from Paul Berman, Georg Raithel, Smitha
Vishveshwara, and David Weiss. This work was sup-
ported by NSF Grants PHY-1745628 and PHY-2204899.

[1] I. Bloch, J. Dalibard, and W. Zwerger, Many-body
physics with ultracold gases, Rev. Mod. Phys. 80, 885
(2008).

[2] M. Saffman, T. G. Walker, and K. Mølmer, Quantum
information with Rydberg atoms, Rev. Mod. Phys. 82,
2313 (2010).

[3] T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C.
Chin, B. Engeser, A. D. Lange, K. Pilch, A. Jaakkola, H.-
C. Nägerl, and R. Grimm, Evidence for Efimov quantum
states in an ultracold gas of caesium atoms, Nature 440,
315 (2006).

[4] Toshiya Kinoshita, Trevor Wenger, and David S. Weiss,
Observation of a One-Dimensional Tonks-Girardeau Gas,
Science 305, 1125 (2004).

[5] M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, and
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D. Lukin V. Vuletić, T. Peyronel, and O. Firstenberg,
Quantum nonlinear optics with single photons enabled
by strongly interacting atoms, Nature 488, 57 (2012).

[26] Qi-Yu Liang, Aditya V. Venkatramani, Sergio H. Cantu,
Travis L. Nicholson, Michael J. Gullans, Alexey V. Gor-
shkov, Jeff D. Thompson, Cheng Chin, Mikhail D. Lukin,
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Appendix: DETAILS OF THE MONTE CARLO
SIMULATION

The slopes of the sorted graphs provide information
about the mechanism behind dipole-dipole energy trans-
fer into |p⟩ and |f⟩. A lower value of the slope indicates
that a two-body mechanism causes the transfer (one ad-
ditional Rydberg atom for each atom in |p⟩), while a
larger value indicates that a three-body mechanism is re-
sponsible (two additional Rydberg atoms for each atom
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in |p⟩). However, two factors make it difficult to di-
rectly interpret the slopes: non-unity detector efficiency
and shot-to-shot fluctuations in the number of excitation
events. These effects can combine to change number of
Rydberg excitations detected in the two counting gates,
for a given true number of excitations created.
To model the impact of these factors on our slope data,

we use a Monte Carlo simulation. Each run of the progam
draws a random number of excitation events from a Gaus-
sian distribution, whose width is chosen to reproduce the
experimentally measured value of the Mandel Q param-
eter (or level of excitation fluctuation). We randomly
assign each excitation event to either a single atom in
the (target) |d⟩ state, or three atoms, one each in |d⟩,
|p⟩, and |f⟩. The probability to excite a three-atom state

is given by the experimentally measured mixing fraction.
After every excitation event, the program decides if each
Rydberg count is recorded, according to our microchan-
nel plate’s detector efficiency.
For each Monte Carlo point in Fig. 4, we run the simu-

lation 5×107 times, and plot the total number of Rydberg
excitations as a function of the number in |p⟩. We fit the
simulated sorted graph to a line and extract the slope,
just as in the experiment. Therefore, the Monte Carlo
model predicts a value of the slope, given a three-atom
model for state mixing and the experimentally measured
mixing fraction and Mandel Q. As shown in Fig. 4, the
coherent features in our experimental data are consis-
tent with a three-atom model for excitation into product
states.


