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The emergent phases of strongly correlated spin-1/2 Fermi gases of Rydberg dressed atoms in
a one dimensional optical lattice are theoretically investigated. At weak coupling a bosonization
description is used to demonstrate the ability to drive alternating quantum phase transitions between
distinct Luttinger liquids. At strong coupling the ground state develops non-trivial phase separation
exhibiting Luttinger liquid “puddles” separated by magnetic domain walls due to the interplay of
the incommensurate filling and the Rydberg core length scale. These phases can be detected in
ultracold gases of Rydberg atoms made from 6Li.

Over the last few decades, ultracold atoms have
emerged as an ideal platform for quantum simulation.
Offering extraordinary levels of experimental control in-
cluding single-site imaging [1] and tunable contact inter-
actions [2], these systems offer a unique window into the
world of quantum many-body physics. Recently, many
theoretical and experimental efforts have focused on real-
izing long-range interactions in ultracold systems by us-
ing ultracold molecules [3], dipolar atoms [4], mediated
interactions [5, 6], and Rydberg-dressed atoms [7] in or-
der to expand the scope of physics accessible in these
systems. These efforts have yielded exciting advances
realizing bound quantum droplets and supersolids [8].

In contrast to other methods that induce long-range in-
teractions between atoms, the scheme of Rydberg dress-
ing offers the ability to locally tune interactions on fast
timescales. Further, these interactions have been re-
cently predicted to give rise to a host of exotic topolog-
ical phases including p-wave superfluids [9], topological
Mott insulators [10], and fractional Chern insulators [11].
Early experimental efforts to explore Rydberg dressed
atoms focused on heavy bosonic atoms [7, 12–14], and
found faster than expected loss rates which was explained
by the avalanche decay mechanism [14–17]. Experimen-
tally, this loss processes can be mitigated by working with
light fermionic atoms in low-dimensions, and recent ex-
periments have shown promising results using 6Li in 2D
[18]. Based on these results, it is expected that one-
dimensional (1D) fermionic gases will be the optimal ex-
perimental setting for Rydberg dressed atoms.

Motivated by these considerations we study a spin-1/2
Fermi gas of Rydberg dressed atoms in a 1D optical lat-
tice. We determine the emergent phases that the spin-1/2
fermion nature of the problem brings forth, in compari-
son to its bosonic counterpart. An intriguing feature of
the dressed Rydberg interaction potential in 1D is that
it is a oscillatory and sign changing function of momen-
tum, which implies that the sign of the backscattering
interaction can be controlled experimentally via the den-
sity or the core size of the Rydberg dressed potential,
as shown in Fig. 1. As a result, we demonstrate that

FIG. 1. (a) A schematic figure of a 1D dispersion filled
(solid symbols) to the Fermi momenta kF and the ‘g-ology’ of
the forward (g2, g4) and back (g1) scattering near the Fermi-
surface and its relation to the dressed Rydberg potential
VC(q). (b, Top) The dressed Rydberg interaction potential
in momentum space and the continuum limit, VC(q), plot-
ted with the weak-coupling result for spin (σ) Luttinger pa-
rameter Kσ, see Eq.(5). (b, Bottom) Phase diagram of the
system as a function of filling n for weak (t/U � 1) and
strong (t/U � 1) coupling. The weak coupling regime with
g1 > 0 is described by gapless charge (ρ) and spin Luttinger
liquids (LL; denoted LLρ + LLσ). For g1 < 0 the spin sec-
tor is gapped out leaving only a charge LL (LLρ). At strong
coupling, states with commensurate even and odd fillings are
paramagnetic and magnetized, respectively. For incommesnu-
rate fillings, the system is phase-separated (PS) into regions
of commensurate density. The dashed line between the top
and bottom panels shows how the lattice filling (n) and con-
tinuum momentum (q) corresponds. Note that where VC(q)
change sign in the upper panel is the phase boundary between
LLρ + LLσ and LLρ in the bottom panel.

for incommensurate fillings in the weak coupling regime
the ground state alternates back and forth as a function
of the density (or the core size of the Rydberg dressed
interaction) between a spin-charge separated Luttinger
liquid and a charge Luttinger liquid with a spin gap. In
the strong coupling, but non-zero tunneling regime, we
discover a series of ground states that are phase sepa-
rated into “puddles” of Luttinger liquids separated by
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antiferromagnetic domain walls that act as an entangle-
ment barrier. The phase diagram in the weak and strong
coupling regimes summarizing this behavior is shown in
Fig. 1.

Model and Approach: We start from a microscopic one-
dimensional model Hamiltonian for a spin-1/2 Fermi gas
with a dressed Rydberg interaction in an optical lattice

H = −t
∑
i,σ

(c†i+1,σci,σ + h.c.) +
∑
i,j

Vd(|i− j|)ninj . (1)

where ni =
∑
σ c
†
i,σci,σ. c†iσ is a creation operator of

the Rydberg dressed state at site i: c†iσ|i; 0〉 = |i; g, σ〉+
β|i;R, σ〉 with spin σ =↑, ↓. The state is weakly mixed
between the ground (g) and the Rydberg level (R) with
β = Ω/(2∆)� 1 where Ω is the Rabi frequency between
the ground and Rydberg levels, and ∆ is the detuning.
The dressed Rydberg interaction potential Vd is

Vd(|i− j|) =
U

r6c + |i− j|6
, (2)

where the coupling strength U ≡ C6β
4, C6 is the van

der Waals coefficient, and the “core” of the interaction is
rc ≡ (C6/2∆)1/6 [7, 13, 19].

We study the model defined in Eq. (1) using a combina-
tion of field theoretic bosonization techniques in the weak
coupling regime, numerical simulations using the density
matrix renormalization group (DMRG) approach, and
classical simulations of the density profile that are help-
ful in interpreting the strong coupling regime. We utilize
the DMRG method to compute the ground state of the
lattice model (with lattice spacing a = 1) in Eq. (1) in
a one-dimensional chain with open boundaries [20]. The
largest system size we have considered is L = 400, and we
have set the maximum bond dimension as 1200 to keep
the truncation error to be below 10−12 for most calcula-
tions. (For weak coupling and Np = 120, the truncation
error was about 10−8 with bond dimension 2000.) All
DMRG calculations in this paper are performed using
the ITensor Library [21].

Weak coupling limit: In the weak coupling regime of
the Rydberg dressed Hamiltonian [Eq. (1)], the low en-
ergy field theoretic description of the problem is obtained
by linearizing the dispersion near the Fermi momenta
±kF [Fig. 1 (a)]. The interaction in Eq. (2) in momen-
tum space takes the form 1

2πL

∫
dqVC(q)n(q)n(−q). In

the limit of rc � a, VC(q) is equal to the Fourier trans-
form of the continuum limit of Eq. (2) [20]:

VC(q) = V0

[
e−|q|rc + 2e−

|q|rc
2 cos

(
|q|rc
√

3/2− φ
)]
,

(3)
where πU

3r5c
≡ V0, φ = π/3. An important feature of VC(q),

plotted in Fig. 1(b), is that it changes sign from a repul-
sive to an attractive interaction as a function of |q|.

Applying the standard ‘g-ology’ of relevant interaction
induced scattering process in 1D, leads us naturally to

consider 3 distinct scattering channels [22], depicted in
Fig. 1(a). The g4(g2)-process corresponds to forward
scattering between the fermions on the same(different)
side(s) of the Brillouin zone and thus g2, g4 ∝ VC(0). In
contrast, the g1-process scatters two fermions from the
left/right side to the right/left side and therefore dubbed
as backscattering. The momentum transfer is 2kF in this
case, and the coupling constant is g1 ∝ VC(2kF ). Due to
the spin rotation invariance, the interaction in the paral-
lel and transverse spin channels have the same strength,
i.e. gi,‖ = gi,⊥. Taking Eq. (3) into account directly
shows that by tuning the number density ρ = 2kFa/π
of the fermions we are able to control the sign of the
effective backscattering interaction and change it from
repulsive to attractive, and vice versa.

In the weak coupling regime, we can use abelian
bosonization to describe the low-energy physics of
the ground state. This leads to the standard spin-
charge separated Hamiltonian in terms of a Lut-
tinger liquid away from commensurate fillings: H0

η =
1
2π

∫
dx
[
uηKη(πΠη(x))2 +

uη
Kη

(∇φη(x))2
]

where η =

ρ, σ corresponds to charge and spin degrees of freedom,
respectively, and the spin sector has the interaction

Hσ =H0
σ +

2VC(2kF )

(2πα)2

∫
dx cos(

√
8φσ), (4)

where α is the short-distance (lattice) cutoff scale. The
charge part (H0

ρ) is the Luttinger liquid Hamiltonian,
while the spin part (Hσ) is the sine-Gordon Hamiltonian.
φρ(σ)’s are the bosonized fields for the charge (spin) sector
and Πρ(σ)’s are its conjugate momentum. uη’s and Kη’s
are the velocities and Luttinger parameters for the cor-
responding sectors η = ρ, σ. The relevance of the cosine
term in Eq. (4) is dictated by the value of the Luttinger
parameter in the spin sector, that obeys [22]:

Kσ =

[
1 + VC(2kF )/2πvF
1− VC(2kF )/2πvF

]1/2
, (5)

plotted in Fig. 1, with rc = 4a, vF = (2t/a) sin(akF ),
and V0/t = 1. When VC(2kF ) changes sign from posi-
tive to negative the cosine interaction switches from ir-
relevant (Kσ > 1) to relevant (Kσ < 1). In the latter
case, the interaction (4) “locks” the field to the value

φσ = 2nπ/
√

8 and excitations of φσ become gapped.
The spin-density wave order parameter in the z-direction

OzSDW = ψ†R↑ψL↑ − ψ†R↓ψL↓ ∼ sin
√

2φσ vanishes, and

its correlations 〈Oz†SDW(x)OzSDW(0)〉 decay exponentially.
(The L/R subscript corresponds to the left/right mov-
ing fermionic field). The charge correlations remain gap-
less in this phase and behave as a power-law, in partic-
ular charge-density wave correlation decay as ∼ x−Kρ

while superconducting ones as ∼ x−K
−1
ρ . As K2

ρ = (1 +
VC(2kF )/2πvF )/(1+2VC(0)/πvF −VC(2kF )/2πvF ) < 1,
the CDW correlations are dominant.

This is in contrast with when backscattering is repul-
sive; g1 = VC(2kF ) > 0 and Kσ > 1, and both spin and
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FIG. 2. (a) The spin-spin correlation function (in the units
of ~2) for Np = 70 (blue, lower) and Np = 120 (yellow, up-
per) particles in a L = 200 chain with U/r6c = 2t, rc = 4a.
x = 0 is defined as the site L/2, and the data include both
sides of x = 0. Note that in all following figures containing
x, it is in the units of lattice constant a. The backscattering
is attractive when Np = 70, and repulsive when Np = 120.
The correlation shows a clear exponential decay when the
backscattering is attractive. The gray dashed lines are the
guide to the eye following the envelope function. (b) The bi-
partite entanglement entropy as a function of the cut position.
The dashed lines are the entanglement entropy scaling corre-
sponding to c = 1 (blue, lower: Np = 70) and c = 2 (yellow,
upper: Np = 120).

charge sectors are gapless. The SDW correlation func-
tion decays as a power-law ∼ x−(Kρ+Kσ). Moreover, as
Kρ < 1 also in this case, CDW and SDW correlations
dominate over the superconducting ones [22].

Therefore, labeling the momentum transfer where
VC(q) first becomes negative to be q−, and q+ when is
becomes again positive implies that q± = 2kF would cor-
respond to a transition between a charge and spin Lut-
tinger liquid and a spin-gapped charge Luttinger liquid,
which belongs to Berezinskii–Kosterlitz–Thouless (BKT)
class [22]. Note that the sign-change of VC(q) is a func-
tion of qrc, and thus the phase transition can be tuned
by either density (through kF ) or rc.

We now verify these predictions numerically by calcu-
lating the ground state of a L = 200 chain with various
fillings. We fix the U/r6c = 2t, rc = 4a and tune the
number of fermions to go across the density-tuned phase
transition. The particle number corresponding to q− and
q+ is Np ≈ 50 and Np ≈ 106, respectively, for the L and
rc we consider. In Fig. 2 we choose two representative fill-
ings, Np = 70 and Np = 120 which are both deep within
each phase and plot their spin-spin correlation function in
Fig. 2(a). [20] We observe that the spin-spin correlations
decays exponentially for Np = 70, and as a power-law for
Np = 120.

We complement the correlation function analysis with
another observable that indicates the gapped spin sector,
the von-Neumann entanglement entropy. We extract the
central charge, which counts the number of gapless modes
in the system, from the scaling behavior of the bipar-
tite entanglement entropy S as we tune the cut position
x [23],

S(x) =
c

6
ln

[
L

π
sin
(πx
L

)]
+ d, (6)

FIG. 3. Normalized energy per site as a function of rc (in
the units of a) for different filling patterns with same average
density ρ = 1/3 computed in the classical limit (t = 0). Note
that the arrows in the pattern of the red line (last in the
legend) indicates the up and down spin, and thus have a unit
cell of six sites with one doubly occupied site.

where c is the central charge of the system and d
is a nonuniversal constant including the boundary en-
tropy [24]. This scaling behavior is shown in Fig. 2(b),
for the same system: L = 200, rc = 4a, and Np = 70, 120.
With the dashed lines corresponding to c = 1 and c = 2
of Eq. (6), we confirm that the two fillings belong to the
c = 1 phase of charge Luttinger liquid (spin-gapped), and
c = 2 phase of charge and spin Luttinger liquid, respec-
tively.

Strong coupling limit: In the strong coupling limit
U � t we find that commensurability effects start play-
ing a major role. Even at nominally incommensurate
densities the system separates into regions that have com-
mensurate density as is shown schematically in Fig. 1 (b).
We find that neighboring pairs of commensurate densi-
ties with an odd or even number of sites per unit cell
split into two types of phases that are either magnetized
or not, respectively allowing phase separation to become
energetically favorable.

At commensurate fillings (or in the interiors of phase-
separated regions), one may expect a periodic density-
ordered patter to emerge [22, 25]. This pattern depends
on the average density, but also rc. This can be straight-
forwardly seen in the ‘classical limit’ (setting t = 0 in
Eq. (1)). Fig. 3 shows the average classical energy per
site, for different filling patterns with the same aver-
age density. One can observe that the energy minimum
changes as we tune rc. In general, the optimal unit cell
size increases with rc.

We now discuss DMRG results on the full quantum
system Eq. (1) in the strong coupling limit: U/r6c = 10t
and rc = 4a. Fig. 4(a) shows the DMRG calculation
for an L = 400 site chain where the bulk has the com-
mensurate density ρ = 1/3 (dashed line in the phase
diagram of Fig. 1(b)). Here, the y-axis is defined as
NL(x) =

∑x
i=1〈ni〉 which is the expectation value of ac-

cumulated particle number to the left of position x. For
example, if the particle was evenly distributed across the
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FIG. 4. Left accumulated particle NL(x) as a function of position for Np = 140 [(a)] and Np = 170 [(b)] particles in a L = 400
chain. (a) ••◦◦◦◦ pattern is observed, and the dashed line with slope 1/3 follows the average data well. The inset shows the
particle density n(x) up to the center of the chain, which shows there are above average particles accumulated at the boundary.
(b) Demonstrating phase separation as the ••◦◦◦ pattern is observed at both edges and the center of the chain, forming three
commensurate regions with density ρ = 2/5, shown by the slope of the yellow dashed line (center of the figure). Here we have
zoomed into the center of the chain. These are separated by two domains with a ��◦◦◦◦ pattern that have two occupied
sites with 1.5 particles each and the slope of the green dashed line (left and right sides of the figure) is 1/2. The inset shows
the spin density Sz(x) = (n↑(x) − n↓(x))/2 of the system, demonstrating the region with ��◦◦◦◦ has a non-zero staggered
magnetization. (c) The bipartite entanglement entropy as a function of the cut position for the phase separated case Np = 170.
The three dashed lines corresponds to c = 1 of Eq. (6) for each partition. This indicates that the three regions with the ••◦◦◦◦
pattern has central charge 1 coming from the gapless charge degrees of freedom, and the ��◦◦◦◦ regions in-between suppresses
the entanglement entropy.

system with a density ρ0, then the NL(x) − x plot will
show a straight line of slope ρ0. From the figure, it is
clear that NL(x) increases by 2 every six sites, that is,
in an average density of 1/3. More precisely, the pat-
tern shows that the increase of NL(x) occurs mostly at
two adjacent sites, and changes little on the next four
sites. This is roughly a unit cell of six sites with repeat-
ing pattern, ••◦◦◦◦, where the open(filled) circles are
empty(single occupied) sites. In the classical calculation
the ground state of ρ = 1/3 and rc = 4a is the dou-
bly occupied pattern (red line in Fig. 3, last in legend)
and the ••◦◦◦◦ pattern has the second lowest classical en-
ergy. This shows that even for U/t = 10, quantum effects
are important to determine the ground state. Moreover,
the correlations and entanglement properties of this state
[20] indicate that the system does not have a charge gap
despite the strong density modulation.

The number of particles in this calculation is Np = 140,
and this ratio approaches the bulk density in the thermo-
dynamic limit, i.e. ρ = Np/L → 1/3 as L → ∞, defin-
ing the bulk phase. The open boundaries introduces a
boundary effect such that the density at the edge is dif-
ferent from that of the bulk (see inset of Fig. 4(a)). While
this effect will vanish in systems with periodic boundary
conditions, we have checked that this ground state phase
is stable to the experimentally relevant inclusion of a har-
monic trap[20].

Fig. 4(b) is the same calculation but with Np =
170 particles and its entanglement entropy is shown in
Fig. 4(c), representative of one of the regions of in-
commensurate filling in the phase diagram in Fig. 1(b).
Distinct, effectively commensurate regions are observed
through their different average slopes of NL(x) − x ver-
sus x. At the edges and the center of the the system [see

Fig. 4(b, inset) and 4(c) for the full system] NL(x) − x
has a slope of 2/5 (which is depicted as an yellow dashed
line at the center) with a pattern of ••◦◦◦. Between the
2/5 commensurate regions, there are two regions with
a ��◦◦◦◦ pattern and a slope equal to 1/2 (depicted
as a green dashed line at the two sides), but with three
particles occupying the two filled circles (the � symbol
indicates a site with an occupation of 3/2 particles on
average). This example demonstrates the phase separa-
tion in the strong coupling regime: placing particles at
the boundary is not enough and the system phase sepa-
rates into a simple fraction with two fillings. Indeed, the
penalty of excess particles at the boundary depends on
the interaction strength U/t and the long-range interac-
tion, and the system will be more likely to phase separate
in stronger interactions. Last, we show that this phase
separation survives the inclusion of a harmonic trap [20].

The magnetization in this case (the inset of Fig. 4(b))
is staggered for the ��◦◦◦◦ regions but zero outside of it.
This is consistent with the expectation that an even num-
ber of spins per unit cell will form local singlets, while
odd number allows for gapless spin correlations. Another
interesting feature of this regime is that each region re-
tains its properties as a Luttinger liquid “puddle.” For
instance, the charge excitations are gapless in the ••◦◦◦
phase, while gapped in the magnetized ��◦◦◦◦ phase.
This can be seen in Fig. 4(c) where we plot the bipartite
entanglement entropy of the system. The three regions
of ••◦◦◦ phase are nicely fitted with the entanglement
scaling [Eq. (6)] with c = 1, which comes from the gap-
less charge degrees of freedom. The magnetized region
also serves as a barrier for information spreading [20].

This behavior can be qualitatively understood from
general bosonization arguments. The phases presented
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in Fig. 4 have band filling of 1/m ≡ ρ/2 with m = 6
(a), m = 5 (b,c puddles with c ≈ 1) and m = 4 (b,c,
magnetized regions). For these fillings, a charge gap is
expected to open [22, 25] for Kρ < 4/m2 [20], requir-
ing quite strong interactions. The observation of gapless
2kF density correlations for m = 5, 6, but not m = 4
suggests that 0.16 < Kρ < 0.25. For all three m values
VC(2kF )/V0 < 0, such that a spin gap may be expected
at weak coupling, but its value is very small for m = 4
and VC(2kF )/V0 ≈ −0.026. This provides an explanation
for the apparent spin ordering for m = 4 in the DMRG
results, rather then the uniform spin-gapped state one
might expect from a weak coupling perspective.

Optical Tweezers: We now demonstrate that fermionic
Rydberg atoms in optical tweezers can also be mapped to
a so-called PXP model in the strong Rydberg coupling
β � 1 limit. For the filling of two atoms per site, the
laser will couple the state where both are in ground state
|g ↑, g ↓〉 to a single state (|R ↑, g ↓〉 + |g ↑, R ↓〉)/

√
2,

realizing the usual PXP model [26, 27]. On the other
hand, for a single fermion per site, the spin degree of
freedom is decoupled from light for s-like states, realizing
a PXP model with an additional spin degree of freedom

per site, that can be manipulated, e.g. by a magnetic
field. Spin exchange interactions may lift this degeneracy,
but are likely to be negligible in current setups [20].

Conclusion: We determined the weak and strong cou-
pling descriptions of spin-1/2 fermionic Rydberg atoms in
1D. The various phases and transitions identified here can
be probed experimentally by measuring spin-spin correla-
tion functions with single site microscopes [1] or magnetic
Bragg scattering [28] in ultracold gases of 6Li.
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The following appendix conveys additional results on
the weak coupling regime, the effects of a harmonic
trap, correlation functions and mutual information in the
strong coupling phase separated regime, and a derivation
of the spinful PXP Hamiltonian at half and full filling.

Appendix A: Weak coupling Rydberg dressed
regime

To obtain the weak-coupling Hamiltonian, see Eq. (4)
and above it, we linearize the tight-binding dispersion
around ±kF . Without interactions, the bosonized Hamil-
tonian takes the form:

Hnonint
η =

1

2π

∫
dx
[
v(πΠη(x))2 + v(∇φη(x))2

]
, (A1)

where vF = dε
dk k=kF

= 2t
a sin(kFa), where a is the lattice

constant of the order of α. Next we transform the lattice
interaction Eq. (2) to the momentum space:

Vd(q) =
1

N

∑
n

e−iqanVd(an). (A2)

One can write Vd(an) =
∫
dk
2π e

ikanVC(k) =
1
L

∑
k= 2πl

L
eikanVC(k)|L→∞, where VC(k) =∫

dxVd(x)eikx is defined in the continuum (C) limit
a → 0. Using the Poisson summation formula∑
n e

ing = N
∑
m δg−2πm one obtains:

Vd(q) =
1

L

∑
m

VC

(
q +

2πm

a

)
. (A3)

As VC(k) decays as e−|k|rc/2 for rc � a the m 6= 0 terms
can be neglected and Vd(q) ≈ 1

LVc(q) used in the main
text is obtained.

Apart from the spin-spin correlations shown in
Fig. 2(a), we also calculate the density-density corre-
lation 〈nL/2±xnL/2〉 for the two (positive and negative
backscattering) phases in Fig. 5. As the charge sector is
always gapless the density-density correlation decays as
power-law in both cases. The density-density and spin-
spin power-law exponents in the repulsive backscattering
region are both −(Kρ+Kσ). We extracted the exponent
for Np = 120 from the spin-spin correlator (dashed line
in Fig. 2(a)) and plotted a dashed line with the same
slope in Fig. 5. One can confirm that the power (slope)
of the two matches well in the large x limit.

Appendix B: Effect of trap potential

The calculations in the main text focus on an opti-
cal lattice but ignores the presence of the harmonic trap
potential. In real experiments, the harmonic trap is
inevitable and will affect the previously shown results.
While we expect this to have a weak effect on the weak

coupling phases, we need to confirm that the phase sepa-
rated regime in Fig. 4(b) survives. We include a harmonic
trap by adding to the Hamiltonian a term

∑
r,σ Vrc

†
rσcrσ

with Vr = 1
2mω

2r2.
Here, we take the experimental setup in Ref. 18 with

t = h×1.7 kHz and a = 752 nm. Fig. 6 is the case ofNp =
167, 163 particles in a L = 400 chain with a trap potential
1
2mω

2x2max = t, 2t, respectively with xmax = L/2. This

corresponds to a trap frequency of order 102Hz, which is
safely larger than the typical harmonic trap.

It is clear that the slope (average particle density) at
the center is different from that of the two boundaries.
The bipartite entanglement entropy also shows distinct
behavior between center and boundaries, and the entan-
glement is low at the center regions, following the trend
seen in Fig. 4(c). Here, the center region is the mag-
netic domain wall and the charge like puddles are to its
side. From these results, while the overall structure of
the phase separated state is modified by the trap we con-
clude that the phase separated regime of the model will
not be prohibited by the harmonic trap in experiments
and we expect can be directly measured.

Appendix C: Correlations in the phase separated
regime

In this section, we further investigate the phase sep-
arated state in the context of correlations to provide
additional results that imply the presence of Luttinger
liquid puddles. In the main text Fig. 4(c), we claimed
that the three regions with ••◦◦◦ patterns have a central
charge of c = 1 which results from the gapless charge de-
grees of freedom and is inherited from the weak coupling
limit of the problem. We check this directly calculating
the density-density correlation function and observing its
functional form.

In Fig. 7(a) we plot the density-density correlation

FIG. 5. The density-density correlation function for Np = 70
(blue, upper) and Np = 120 (yellow, lower) particles in a
L = 200 chain. All parameters are identical to that of Fig. 2.
The density-density correlation follows a power-law scaling on
both cases.
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FIG. 6. Left accumulated particle NL(x) as a function of
position and the bipartite entanglement entropy in a L = 400
chain in the presence of a harmonic trap potential. (a) Np =
167 and 1

2
mω2x2max = t, (b) Np = 163 and 1

2
mω2x2max = 2t.

The yellow dashed lines are the linear fit near the center (x =
200) and the deviation from this line indicates different filling
(and thus different phase) away from the center.

function for the same parameters in Fig. 4(b,c), where
the center x0 is chosen as the center of the three c = 1
regions. One can observe slow power-law decay of the
correlation, although the exponent is hard to extract due
to the small size of each region. In contrast, the spin-
spin correlation function decays exponentially, even in
the magnetized region. In Fig. 7(b) shows the fast decay
of such correlation, where x0 is the center of the magne-
tized region (in between the c = 1 regions).

Finally, we plot the mutual information (MI) between
two points x, y in the system. The MI between two
subsets A and B of the system is defined as [29]:

I(A,B) = S(A) + S(B)− S(A ∪B), (C1)

where S(A) is the entanglement entropy (or von Neu-
mann entropy) introduced in the main text. Fig. 7(c)
plots the MI between all pair of points in the system, and
shows that the MI is large only between points within the
same c = 1 region. This shows the natural result that
mutual information is large in gapless regions, and also
the interesting feature that the gapped regions serve as a
barrier of information spread between the gapless c = 1
puddles.

Appendix D: Bosonization analysis at strong
coupling

We now present details of the bosonization discussion
regarding phases for arbitrary commensurate filling. For
a filling equal to p

q , p, q being mutually prime integers,

an additional (umklapp) term appears in the low-energy
theory, corresponding to simultaneous scattering of q

fermions from −kF to kF . This can be written as [25]

Hum = Uum

∫
dx cos(q

√
2ϕρ) cosq(

√
2ϕσ) (D1)

, where for weak coupling Uum ∼ U(U/t)q−2 [22, 25]. For

even q, the most relevant part of cosq(
√

2ϕσ) is just a con-
stant, such that Uum is relevant for Kρ < 4/q2, leading to
a charge gap in that case. Apart from half filling, this im-
plies that the density degree of freedom can remain gap-
less below a threshold value of U . For odd q, cos(

√
2ϕσ)

has to be kept. At weak coupling, if VC(2kF ) < 0 this

term is fixed cos(
√

2ϕσ) = ±1 and the same condition
for Kρ is valid , while for VC(2kF ) > 0 one can use the
fixed-point value Kσ = 1 [25] such that Kρ < 3/q2 is
required. In the latter case, a gap will open simultane-
ously in the density and spin excitations. The regions
of 1/5 filling of Fig. 4 (b,c) actually conform to weak
coupling expectations. In that case kF rc ≈ 5 such that
VC(2kF )/V0 ≈ −0.16 and a spin gap is expected, while
the density gap requires strong interactions Kρ < 0.16.
Note that the observed strong modulation of density oc-
curs at 2kF , same as for a weak-coupling density wave.
The ��◦◦◦◦ regions, on the other hand, has filling 1/4
with a less stringent requirement for the charge gap Kρ <
0.25, allowing to understand the development of a charge
gap there. While in weak coupling, a spin gap would
have been also expected due to VC(2kF )/V0 ≈ −0.026, its
absence points to inapplicability of the continuum weak
coupling analysis for 1/4 filling here, possibly due to ex-
tremely small value of VC(2kF )/V0 and finite size effects.
The above arguments also suggest that for 1/6 filling of
Fig. 4(a), there will be a spin gap VC(2kF )/V0 ≈ −0.2
and no charge gap (Kρ < 0.11 is required), consistent
with the numerical result. The charge modulation has
the period 6 (see Fig. 8(a)), corresponding to the usual
2kF = 2π/6 Luttinger liquid correlations [22], in contrast
to the period 3 (4kF ) modulation expected in the insu-
lating state [22, 25]. The bipartite entanglement entropy
(see Fig. 8(b)) also shows clear c = 1 scaling.

Appendix E: Optical tweezers and the PXP limit

In the limit of no tunneling (i.e. focusing on the opti-
cal tweezer set up as opposed to an optical lattice) and
strong coupling we determine the effective many-body
Hamiltonian, recovering the PXP model in the limit of
a fully filled Fermi sea and identify a magnetic PXP
model with a direct exchange interaction in the limit of
half-filling.

The PXP limit assumes a strong mixing of ground and
Rydberg state Ω� ∆. In this case, the dominant inter-
action is the repulsion between adjacent Rydberg atoms,
that is also larger than Ω. Essentially, the interaction for-
bids atoms in Rydberg state to occupy neighboring sites.
For spinless bosons, Rydberg Hamiltonian reduces then
to the PXP model, H =

∑
i Pi−1XiPi+1 [27, 30, 31].
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FIG. 7. Correlation functions (in the units of a−2) for the same parameters in Fig. 4(b,c). (L = 400, Np = 170 in the strong
coupling regime) (a) The density-density correlation function where x0 = 87 [blue, left peak], 212 [yellow, center peak], 324
[green, right peak] which are the centers of the c = 1 puddles in Fig. 4(c). (b) The spin-spin correlation function where x0 = 154
[blue, left peak], 263 [yellow, right peak] which are in between the c = 1 puddles. (c) The mutual information (MI) between
two points x, y in the system. The MI shows three puddles which corresponds to the three c = 1 regions, and the information
spread is blocked by the magnetized region.

FIG. 8. (a) The power-law scaling density-density correlation
for the system in Fig. 4(a), Np = 140. (b) The bipartite
entanglement entropy as a function of the cut position. The
solid line is the CFT scaling form (Eq. (6)) with c = 1.

Pi = (1 − Zi)/2 is a projector to the ground state. The
typical PXP model studied intensively in the context of
quantum many-body scars and slow dynamics focused on
bosonic Rydberg atoms. Here, we consider fermionic Ry-
dberg atoms which introduces the spin degrees of freedom
to the original problem.

First, consider a chain of Rydberg atoms with two par-
ticles (spin up and down) per site. The Xi operator con-
nects the |g ↑, g ↓〉 state with the (|R ↑, g ↓〉 + |g ↑, R ↓
〉)/
√

2 state and thus this model reduces to the origi-
nal PXP model. This is reasonable in the sense that
each site has two fermions which can be considered as a
bosonic degree of freedom.

Next, we consider a Rydberg atom chain with the fill-
ing of one particle per site. Neglecting the coupling of the
laser to the spin degree of freedom (which is appropriate
for s-like states), the Hamiltonian reduces to the original
PXP model with additional spin degeneracy, i.e.

Hspin
PXP =

∑
i

Pi−1XiPi+1, (E1)

where X = |R ↑〉〈g ↑ | + |R ↓〉〈g ↓ | + h.c. is the Pauli
matrix in the eg-space, P = |g ↑〉〈g ↑ |+ |g ↓〉〈g ↓ | is the
projection to the ground state.

The spin degeneracy, however, can be lifted by inter-
actions due to the exchange process. Both exchange and

supexchange interactions depend on wavefunction over-
lap [32] and can be of the same order. Therefore, one
can expect that: (1) they decrease with distance fast
(2) they are larger for the Rydberg state. As the Ryd-
berg interaction energy prohibits nearest neighbor atoms
to be both in the Rydberg state, the next possibility is
to either have spin-spin interactions with a neighboring
ground-state atom, or a next-neighbor Rydberg atom.
Combining both contributions, the spin exchange term
can be written as:

Hspin
exch =

∑
i

JRg ~Si · ~Si+1(PiQi+1 +QiPi+1)

+JRR~Si · ~Si+2QiQi+2,

(E2)

where Q = 1− P .

For the direct exchange mechanism one can provide the
following estimates for the couplings JRg and JRR. The
Rydberg-Rydberg exchange coupling takes the form[32]
:

JRR =
1

2

∫
d3rd3r′VR(|r− r′|)ψ∗R(r)ψR(r′)×

×ψ∗R(r′ + 2ax̂)ψR(r + 2ax̂),

(E3)

where x̂ is a unit vector along the chain direction and
VR(|r − r′|) ∝ 1/|r − r′|6, and ψg,R(r) correspond to
ground and excited state atomic wavefunctions. One ob-
serves then that the integral is dominated by r ≈ r′ and
is determined by the overlap between Rydberg wave-
functions displaced by 2a. As the size of the Rydberg
wavefunction scales with principal quantum number as
n2, the integral can be estimated to scale (taking the
integrand value in the middle between two atoms) as

∼ exp
(
−2 2a

a∗Bn
2

)
, where a∗B is the Bohr radius for the

atom.

The Rydberg-ground exchange coupling is determined
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by:

JRg =
1

2

∫
d3rd3r′VRg(|r− r′|)ψ∗R(r)ψR(r′)×

×ψ∗g(r′ + ax̂)ψg(r + ax̂),

(E4)

where VRg(|r − r′|) is the interaction between Rydberg

and ground state atom, that is likely to be much weaker
than the Rydberg interaction. The scaling of this in-
tegral with n can be estimated analogously to be ∼
exp

(
− a
a∗Bn

2 − a
a∗B

)
. Unfortunately, in typical tweezer se-

tups [33] a � a∗Bn
2, suggesting that the exchange inter-

actions are likely quite small for the current set ups.
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