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We study the internal state dynamics of optically trapped polyatomic molecules subject to room temperature
blackbody radiation. Using rate equations that account for radiative decay and blackbody excitation between
rovibrational levels of the electronic ground state, we model the microscopic behavior of the molecules’ ther-
malization with their environment. As an application of the model, we describe in detail the procedure used to
determine the blackbody and radiative lifetimes of low-lying vibrational states in ultracold CaOH molecules, the
values of which were reported in previous work [Hallas et al., Phys. Rev. Lett. (2023)]. Ab initio calculations
are performed and are found to agree with the measured values. Vibrational state lifetimes for several other
laser-coolable molecules, including SrOH and YbOH, are also calculated.

I. INTRODUCTION

Cold and ultracold polyatomic molecules are a promising re-
source for diverse applications that span quantum information
science [1, 2], quantum simulation [3–5], ultracold collisions
[6], cold chemistry [7], and searches for physics beyond the
standard model [8–10]. While ultracold diatomic molecules are
now routinely created and studied in the laboratory [11–16], ul-
tracold polyatomic molecules, with their increased vibrational
and rotational degrees of freedom, have only more recently
begun to be brought under single quantum state control. In the
last decade, CH3F [17, 18] and H2CO [19] have been cooled
and trapped via optoelectrical Sisyphus cooling, CH3 has been
magnetically trapped [20], and CaOH has been laser cooled
and trapped in a magneto-optical trap (MOT) [21], then loaded
into an optical trap [22]. SrOH, YbOH, and CaOCH3 have
been laser cooled in one dimension [23–26], setting the stage
for MOTs and optical traps of an increasing variety of poly-
atomic molecules.

One challenge of working with trapped polar molecules is
their susceptibility to loss from blackbody radiation from the
environment, which incoherently drives rovibrational transi-
tions out of the internal quantum state of interest. This mecha-
nism has been theoretically studied [27–29] and experimentally
observed [30–33] for trapped diatomic molecules, where it can
limit lifetimes to ≲ 10 s at room temperature. The specific
sensitivity of diatomic molecules to blackbody radiation has
also been proposed as a tool for blackbody thermometry, with
the capability for much longer interrogation times compared
to Rydberg atoms [29]. Because of the increased quantity
of rovibrational states in polyatomic molecules (the number
of vibrational modes scales as ∼ 3N, where N is the number
of atoms in the molecule), they have the potential for signifi-
cantly increased sensitivity to blackbody radiation compared
to diatomic species. Although blackbody lifetimes of trapped
polyatomic molecules have received some attention in the liter-
ature [20, 34, 35], they have been less thoroughly explored.
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In addition to blackbody loss, excited vibrational states in po-
lar molecules have finite lifetimes due to spontaneous, radiative
decay. A number of proposed experiments with polyatomic
molecules rely on population in excited vibrational levels, and
the radiative lifetimes of these states are therefore critical for
these experiments. In particular, the low-lying vibrational bend-
ing modes of linear polyatomic molecules like CaOH, SrOH,
and YbOH are expected to be useful for experiments including
quantum simulation and computation [2, 3, 5], electrostatic
shielding of collisions [6], and precision searches for ultralight
dark matter and the electric dipole moment of the electron
[8, 9, 36]. Radiative decay lifetimes for excited vibrational
states have been previously measured in diatomic molecules
[33, 37, 38], but these measurements are more challenging
in polyatomic molecules due to their increasingly complex
vibrational structure.

In this work, we study the vibrational state lifetimes of
polyatomic molecules resulting from blackbody excitation and
radiative decay. The combination of these effects drives the
molecules into equilibrium with their thermal environment.
Using a rate equation model and ab initio calculations of tran-
sition rates, we explore the evolution of rovibrational state
populations over time and compute blackbody and radiative
decay lifetimes for laser-coolable, linear triatomic molecules.
We describe a fit of the rate equations to experimental data
for optically trapped CaOH, which was used to determine the
radiative and blackbody lifetimes reported in Ref. [22]. The fit
results are compared with ab initio calculations. Finally, we
perform calculations of ground-state blackbody lifetimes for
larger laser-coolable polyatomic molecules, which have addi-
tional vibrational degrees of freedom susceptible to blackbody
loss.

The structure of this paper is as follows. In section II, we
describe a set of rate equations used to model blackbody ther-
malization in trapped polyatomic molecules. In section III, we
detail the application of this model to measure the blackbody
and radiative lifetimes of low-lying vibrational levels in opti-
cally trapped CaOH molecules [22]. In section IV, we describe
ab initio calculations of radiative and blackbody lifetimes for
CaOH, SrOH, and YbOH molecules. In section V, we discuss
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Figure 1. Schematic level diagram illustrating rovibrational thermal-
ization dynamics in low-lying vibrational levels of CaOH, with all
population initially prepared in the N = 1 level of the (000) state.
Populations are represented by green circles, while blackbody transi-
tions and radiative decay are represented by blue and orange arrows,
respectively. For clarity, only some representative transitions are
shown. All rovibrational transitions are driven following the selection
rules (within the harmonic approximation) ∆v1 = ±1 or ∆v2 = ±1,
∆N = 0,±1, and ∆p =±1. Transition rates for the blackbody transi-
tions, Rbbr, are determined by the power spectral density of blackbody
radiation at the transition frequency (inset). The antisymmetric (O – H)
stretching mode in CaOH has a frequency of ∼3700 cm−1 [39] and
is therefore neglected.

calculated blackbody lifetimes for larger and more asymmetric
polyatomic molecules, which can have many more vibrational
modes. In section VI, we conclude.

II. RATE EQUATION MODEL

In typical experiments with cold, trapped molecules, the
molecules are prepared in a single internal quantum state, em-
bedded in a large landscape of states arising from hyperfine,
rotational, vibrational, and electronic structure. This highly
nonthermal initial distribution can be affected by the room
temperature environment. The thermalization process, during
which the internal state distribution of the molecule comes
into thermal equilibrium with the environment, is mediated by
blackbody radiation. Microscopically, thermalization occurs
when the tendency for blackbody radiation to drive transitions
up the rovibrational ladders is balanced by radiative decay, as
first described by the A and B rate coefficients of Einstein.

In polar molecules, electric dipole transitions between ro-
tational or vibrational levels can be strongly driven by room
temperature blackbody radiation, which has a maximum power

spectral density near 600 cm−1. Because vibrational frequen-
cies in laser coolable molecules are often near this energy,
blackbody-driven vibrational transitions can be a significant
source of incoherent population transfer in trapped molecules
on experimentally relevant timescales, typically on the order
of 1 s [30–32].

Fig. 1 schematically illustrates these dynamics using CaOH
molecules as an example. The Ca – O stretching mode and
the bending mode both have vibrational frequencies near the
peak of the blackbody spectrum at 300K (inset). Blackbody
radiation drives transitions at a rate Rbbr between vibrational
states obeying the electric dipole selection rules ∆v1 = ±1
or ∆v2 = ±1; ∆ℓ = 0,±1; ∆N = 0,±1; and ∆p = ±1, where
v1 and v2 are the vibrational quantum numbers for the Ca–O
stretch and Ca – O – H bending modes, ℓ is the projection of
the vibrational angular momentum onto the molecular axis,
N is the rotational quantum number, and p is the parity of
the state. Excited states spontaneously decay according to the
same selection rules at a rate Arad.

In typical laser cooling experiments, the population is ini-
tially prepared in the N = 1 level of the vibrational ground state,
as shown in Fig. 1. Vibrational populations thermalize after
a few transitions according to the selection rules highlighted
above, while rotational populations take many transitions to
fully thermalize, as the populations “walk” up the rotational
ladder via repeated transitions between vibrational states. The
timescale for rotational thermalization is therefore significantly
longer than for vibrational thermalization. (Note that pure ro-
tational transitions are driven by the blackbody environment
much more slowly due to their low energy.) In this section, we
describe a rate equation model to quantitatively describe these
dynamics.

A. Thermalization dynamics

We model the internal state dynamics of conservatively
trapped polyatomic molecules using a set of rate equations that
capture the effects of radiative decay and blackbody excitation
between vibrational manifolds within the electronic ground
state. The rate equations are sufficient to capture these dynam-
ics due to the incoherent nature of the blackbody radiation,
though we mention in passing that in high-lying vibrational
levels of large polyatomic molecules, near-degenerate states
may give rise to coherent dynamics not captured by the rate
equations [40–42]. These effects are negligible when analyzing
the lifetimes of low-lying vibrational states, as done here.

We consider rovibronic states described by the quantum
numbers |{v}i,N,K, p⟩, where {v}i ≡ {v1i,v2i, . . .} is the set
of quantum numbers describing excitation of the vibrational
normal modes, N is the rotational quantum number, K is the
projection of N onto the molecule-frame z axis, and p is the
parity of the state. Spin-rotation and hyperfine structure can be
readily included in the equations below using standard angular
momentum algebra, but they do not affect the primary results
of this section.

The spontaneous decay rate, Ai j, and the blackbody excita-



3

tion rate, Ri j, from initial state i to final state j are [43]

Ai j =
ω3

i j

3πε0ℏc3(2Ni +1)
Si j, (1)

Ri j =
1

6ε0ℏ2(2Ni +1)

2ℏω3
i j

πc3
1

eℏωi j/kBT −1
Si j, (2)

where Si j = |⟨i|µ| j⟩|2 is the rovibrational transition strength, Ni
is the angular momentum quantum number of the initial state,
ωi j is the transition frequency, and T is the temperature of the
environment.

The rovibrational transition strengths can be separated into
vibrational and rotational components:

Si j =
∣∣⟨{v}i,Ni,Ki, pi|µ|{v} j,N j,K j, p j⟩

∣∣2
=
∣∣⟨{v}i|µ|{v} j⟩

∣∣2 ∣∣⟨Ni,Ki, pi|µ|N j,K j, p j⟩
∣∣2

≡ Svib
i j Srot

i j , (3)

where Srot
i j and Svib

i j are the rotational and vibrational line
strengths, respectively. The rotational line strengths, or Hönl-
London factors, are [44, 45]

Srot
i j =δpi,−p j(1+δKi0 +δK j0 −2δKi0δK j0)

× (2Ni +1)(2N j +1)
(

Ni 1 N j
−Ki Ki −K j K j

)2

, (4)

where we emphasize that since we have chosen a basis where
the parity is defined for each state, K is always a positive
number. The Kronecker delta terms enforce a 2× increase in
the line strength for transitions from nondegenerate (K = 0) to
degenerate (K ̸= 0) states [46].

For the vibrational line strengths, we make the “double har-
monic” approximation [43], wherein the vibrational potential
is assumed to be that of a perfect harmonic oscillator, and the
electric dipole moment is assumed to be a linear function of
the internuclear spacing near the equilibrium geometry of the
molecule. Within this approximation, we expand the vibra-
tional line strength as follows:

⟨{v}i|µ|{v} j⟩ ≈
3N−6(5)

∑
n

∣∣∣∣ d⃗µe

dQn

∣∣∣∣
Qn,eq

⟨vn,i|Qn|vn, j⟩, (5)

where the sum is over all 3N −6 (3N −5 in a linear molecule)
vibrational modes, µ⃗e is the electric dipole moment of the
molecule, Qn is a normal coordinate describing the nth mode,
and Qn,eq is its equilibrium value.1 Within the harmonic ap-
proximation, we can use harmonic oscillator algebra to write
the vibrational matrix elements. For nondegenerate vibrational
modes the matrix elements are

|⟨vn +1|Qn|vn⟩|2 =
vn +1

2
, (6)

1 Our units are chosen so that d⃗µe/dQn has units of debye; this can be
achieved by making Qn unitless by scaling by the harmonic oscillator length√

ℏ/(µωn), where µ is the reduced mass of the vibration.

while for degenerate modes we use higher-dimensional har-
monic oscillator algebra. For instance, for vibrational bending
modes with vibrational angular momentum ℓ (as found in, e.g.,
linear triatomic molecules), the degeneracy is 2 and the matrix
elements are

|⟨vn +1, ℓ±1|Qn|vn, ℓ⟩|2

=
1
4
(1+δℓ,0 +δℓ±1,0 −δℓ,0δℓ±1,0)

(
v2 ± ℓ

2
+1
)
. (7)

The advantage of the double-harmonic approximation is that
it allows every vibrational transition moment to be expressed
in terms of just the dipole moment derivatives along each of
the normal coordinates. For low-lying vibrational states this
approximation is expected to be reasonably appropriate. If
deemed necessary, anharmonicity can be included by expand-
ing eqn. 5 to higher order. The matrix elements ⟨vn,i|Qk

n|vn, j⟩
can be calculated using standard harmonic oscillator algebra
and will be able to connect states with |∆v| ≤ k, where k is the
expansion order. The additional dipole moment derivatives can
be fit to data or calculated by ab initio methods.

The internal state dynamics under the influence of blackbody
excitation and radiative decay are determined by a set of rate
equations for the population, ni, of rovibrational state i:

dni

dt
=−∑

j
Ri jni −∑

j<i
Ai jni +∑

j
R jin j +∑

j>i
A jin j, (8)

where ∑ j<i implies a sum over all states lower in energy than
state i.

Fig. 2 compares the solution to eqn. 8 for CaOH in a 300K
environment including both bending and stretching vibrations
(see Fig. 1), with a diatomic analogue which has the same
stretching vibrational constants but no bending vibration. For
comparison, we also plot the equilibrium vibrational popula-
tions given by

P({v}i) =
1
Z

di exp
(

∑n vniℏωn

kBT

)
, (9)

where

Z = ∑
i

di exp
(

∑n vniℏωn

kBT

)
(10)

is the partition function, i sums over all vibrational states {v}i,
di is the degeneracy of the ith vibrational state, n sums over the
vibrational modes, and ωn is the frequency of the nth mode.
As shown in Fig. 2, after an initial equilibration time the
vibrational populations (including population in all rotational
levels of a vibrational state) converge to these equilibrium
values. The individual rotational levels (dashed curves) take
much longer to equilibrate.

Note that even after the populations reach steady state, indi-
vidual molecules will continue to undergo transitions between
rovibrational states. At any time, individual state lifetimes
are given by the rate at which population leaves the state due
to blackbody excitation and radiative decay. In terms of the
rates in eqn. 8, the lifetime of a single rovibrational state i is
τi = (∑ j Ri j +∑ j<i Ai j)

−1.
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Figure 2. Generalized calculations of vibrational thermalization dynamics for (a) diatomic molecules and (b) linear triatomic molecules. For
these plots, the molecular constants are matched to those of CaOH, but with the bending vibration removed in the diatomic case (resulting in a
molecule similar to CaF). The inclusion of one additional vibrational mode significantly decreases the lifetime of the ground state N = 1 level
and increases the time required to achieve vibrational thermalization. Dashed gray lines correspond to the equilibrium vibrational populations.

B. Other experimental limitations to lifetime

In addition to blackbody thermalization and radiative de-
cay, there are other sources of population loss in experiments
with trapped molecules. One possible mechanism is trap loss
due to collisions with background gas in the vacuum chamber,
which generally leads to exponential population decay on typ-
ical timescales of 1 to 100 s in experiments with optically or
magnetically trapped molecules. In addition, collisions with
other trapped molecules can give density-dependent losses
[47–50], though these are not considered in this work due to
the relatively low molecule number densities achieved in the
experimental data described below.

In another mechanism, photon scattering from optical traps
can change the internal state of optically trapped molecules in
a process known as Raman scattering. While a single Raman
scattering event manifests as loss from the rotational state of
interest, Raman scattering may be suppressed by a large margin
compared to Rayleigh scattering, which preserves the internal
state [51]. For linearly polarized trapping light, Rayleigh scat-
tering arises from state-preserving terms proportional to the
square of the scalar polarizability of the molecule, α0, while
Raman scattering arises from state-changing terms related to
the tensor polarizability, α2. Therefore, the ratio of Raman
to Rayleigh scattering is on the order of (α2/α0)

2, which is
∼ 1% for CaOH. Because the Rayleigh scattering rate is ∼1
Hz for the optically trapped CaOH as described below, Raman
scattering occurs on timescales of ∼ 30 s and is neglected from
the model.

III. MEASUREMENT OF CaOH LIFETIMES

In this section we describe a measurement of the blackbody
lifetime of the X̃2Σ+(000) vibrational ground state of CaOH,
as well as blackbody and radiative lifetimes of the X̃2Σ+(0110)

(v1vℓ2v3) N J (v1vℓ2v3) N J

(000) 1 1/2,3/2 (0200) 1 1/2,3/2
(100) 1 1/2,3/2 (0220) 2 3/2
(200) 1 1/2,3/2 (1110) 1 1/2,3/2
(300) 1 1/2,3/2 (1110) 2 3/2
(0110) 1 1/2,3/2 (1200) 1 1/2,3/2
(0110) 2 3/2 (1220) 2 3/2

Table I. Rovibrational states detected while imaging the trap after the
lifetime measurements. In all cases only negative parity (p = −1)
states are detected.

and X̃2Σ+(100) states. This is achieved by fitting experimental
state lifetime data to a rate equation model of the full experi-
mental sequence.

A. Experimental protocol

The experimental protocol for measuring CaOH vibrational
state lifetimes is described in detail in Ref. [22]. In brief,
CaOH molecules are loaded from a magneto-optical trap
(MOT) [21] into an optical dipole trap (ODT) with a trap
depth of ∼600 µK. The molecules are then prepared in the
N = 1, p = −1 level of either the (000), (0110), or (100) vi-
brational state, and held in the ODT for a variable time. The
population remaining in detectable states (listed in Tab. I) is
then measured. The population as a function of time for these
three vibrational states is shown in Fig. 3, along with fits to the
rate equation model, as described below. The radiative, black-
body, and vacuum lifetimes for these states are determined
from the rate equation fit.
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Figure 3. Lifetime measurements of the (a) X̃2Σ+(000), (b)
X̃2Σ+(000), and (c) X̃2Σ+(000) states in optically trapped CaOH.
Points are experimental data reported in Ref. [22], and curves are fits
to the rate equation model described in Sec. III.

B. Rate equations

The internal state dynamics of CaOH molecules in the ex-
periment are described by the rate equations in eqn. 8, plus a
term accounting for vacuum loss:

dni

dt
=−∑

j
Ri jni −∑

j<i
Ai jni +∑

j
R jin j +∑

j>i
A jin j −

ni

τvac
,

(11)
where τvac is the (state-independent) vacuum lifetime. In the
experiment, the in-vacuum coils used to form the MOT are
cooled to ∼0◦C to minimize outgassing and improve the vac-
uum pressure. The solid angle of the coils is 0.57× 4π sr,
so the blackbody rates Ri j (eqn. 2) include two terms such
that 57% of the blackbody radiation seen by the molecules
is at 273 K while the remaining 43% is at room temperature
(295 K). To preserve normalization of the population vector
when integrating the rate equations, a “lost” population is also
included according to

dnloss

dt
= ∑

i

ni

τvac
. (12)

Other sources of loss discussed in Sec. IIB are expected to be
negligible in this system.

While hyperfine structure is spectroscopically unresolved in
the experiment and can therefore be omitted from the model,

the photon-cycling detection does distinguish between the spin-
rotation (J) sublevels in certain rotational manifolds. We there-
fore use a basis of rovibronic states described by the quantum
numbers |v1,v2, ℓ,N,J, p⟩, where v1 and v2 are the vibrational
quantum numbers of the Ca–O stretch and Ca–O–H bending
modes, ℓ is the magnitude of the vibrational angular momen-
tum projected onto the molecular axis, N is the rotational
quantum number, J is the total electronic angular momentum,
and p is the parity. We neglect the O–H stretching mode
because its frequency is far from the peak of the blackbody
spectrum at room temperature. All states with ℓ = 0 have
Σ+ symmetry and their parity is p = (−1)N . For states with
ℓ ̸= 0, each rotational manifold has two opposite parity lev-
els, |ℓ,N,±⟩ = 2−1/2

{
|ℓ,N⟩± (−1)N−ℓ|−ℓ,N⟩

}
. Because J

is included in the basis, the Hönl-London factors in eqn. 4 are
modified to read:

Srot
i j = δpi,−p j(1+δℓi0 +δℓ j0 −2δℓi0δℓ j0)

× (2Ni +1)(2N j +1)

(
Ni 1 N j

−ℓi ℓi − ℓ j ℓ j

)2

× (2Ji +1)(2J j +1)

{
N j J j S
Ji Ni 1

}2

, (13)

The rate equations are solved by numerically integrating
eqns. 11-12 (sometimes with additional terms described below)
applied to a population vector including all states with v1 ≤ 2,
v2 ≤ 2, N ≤ 5. The populations of the highest states included in
each rotational and vibrational ladder are typically <5% over
the experimental timescale (t ≲ 5 s), implying that inclusion
of higher-energy states is unnecessary.

Note that for the CaOH modeling we employ the double-
harmonic approximation described above and omit anharmonic
terms in the potential. This limits the number of required fit
parameters and makes the fitting process tractable. Because
the majority of the dynamics considered in this work occur in
vibrational levels near the bottom of the molecular potential,
the harmonic approximation is expected to be reasonably ap-
propriate. Nonetheless, the fitted values of |d⃗µe/dQi| should
be interpreted as “effective” parameters that include the con-
tribution of anharmonic effects on the measured (000), (010),
and (100) lifetimes. These contributions are expected to be
relatively small: the ab initio calculations performed in Sec.
IV indicate that anharmonicity in the molecular potential is
expected to have a ∼10-20% effect on the vibrational lifetimes.

C. Modeling the experimental sequence

To accurately determine the lifetimes of the X̃(000), (0110),
and (100) states of CaOH, we use rate equations to model the
full experimental sequence used to perform the lifetime mea-
surements. This approach accounts for blackbody dynamics
that occur prior to the lifetime measurement hold time, en-
suring accurate initial conditions. It is found that significant
population accumulates in dark vibrational levels during the
ODT loading, imaging, and optical pumping steps, justifying
their inclusion in the model.
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Figure 4. Population in detectable states (purple curve) and detectable
states except X̃(010)(N = 1−) (blue curve) calculated from the best-
fit rate equation for the X̃(010) lifetime sequence. The steps in the
sequence are (i) ODT loading (ii) hold (iii) first image (iv) hold (v)
optical pumping into X̃(010) and (vi) lifetime hold. t = 0 here is the
same as in Fig. 3.

The sequence is modeled as follows, and is chosen to
exactly match the experimental protocol unless otherwise
specified. As an example, Fig. 4 shows the detectable
population throughout the X̃(0110) lifetime measurement se-
quence, illustrating the key steps in the experimental proto-
col and the corresponding rate equation model. The simula-
tion is initialized with all molecules in the untrapped state,
nloss(t = 0) = 1. This population is pumped into the trapped
state X̃2Σ+(000)(N = 1,J = 3/2) with a characteristic rate
of Rload = 1/(48.5 ms), fit from the experimental data (Fig.
2 of Ref. [22]). This optical pumping step, as well as the
trap imaging described later, is performed with optical cy-
cling light in a single-frequency (SF) cooling configuration,
which simultaneously cools the molecules inside the optical
trap [22]. It is assumed that population accumulates entirely
in the X̃2Σ+(000)(N = 1,J = 3/2) level during SF cooling
since this is the furthest-detuned ground-state level. Addi-
tionally, coherent dark states are formed within the J = 3/2
manifold during SF cooling [52]. Therefore, whenever SF cool-
ing light is on, an additional term is added to the rate equations
which pumps population from X̃2Σ+(000)(N = 1,J = 1/2) to
X̃2Σ+(000)(N = 1,J = 3/2) at a rate corresponding to the SF
scattering rate of Rsc = 45×103 s−1 [22, 53].

As soon as the molecules are trapped, their internal states
begin evolving according to eqns. 11-12. Prior to ODT loading,
these dynamics are suppressed because any molecule which
is blackbody-excited out of the cycling scheme will not be
cooled/loaded into the ODT (this is enforced in the rate equa-
tions because the population nloss is not subject to blackbody
terms). After the ODT loading time of 100 ms, the loading is
turned off and the remaining molecules evolve through each
step in the experimental sequence. First, the molecules are
held in the ODT and propagate according to eqns. 11-12 for 30
ms. Next, the molecules undergo 50 ms of “normalization” SF
imaging, used to determine the number of molecules loaded
into the trap. In addition to the dynamics in eqns. 11-12, dur-
ing this time molecules in detectable states are pumped into
dark vibrational levels nloss (which are high-lying and there-
fore neglected for the remainder of the simulation) at a rate
corresponding to a branching ratio of vdark = 8.5×10−5 and
a scattering rate of Rsc = 45×103 s−1 [21, 22]. Additionally,

molecules in repumped vibrational levels are pumped back into
X̃2Σ+(000)(N = 1) during the imaging at a rate of 103 s−1,
and molecules in X̃2Σ+(000)(N = 1,J = 1/2) are pumped into
X̃2Σ+(000)(N = 1,J = 3/2) as described above.

After the normalization image, the rate equation propaga-
tion proceeds differently for the X̃(000), X̃(010), and X̃(100)
states. For the X̃(000) data, the populations propagate accord-
ing to eqns. 11-12 for a variable time. For comparison to the
experimental data in Fig. 3, t = 0 occurs immediately after
the imaging light is turned off. The detectable population,
nobs(t) = ∑i∈{det} ni(t), for the best fit parameters (see below)
is plotted as a solid curve in Fig. 3(a). Note that here we make
the approximation that the molecules are detected instanta-
neously, whereas in the experiment the final image is collected
over 50 ms. We have run the model including finite imaging
time and confirmed that this approximation does not change
the results.

For the X̃(010) and X̃(100) lifetimes the molecules propa-
gate according to eqns. 11-12 for a short time (10 ms for (010)
and 90 ms for (100)) following the normalization image. This
is followed by optical pumping into the desired vibrational
state, which is modeled by adding a term that pumps popu-
lation in detectable states into the excited vibrational level at
a rate Rpump,i = RscviSi, where Rsc = 45× 103 s−1 is the SF
scattering rate, v(010) = 8.2×10−4 is the vibrational branching
ratio (VBR) to X̃(010)(N = 1−), and v(100) = 4.75×10−2 is
the VBR to X̃(100)(N = 1) [22]. The rotational branching
factors for X̃(010) are S1/2 = 0.73 and S3/2 = 0.27 to J = 1/2
and J = 3/2, respectively, and for X̃(100) they are S1/2 = 2/3
and S3/2 = 1/3 [54]. Loss to dark vibrational states at a rate
Rdark = Rscattvdark, where vdark = 8.5×10−5, is also included.
The X̃(010) pumping is turned on for 100 ms, and the X̃(100)
pumping for 2 ms.

After optical pumping, the populations propagate according
to eqns. 11-12 for a variable time. In Fig. 3, t = 0 is defined
as immediately after the optical pumping/state transfer light is
turned off. The observable population, as well as the detectable
population in all states besides X̃(010)(N = 1−), is plotted in
Fig. 4 for the full X̃(010) lifetime sequence.

D. Fitting and results

We fit the model results to the experimental data as follows.
The rate equations for the X̃(000), X̃(010), and X̃(100) mea-
surement sequences are first propagated for given values of
the vacuum lifetime, τvac, and the dipole derivatives |d⃗µe/dQ1|
(symmetric stretch) and |d⃗µe/dQ2| (bend). We then calcu-
late the observable population, nobs(t) = ∑i∈{det} ni(t), where
{det} is the subset of states which are detectable, i.e., the
(N = 1,J = 1/2−), (N = 1,J = 3/2−), and (N = 2,J = 3/2−)
levels of repumped vibrational states (Tab. I). Finally, the re-
sults are scaled by constant prefactors a{v}i , and a constant off-
set aoff,{v}i (present due to imperfections in the imaging back-
ground subtraction, or imperfect state preparation) is added to
each of the three traces. The resulting fit functions depend on
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a total of 9 fit parameters:

f(000)(t) = a(000)nobs,(000)

(
t,
∣∣∣∣ d⃗µe

dQ1

∣∣∣∣ , ∣∣∣∣ d⃗µe

dQ2

∣∣∣∣ ,τvac

)
+aoff,(000),

(14)

f(010)(t) = a(010)nobs,(010)

(
t,
∣∣∣∣ d⃗µe

dQ1

∣∣∣∣ , ∣∣∣∣ d⃗µe

dQ2

∣∣∣∣ ,τvac

)
+aoff,(010),

(15)

f(100)(t) = a(100)nobs,(100)

(
t,
∣∣∣∣ d⃗µe

dQ1

∣∣∣∣ , ∣∣∣∣ d⃗µe

dQ2

∣∣∣∣ ,τvac

)
+aoff,(100).

(16)

These functions are plotted as solid curves in Fig. 3 for the
best fit parameters determined below.

To perform the fit, the fit parameters are scanned on a dis-
crete 9-dimensional grid and the fit functions are calculated
at each point. Step sizes of 0.025 D for the dipole derivatives,
0.5 s for the vacuum lifetime, 0.05 for the amplitudes, and 0.02
for the offset are used. The sum of squared errors,

S = ∑
i

[
f exp
(000)(ti)− f(000)(ti)

]2
+∑

i

[
f exp
(010)(ti)− f(010)(ti)

]2

+∑
i

[
f exp
(100)(ti)− f(100)(ti)

]2
, (17)

where f exp
{v} (ti) is the experimentally measured survival at time

ti and i sums over the experimental data points, is then calcu-
lated for each point on the 9-dimensional grid. The optimal
fit parameters are determined by fitting the 10,000 lowest S
values (approximately 1% of the full grid) to a second-order
polynomial. The fit is constrained to this subset of points in
order to minimize the effect of higher-order curvature of the
error surface. The parameter errors determined from this fit
are negligible compared to error sources described below.

The primary source of uncertainty in the fitted lifetimes is
due to correlations between parameters, for example between
the bending mode lifetime and fit amplitude, |d⃗µe/dQ2| and
a(010). These correlations have the potential to make the fit
results overly sensitive to the precise values of the individual
data points. Additionally, the X̃(010) radiative decay occurs
on a similar timescale to blackbody excitation and vacuum loss,
making it difficult to isolate. To account for these factors and
adequately estimate the parameter errors, we repeat the fitting
procedure ∼1000 times, each time fitting to a “synthetic” data
set produced by sampling the value of each point, f exp

{v} (ti), from
a normal distribution corresponding to the mean and standard
deviation of the measured data point (i.e., of the data plotted
in Fig. 3). This is meant to approximate the variation in the fit
parameters expected if the experiment were to be repeated 1000
times. Histograms of the resulting fit parameters are shown in
Fig. 5. The parameters and error bars are determined by taking
the median of the histogram as the center value and the middle
68% of the distribution as the 1σ confidence interval. Results
for each of the fit parameters are shown in Tab. II.

The state lifetimes are calculated from the fitted parameters

Parameter Median 68% Conf. Int.
|d⃗µe/dQ1| 0.384 D (0.365, 0.404) D
|d⃗µe/dQ2| 0.440 D (0.380, 0.486) D

τvac 2.99 s (2.33, 3.43) s
a(000) 1.36 (1.29, 1.43)

a(010) 1.31 (1.18, 1.40)

a(100) 1.18 (1.11, 1.24)

aoff,(000) -0.015 (-0.044, 0.018)

aoff,(010) 0.045 (0.032, 0.061)

aoff,(100) 0.063 (0.049, 0.076)

Table II. Fit parameters and 68% confidence intervals for the rate
equation fit.

State τspont τbbr τtot

X̃(000) – 1.3+0.3
−0.2 0.90+0.20

−0.16

X̃(010) 0.72+0.25
−0.13 0.95+0.26

−0.16 0.36+0.11
−0.07

X̃(100) 0.19+0.03
−0.03 0.81+0.09

−0.08 0.14+0.02
−0.02

Table III. State lifetimes and 68% confidence intervals determined
from the rate equation fit. The vacuum lifetime is constant for all
states and fits to τvac = 3.0+0.4

−0.7 s.

and eqns. 1-2 by summing over all allowed transitions, i.e.,

τspont,i =

(
∑
j<i

Ai j

)−1

, (18)

τbbr,i =

(
∑

j
Ri j

)−1

, (19)

τtot,i =

(
1

τspont,i
+

1
τbbr,i

+
1

τvac

)−1

. (20)

The results for CaOH are given in Tab. III and agree well with
ab initio calculations described in Sec. IV, below.

The amplitudes a(000), a(010), and a(100) can be understood
as scale factors between the calculated populations, which
are normalized to 1, and the measured populations, which
are normalized to the number of molecules detected in the
first image. From the fitted model, the detectable population
at the start of the first image is nobs(t = timg) = 0.81, so the
model results need to be scaled by 1/0.81 = 1.24 to match the
experimental data. The fitted amplitudes in Tab. II are in good
agreement with this expectation.

IV. AB INITIO CALCULATIONS FOR ALKALINE-EARTH
MONOHYDROXIDES

In this section, we present calculations of radiative and black-
body lifetimes of the X̃(000), X̃(010) and X̃(100) states of
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Figure 5. Histograms of the parameters (a) |d⃗µe/dQ1|, (b) |d⃗µe/dQ2|, and (c) τvac generated by fitting the rate equation model to ∼1000
synthetic data sets accounting for experimental error bars, as described in the text.

CaOH, as well as lifetimes of the X̃(010) states of SrOH and
YbOH. The X̃(010) bending mode in each of these molecules
is expected to have useful applications [6, 8, 9, 36], with the
radiative lifetime setting a limit on the achievable interrogation
times for such experiments.

A. Computational details and results

The calculation of a spontaneous decay rate (in a.u.)

Γsp =
4ω3 |⃗µv|2

3c3 , (21)

involves the transition dipole moment |⃗µv| and the energy dif-
ference ω between two vibrational states. Here c is the speed
of light. Note that atomic units (a.u.) are used for the remain-
der of this work. The present discrete variable representation
(DVR) [55, 56] calculations expand the vibrational wave func-
tions in terms of real space basis functions on a grid with 21
evenly spaced points in the range [−4.0Q,4.0Q] for the bend-
ing modes and the metal-oxygen stretching mode as well as
28 points in the range [−6.8Q,4.0Q] for the O-H stretching
mode, in which Q represents the corresponding dimensionless
normal mode of the X̃2Σ+ state. The transition dipole mo-
ment between X̃2Σ+(010) and X̃2Σ+(000) (for example) was
calculated as

µ⃗v = ⟨χ000(R)|⃗µ(R)|χ010(R)⟩, (22)

in which R represents the normal coordinates, χ000(R) and
χ010(R) are the vibrational wave functions, and µ⃗(R) is the
dipole-moment function of the X̃2Σ+ state. The dipole-moment
functions were obtained by fitting calculated dipole moment
values for the structures near the equilibrium structure into
a polynomial of normal coordinates. We fitted 625 dipole-
moment values computed on a grid, which consists of 5 evenly
spaced points in the range [−0.2Q,0.2Q] for each normal
mode, into a fourth-order polynomial function in terms of
the normal coordinates. The dipole-moment calculations on
this grid were performed using the same computational meth-
ods as those used for calculations of potential energy surfaces
in Ref. [56], i.e., the equation-of-motion electron-attachment
coupled-cluster singles and doubles (EOMEA-CCSD) method
[57, 58] and the correlation-consistent quadruple-zeta (QZ)
basis sets for CaOH and triple-zeta (TZ) basis sets for SrOH

|⃗µv| τsp τ (300 K)
CaOH 0.284 876 409
SrOH 0.268 902 439
YbOH 0.305 1020 440

Table IV. The X̃2Σ+(000)− X̃2Σ+(010) transition dipole moments
(in debye), spontaneous lifetimes (in ms), and overall lifetimes at 300
K (in ms) for the X̃2Σ+(010) states of CaOH, SrOH, and YbOH.

|⃗µv| τsp τ (300 K)
X̃2Σ+(100) 0.295 161 141
X̃2Σ+(000) - - 1143

Table V. Calculated lifetimes of the X̃2Σ+(100) and X̃2Σ+(000) states
of CaOH. |⃗µv| is the X̃2Σ+(000)− X̃2Σ+(100) transition dipole mo-
ment (in debye), τsp is the spontaneous lifetimes (in ms), and τ (300 K)
is the overall lifetime at 300 K.

and YbOH [59–63]. Detailed information about the basis sets,
the frozen orbitals, and the potential energy surfaces for the
DVR calculations have been documented in Ref. [56].

The overall lifetime was obtained by further including con-
tributions from black-body radiation (BBR) induced transitions
from the state of interest (e.g. X̃2Σ+(010)) to higher excited
states at 300 K using the formulae developed in Refs. [27, 64].
The BBR decay rate of state i can be evaluated by summing
over the other states i′,

ΓBBR = ∑
i′

Γsp(i → i′)
1

eωii′/kBT −1
, (23)

where kB is the Boltzmann constant and ωii′ is the energy
difference between i and i′ states. In the present calcu-
lations, i corresponds to the X̃2Σ+(010) state and ΓBBR
receives non-negligible contributions from the transitions
to the X̃2Σ+(020) and X̃2Σ+(110) states. The calculated
X̃2Σ+(000)− X̃2Σ+(010) transition dipole moments (|⃗µv|),
spontaneous lifetimes (τsp), and overall lifetimes (τ) at 300 K
for the X̃2Σ+(010) state of CaOH, SrOH, and YbOH are sum-
marized in Tab. IV. The X̃2Σ+(010) states of these three
molecules have long spontaneous lifetimes of around 1 s. The
overall lifetimes at 300 K are around 400 ms. For the CaOH
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Vibrational |⃗µv| |d⃗µe/dQ| τsp τ (300 K)
state Calc. (H) Calc. Calc. Exp. Calc. (H) Calc. Exp. Calc. Exp.
(010) 0.301 0.284 0.426 0.440 0.78 0.88 0.72 0.41 0.41
(100) 0.262 0.295 0.370 0.384 0.20 0.16 0.19 0.14 0.15
(000) - - - - - - - 1.14 1.3

Table VI. Calculated transition dipole moments |⃗µv| (in debye), calculated and experimentally determined derivatives of the electronic dipole
moment d⃗µe/dQ (in debye), spontaneous lifetimes (in s), and overall lifetimes at 300 K (in s) for the X̃2Σ state of CaOH. “(H)” denotes results
obtained using the harmonic approximation. Experimental results quoted here ignore vacuum loss and are drawn from Tab. II for the dipole
derivatives and Tab. III for the lifetimes. The experimental values of |d⃗µe/dQ| are determined using the harmonic approximation as described in
Sec. III.

molecule, we also calculated the spontaneous and overall life-
times for the X̃2Σ+(100) state and the overall lifetime for the
ground X̃2Σ+(000) state. The results are summarized in Tab.
V. The lifetime for the X̃2Σ+(100) state is around 140 ms,
considerably shorter than that of the X2Σ+(010) state. The
computed lifetime of the vibrational ground state X̃2Σ+(000)
amounts to around 1.14 s and is in good agreement with the
measured value of 1.3 s.

We also calculated the transition dipole moments and spon-
taneous lifetimes for the X̃2Σ+(010) and X̃2Σ+(100) states of
CaOH using the harmonic approximation. The transition dipole
moment between the v= 1 and v= 0 states within the harmonic
approximation, µ⃗H, can be evaluated as µ⃗H = 1√

2
d⃗µe/dQ. The

dipole derivative d⃗µe/dQ was obtained as the linear coeffi-
cients of the fitted dipole function. A comparison between
the DVR results (“Calc.”), the calculated results using the
harmonic approximation [“Calc. (H)”], and the experimental
measurements (“Exp.”) is given in Tab. VI. The anharmonic
contributions reduce the computed transition dipole moments
for the X̃2Σ+(000)− X̃2Σ+(010) transition by around 6% and
hence increase the computed lifetimes by around 13%. The
computed spontaneous lifetimes in the harmonic approxima-
tion also agree well with the measured ones and are within the
uncertainty of the measured values.

B. Benchmark analysis of the computational results

To investigate the accuracy of the computed dipole-moment
function, we calculated the dipole-moment function using
the Hartree-Fock (HF), coupled-cluster singles and doubles
(CCSD) [65], CCSD with a non-iterative triple [CCSD(T)]
[66], and EOMEA-CCSD [58] methods with QZ and 5Z basis
sets. The calculated vibrational transition dipole moments,
electronic dipole derivatives, spontaneous lifetimes, and over-
all lifetimes for the X̃2Σ+(010) state of CaOH using these
dipole moment functions are summarized in Tab. VII. The
EOM-CCSD/QZ results agree very well with the CCSD/QZ
and CCSD(T)/QZ values. For example, the EOM-CCSD/QZ
value for the transition dipole moment amounts to 0.284 debye,
which is in close agreement with the CCSD/QZ value of 0.290
debye and the CCSD(T)/QZ value of 0.286 debye. The remain-
ing electron-correlation contributions are expected to be small.

Computational method |⃗µv| |d⃗µe/dQ| τsp τ (300 K)
EOM-CCSD/QZ 0.284 0.426 876 409
EOM-CCSD/5Z 0.285 0.426 867 402

HF/QZ 0.294 0.437 813 372
CCSD/QZ 0.290 0.432 836 391

CCSD(T)/QZ 0.286 0.426 863 405

Table VII. Transition dipole moment (in debye), dipole derivative (in
debye), spontaneous lifetime (in ms), and overall lifetime (in ms) of
the X̃2(010) state of CaOH obtained from dipole surfaces calculated
using different methods.

Fitting range/Fitting order |⃗µv| τsp τ (300 K)
[−0.2Q,0.2Q]/4th 0.284 876 409
[−2.0Q,2.0Q]/4th 0.287 854 399
[−2.0Q,2.0Q]/6th 0.287 856 398

Table VIII. Transition dipole moments |⃗µv| (in debye), spontaneous
lifetimes τsp (in ms), and overall lifetimes τ at 300 K (in ms) for the
X̃2Σ+(010) state of CaOH obtained from dipole moment functions
fitted using the original and the enlarged data sets as well as with
increased order of polynomial in the fitting.

The EOM-CCSD/QZ and EOM-CCSD/5Z results also agree
with each other closely, indicating that the remaining basis-set
effects are small.

We have examined the sensitivity of the computed results
with respect to the grid points used to fit the dipole-moment
function. By looking into the contributions to the expecta-
tion value in eqn. (22), we found that the contributions are
mainly from the DVR basis functions within the range of
[−2.0Q,2.0Q] for each normal mode. To ensure an accurate
representation of this range, we performed dipole-moment cal-
culations of on a grid of 625 points consisting of 5 evenly
spaced points in [−2.0Q,2.0Q] for each normal mode. These
computed dipole-moment values were added to the original
data set in the fitting. The computed transition dipole moments,
spontaneous lifetimes, and overall lifetimes using thus fitted
dipole moment functions are summarized in Tab. VIII. There is
a 3% decrease of the computed lifetimes when using the dipole-
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moment function fitted using the enlarged data set. Increasing
the order of polynomial to the 6th-order does not change the
computed results significantly.

We have also used the EOM-CCSDT/TZ potential energy
surface in the DVR calculation. This calculation gives a transi-
tion dipole moment |⃗µ01| of 0.286 debye, slightly larger than
the value of 0.284 debye obtained from calculations using the
EOM-CCSD/TZ surfaces. Therefore, the remaining correla-
tion effects on the potential energy surfaces play a minor role.
We note that the computed spontaneous lifetime is proportional
to the cubic power of energy difference between the vibrational
states and thus is quite sensitive to this parameter. Since our
calculated value of 356 cm−1 is in close agreement with the
measured value of 353 cm−1, the corresponding error in the
lifetime calculation is also expected to be small.

Based the sources of errors discussed above, we give an error
estimate of around 10% for the computed transition dipole
moments. This corresponds to an uncertainly of around 20%
for the computed lifetimes.

V. BLACKBODY LIFETIMES OF LARGER POLYATOMIC
MOLECULES

The study of CaOH, SrOH, and YbOH presented here has
emphasized radiative lifetimes of the X̃2Σ+(010) states, which
have been proposed as sensitive probes for fundamental physics
beyond the standard model (BSM) [8, 9, 36] due to their parity-
doublet structure. This structure also makes them amenable to
other quantum science applications that require alignment of
the molecule with external electric fields [2, 3, 5]. The same
parity-doublet structure is generically present in the vibrational
ground state of nonlinear polyatomic molecules, where radia-
tive decay is no longer a limitation and blackbody excitation is
the dominant loss mechanism. In this section, we extend our
calculations to study nonlinear polyatomic molecules, focusing
on blackbody-excitation induced lifetimes of the vibrational
ground state.

There have been many recent proposals [67–72] and demon-
strations [26, 73–75] of the potential of larger and/or more
complex polyatomic molecules for laser cooling. On the other
hand, as discussed qualitatively in Sec. II and quantitatively
below, the ground state of CaOH has a significantly reduced
blackbody lifetime compared to its close diatomic counterpart,
CaF. This is due to the increased number of vibrational modes
with frequencies near the peak of the 300 K blackbody spec-
trum in CaOH compared to CaF. As laser cooling is extended to
even larger polyatomic molecules, the increasing number of vi-
brational modes admits the possibility of very short blackbody
lifetimes, in the same way that the extension from diatomic to
linear triatomic molecules decreased the blackbody lifetime
of CaOH compared to CaF. For example, in CaOCH3, which
has N = 6 atoms and 3N −6 = 12 vibrational modes, if tran-
sitions to even half the vibrational modes could be driven by
blackbody radiation with strengths similar to the stretching
and bending modes of CaOH, the blackbody lifetime of the
ground state would be ∼0.5 s. It thus is of interest to calculate
blackbody lifetimes for laser-coolable, nonlinear polyatomic

Molecule Lifetime (s) Nvib N(τi < 20 s)
CaF 4.0 1 1
CaOH 1.1 4 3
SrOH 1.3 4 3
YbOH 1.2 4 3
CaSH 3.7 3 2
CaNH2 1.7 6 2
CaOCH3 2.5 12 2
CaOPh 1.2 33 6

Table IX. Calculated blackbody lifetimes at 300K for laser-coolable
molecules in the harmonic approximation. Also shown are the total
number of vibrational modes, Nvib, and the number of modes with
blackbody excitation times less than 20 s (see text).

molecules.
In this section, we present calculations of blackbody life-

times for a number of complex polyatomic molecules of inter-
est for laser cooling. Since coupled-cluster calculations using
the harmonic approximation presented in Sec. IV B have been
shown to provide reliable results for the lifetimes of CaOH, we
have adopted the same level of theory for the calculations of
non-linear molecules. DVR calculations for these molecules
are beyond our present computational resources. Interestingly,
it is found that for a variety of these molecules the blackbody
lifetimes are no shorter than that of CaOH.

A. Computational details

All the lifetime calculations for the non-linear molecules
have been performed using the harmonic approximation.
We have carried out EOMEA-CCSD calculations for the
equilibrium structures and harmonic vibrational frequencies
for calcium monohydrosulfide (CaSH), calcium monoamide
(CaNH2), calcium monomethoxide (CaOCH3), and calcium
monophenoxide (CaOPh) using the cc-pwCVTZ basis set for
Ca and cc-pVTZ basis sets for S, C, N, O, and H. The Ca 3s,
3p, and 4s electrons together with the valence electrons in S,
C, N, O, H have been correlated in the CC calculations. The
dipole derivatives have been obtained by means of numerical
differentiation of dipole moments using a two-point formula
and a stepsize of 0.1Q. The use of a step size of 0.01Q gives
essentially the same results. The calculated blackbody excita-
tion induced lifetimes at 300 K for the vibronic ground state
of CaSH, CaNH2, CaOCH3, and CaOPh are shown in Tab. IX
and compared with the corresponding results for CaF, CaOH,
SrOH, and YbOH. Based on the benchmark calculations for
CaOH in Sec. IV.B, the errors in the computed lifetimes are
estimated to be around 20%.

B. Results and discussion

As shown in Tab. IX, the 300 K blackbody lifetimes for
CaSH, CaNH2, CaOCH3, and CaOPh are consistently >1 s,
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Molecule Mode Frequency |⃗µv| τi (300K)
CaF Ca – F stretch 577 0.25 4.0

Total – – 4.0
CaOH Bend (d = 2) 381 0.31 1.6

Ca – O stretch 625 0.25 3.8
Total – – 1.1

CaSH Ca – S stretch 311 0.17 13.2
Bend 364 0.25 5.1
Total – – 3.7

CaNH2 NH2 out-of-plane bend 453 0.31 2.9
Ca – N stretch 545 0.22 5.0
Total – – 1.7

CaOCH3 Ca – O stretch 486 0.21 6.1
C – O stretch 1222 0.34 5.3
Total – – 2.5

CaOPh Ca – O stretch 309 0.20 9.6
ring stretch 629 0.15 10.6
CH out-of-plane bend 778 0.17 9.6
ring stretch 899 0.23 5.9
C – O stretch 1355 0.39 5.5
ring stretch 1552 0.29 17.3
Total – – 1.2

Table X. Breakdown of blackbody lifetimes of Ca-containing
molecules by modes with significant contribution. The lifetimes
τi’s at 300K (in s) were calculated in the harmonic approximation
using the computed harmonic vibrational frequencies (in cm−1) and
transition dipole moments |⃗µv|’s (in debye).

despite the increasing number of vibrational modes, Nvib, in
these molecules. Of the molecules studied here, the linear
alkaline earth monohydroxides CaOH, SrOH, and YbOH, and
the largest molecule, CaOPh, have the shortest ground state
blackbody lifetimes. Interestingly, CaOPh is calculated to have
a similar blackbody lifetime to CaOH despite containing nearly
10× more vibrational modes.

To explore these findings further, we consider the contribu-
tion of each individual vibrational mode to the total calculated
blackbody lifetime. The “partial” lifetime of the ground state
due to blackbody excitation to the ith vibrational mode is

τi = (ΓBBR,i)
−1 =

(
4ω3

i |⃗µv,i|2

3c3
1

eωi/kBT −1

)−1

(24)

where ωi is the energy of the ith mode and |⃗µv,i| is the transition
dipole moment. Given the overall lifetimes of ∼1 s for the
molecules considered here, we choose a cutoff of τi < 20 s to
identify vibrational modes that significantly contribute to the
blackbody lifetime of the molecule. The number of vibrational
modes, N(τi < 20 s), that fulfill this criterion is tabulated in
Tab. IX. Tab. X lists all such vibrational modes, along with
their energies, transition dipole moments, and partial lifetimes
τi, for each of the Ca-containing molecules considered in Tab.
IX.

From the calculations it is apparent that, for the class of

alkaline earth–ligand radicals explored here, the number of
“blackbody-active” vibrational modes remains unchanged or
only slowly increases as a function of the total number of
modes. While 75% (3 out of the 4) of vibrational modes in
CaOH make significant contributions to its blackbody lifetime,
in CaOCH3 and CaOPh the numbers drop to 17% (2 of 12) and
18% (6 of 33), respectively. The remaining vibrational modes
make only negligible contributions to blackbody excitation
because they either have small derivatives |⃗µv| ∝ d⃗µe/dQ or
have vibrational frequencies far from the peak of the blackbody
spectrum (or both).

Note that the M-O stretching and M-O-H bending modes
in CaOH, SrOH, and YbOH are perfectly positioned to be
blackbody-excited, thereby causing short ground-state life-
times. These vibrations each have a large value of |⃗µv| ∝

d⃗µe/dQ, i.e. vibrational excitation induces substantial changes
in the dipole moment. At the same time, the vibrational fre-
quencies of these modes are not too much higher than kBT
(around 210 cm−1 at room temperature), so the exponential
factor 1

eωi/kBT−1
in Eq. 24 is not too small. In contrast, most

vibrations in the organic functional groups considered here do
not significantly contribute to the blackbody lifetimes. The
low-frequency vibrations in these functional groups due to tor-
sional motions only make small contributions because of their
low transition energies ωi, which are well below the peak of
the blackbody spectrum. In addition, many of these vibrations
(e.g. rocking and breathing modes within the methyl group in
CaOCH3 or the benzene ring in CaOPh) do not substantially
alter the length of the molecule along the axis R⃗ aligned with
the molecule-frame dipole moment. The stretching modes in
the functional groups, which significantly perturb the length
of the molecule along the dipole axis R⃗, and therefore the
electric dipole moment µ⃗e ∼ eR⃗, indeed have significant vibra-
tional transition strengths |⃗µv| ∝ d⃗µe/dQ. However, many of
these modes have vibrational frequencies substantially higher
than kBT . Their contributions to blackbody radiation induced
lifetimes thus are quenched by the exponential factor in Eq.
24.

Taking CaOCH3 as an example, Tab. X indicates that the
most significant contributions to the blackbody lifetime come
from the Ca – O stretch and O – C stretch modes. Each of
these modes substantially changes the length of the molecule
along the principal axis (see the supplementary material to
Ref. [26] for an illustration). Following this intuition, the
Ca-O-C bending mode at 151 cm−1 and the CH3 stretching
mode at 2985 cm−1 also have significant vibrational transition
moments of |⃗µv| = 0.14 and 0.15 D, respectively. However,
blackbody excitation to these states is suppressed by the small
power spectral density of 300 K blackbody radiation at these
frequencies.

While the arguments above provide a coarse intuition for
the ground state blackbody lifetimes of polyatomic molecules
considered here, calculations will ultimately be required to
determine the lifetimes for other molecules and molecular
structures. Nonetheless, this work provides preliminary ev-
idence that lifetimes no shorter than that of CaOH can be
expected for a number of complex laser coolable polyatomic
molecules. Blackbody lifetimes can be significantly extended
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for all molecules by cooling the surrounding environment to
cryogenic temperatures.

VI. CONCLUSION

In summary, we have developed rate equations to model
the rovibrational thermalization dynamics of optically trapped
CaOH molecules and described a fitting procedure to measure
radiative and blackbody lifetimes [22]. We have calculated
the lifetimes using ab initio theory and find good agreement
with the experimental results. The same calculations are used
to predict radiative and blackbody lifetimes for the molecules
SrOH and YbOH, which have similar structure to CaOH. Fi-
nally, we have performed ab initio calculations of ground-state
blackbody lifetimes for larger polyatomic molecules that ap-
pear amenable to laser cooling, finding that these lifetimes
are >1 s for a number of different structures despite the large
number of vibrational modes. In all cases, blackbody lifetimes
can be dramatically increased by cooling the environment to
cryogenic temperatures.

Taken together, this study should inform current and fu-
ture experiments with trapped, quantum-state-controlled poly-

atomic molecules. The radiative lifetimes measured here set a
limit on the interrogation time for experiments making use of
parity-doublet structure in excited vibrational bending modes
of linear triatomic molecules [6, 8, 9, 36]. For other polyatomic
molecules where parity-doublet structure can be found in the
ground vibrational state [2, 3, 5, 69], blackbody excitation may
be an experimental limitation over timescales of ∼1 s, though
can be effectively eliminated by cooling the surrounding envi-
ronment, enabling a route to long coherence times for quantum
science applications using the complex degrees of freedom of
trapped polyatomic molecules.
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