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We present an ab initio study of the nonsequential strong-field ionization dynamics of a model two-
electron atom with helium character. Single- and double-ionization events are characterized and dis-
played using detector signals extracted at different points in the two-electron two-dimensional space.
The double photoelectron momentum distribution is calculated via coherent path-summation over
virtual particle trajectories. A comparison is made between the momentum distributions obtained
by the virtual detector method, the Schréodinger wavefunction, and the time-dependent surface flux
method developed by Tao and Scrinzi [New J. Phys. 14, 013021 (2012)]. Insights into different
ionization and electron recollision pathways are gained from detailed virtual-particle tracking and
energy-time readouts. This study demonstrates the extension of virtual detector theory to strong-
field multi-electron quantum dynamics and highlights the importance of the evolving quantum phase

in quasi-classical electron propagation.

I. INTRODUCTION

Tonization is the necessary precursor to many strong-
field phenomena, including above-threshold ionization
[1-7], nonsequential multiple ionization [8-10|, high-
harmonic generation [11-14], and laser-induced electron
rescattering [15, 16]. Many aspects of the single-active-
electron ionization process are accessible theoretically on
the basis of radiative perturbation theory and the strong-
field approximation, or the Keldysh-Faisal-Reiss theory
[17-19] (see [20] for a recent review). In this approach,
the scattered electron + field system is treated as a
Volkov state [21] and the effect of the atomic potential is
included perturbatively.

Nonsequential multiple ionization [7] is characterized
by strong inter-electron correlations that can promote
cooperative electron exit dynamics [8-10]. It is predomi-
nantly initiated when a first electron tunnels through the
field-suppressed coulombic barrier and, in the next field
half-cycle, is accelerated and field-driven back toward the
nucleus. Exchange of momentum with the residual bound
electrons increases the likelihood of excitation or tunnel
ionization thereafter. The result is an anomalous ioniza-
tion yield that can greatly exceed what is predicted by
the sequential theory [22].

Due to the possibility of such inter-electron correla-
tions, ab initio numerical methods are indispensable in
laser-atom interaction studies involving field intensities
near to or greater than the atomic unit 7 ~ 10*6 W /cm?*.
For a two-electron model atom, direct numerical integra-
tion of the time-dependent Schrédinger equation (TDSE)
in full dimensions is the most accurate approach, but
it is computationally expensive beyond 3 wavefunction
degrees of freedom [23, 24| because the number of grid
points in the discretely-sampled volume grows exponen-
tially with each added dimension. The development of
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ad hoc models to treat the two-electron wavefunction
in reduced dimensionality is ongoing. For instance, in
Ref. [25] a 3D coordinate system is introduced which
accounts for inter-electron correlations in full dimen-
sionality while restricting the center-of-mass motion to
the field polarization axis. Attractive alternate schemes
to TDSE integration include the quantum trajectory
method [26, 27| which represents the wavefunction as a
collection of fluid elements obeying the Madelung-Bohm
quantum hydrodynamic equations [28, 29], and the classi-
cal ensemble method [30-32| which considers a large col-
lection of particles whose initial conditions and statisti-
cal properties are determined by the initial wavefunction.
Classical and semi-classical models are particularly use-
ful for performing trajectory analysis of specific features
that appear in the correlated photoelectron momentum
distribution [33].

More recently, a hybrid quantum-classical approach
known as the virtual detector method was initiated by
Feuerstein and Thumm [34], which has been extended to
include virtual particles [35, 36] and their quantum phase
information [37]. In the virtual particle calculation, one
introduces an enclosure of purely numerical “detectors”
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FIG. 1. Illustration of the numerical detection process, in
which a “virtual detector” extracts information from incident
wavepackets.
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around the region where the TDSE is integrated. The
exterior of the enclosure is relatively far from the ioniza-
tion inception, and the result of each detection can be
interpreted as the creation of a virtual particle with cal-
culated momentum and phase that carries information
about the quantum state, see Fig. 1. The motion of the
virtual particle is then described classically. In this way,
the accuracy of the fully quantum-mechanical solution on
a grid close to the atomic nucleus can be combined with
the efficiency of classical propagation beyond the enclo-
sure, where additional quantum effects are negligible.

The use of the virtual detector method has proven suc-
cessful in a variety of ways. Originally, it was developed
to extract photoelectron momentum data from outward-
bound wavepackets at the computation domain bound-
ary, similarly to the time-dependent surface flux method
(t-SURFF) [38-40] which will be discussed in more de-
tail in Sec. IIT C (Results). However, the virtual detectors
can be placed at any region of interest, and have in the
past been employed to extract key information close to
the atomic nucleus as well. For example, in analyzing an
ionization event independent of a tunneling assumption,
the virtual detector method allows one to obtain cen-
trally important features of ionization including those
associated with the popular tunneling picture, such as
the tunneling entrance and exit positions and the elec-
tron’s effective tunneling rate (see cautions by Ivanov, et
al. [41], and [42, 43]). The strong-field recollision sce-
nario relies on determinations of such quantities, which
virtual detectors have been able, sometimes uniquely, to
provide.

In this article, we extend the theory based on virtual
detection to two-electron atomic systems. The gener-
alization to three or more interacting electrons readily
follows from our reformulation of virtual detector the-
ory. For concreteness, we demonstrate the calculation
for a model helium atom and its nonsequential ioniza-
tion dynamics under strong-field irradiation. We employ
the aligned-electron approximation [44-46] wherein the
motion of each electron is constrained to the field polar-
ization axis. Thus, our two-dimensional system consists
of 2 one-dimensional electrons identified by their posi-
tions (z1,22) and momenta (p1,p2) on two such inde-
pendent polarization-aligned coordinates. A comparison
will be made between the photoelectron momentum dis-
tributions calculated using the virtual detector method,
the Schrédinger wavefunction, and the t--SURFF method.
Accordingly, the TDSE integration volume in our calcu-
lation will be larger than the virtual detector boundary
in order to retain the ionized wavefunction components
for benchmarking.

The rest of this article is organized as follows. In Sec-
tion II, we review the numerical methods relevant to the
calculation and discuss the two-electron extension of vir-
tual detector theory. In Section III, we present and an-
alyze calculation results of the evolving wavefunction,
virtual detector signals, photoelectron momentum dis-
tributions, and virtual-particle trajectories. In Section

IV, we summarize and conclude this work. Atomic units
(a.u.) are employed except where indicated otherwise.

II. METHOD

The virtual detector method is a hybrid quantum-
classical approach. As such, the first step is to numeri-
cally integrate the time-dependent Schrodinger equation
10V /0t = HV on a discrete space-time mesh. In our
case, this is accomplished using the Peaceman-Rachford
alternating-direction implicit method [47, 48] which in-
terleaves Crank-Nicolson propagation in the two spatial
dimensions:
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where H,, = —1[0?/022% — V(&,t)] are sub-Hamiltonians
with V(&#,t) the total potential energy. This scheme (1)
propagates the wavefunction forth one time-step interval
5t with a single-step error of O(6t3). It must be noted
that it violates unitarity depending on the degree of non-
commutativity between H; and Hs. For the Hamiltonian
considered in this work (given below), we have verified
that [Hy, Ha] ~ 0 to within numerical error and therefore
unitarity is preserved well.

As the wavefunction W(Z,t) evolves, virtual detectors
densely arranged along the enclosure net intercept it and
perform non-destructive numerical detections at their re-
spective positions Ty for every calculation time-step tq.
The features extracted in the detection are the local
phase, probability current, and momentum:

¢o = arctan(Im W/Re V)| (z, +.) (2)
jo = 2(UVE* — V)|, 0 (3)
Po =V =Jo/p st (4)

where p = |¥|? is the two-electron probability density.
Since the detectors generally lie between numerical grid
points, ¥(Z,t) must be interpolated to each point Z; in
these expressions.

Equations (2)—(4) initiate a virtual particle at the
space-time point of detection (Z4, t4) with initial momen-
tum pp and a statistical weight w equal to the proba-
bility density p at birth. Its subsequent motion is gov-
erned by Hamilton’s classical equations (dZ/dt = 0H/0p,
dp/dt = —0H/0Z) which we integrate numerically us-
ing the 4th-order Runge-Kutta method. Thus, the rep-
resentation of outward-bound wavepackets is converted
from a quantum wave to a classical particle density de-
scription, and likewise the Hamiltonian changes from a
quantum operator to a classical function as the interpre-
tation switches. The evolution of one virtual particle in
(z1,x2)-space represents the dynamical behavior of two
classical electrons, and its trajectory signifies a possi-
ble two-electron ionization pathway from the ensemble
of cases.
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FIG. 2. (Color online). (a) Potential energy map of the model
two-electron atom with the virtual detector box overlaid.
One-dimensional interaction potentials are obtained from li-
neouts parallel to the coordinate axes #1/Z2 as in panel (b).
The 20 lowest eigenenergies of this model atom’s spectrum
are displayed in panel (c).

Under irradiation by high-intensity, low-frequency,
and/or long-duration pulses, the spatial domain may not
be able to accommodate the Schrodinger wavefunction
far from the nucleus. Thus, at the domain boundary one
typically employs a masking function or negative complex
potential [49] to numerically absorb ionized wavefunction
components. In contrast, the virtual-particle description
of the wavefunction is not restricted to a grid. Moreover,
virtual particles do not interact (but the two electrons
they represent interact pairwise), so their time-evolution
also offers the advantage of computation in parallel.

The Hamiltonian
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consists of electron-nuclear (e-n) and electron-electron
(e-e) screened coulombic potentials of the form V(z) =
1/v/x? + 02 in addition to a length-gauge field interac-
tion term under the dipole approximation [44, 45]. Here,
Zy is the nuclear charge, E(t) is the laser electric field,
and o is a screening parameter. The non-zero value for
o controls the 1/x coulombic singularity in V(x), and it
also determines the model atomic spectrum and ioniza-
tion energy. It must be noted that the model potential in
Eq. (5) does not give a correct second ionization thresh-
old, such that the sequential double-ionization yield is
unreasonably large. This discrepancy is important for

comparing numerical calculations with experimental re-
sults [50, 51] (see Sec. IITC).

A. Calculation parameters

We take Zyp = +2 and ¢ = 0.74 a.u. for a ground-
state energy of —2.902 a.u. (= —79 V) corresponding
closely to that of helium. Figure 2(a) illustrates the
spatial dependence of the total atomic potential energy
and includes the detector box. It has a side-length of
60 a.u. and consists of 500 detectors distributed uni-
formly along its perimeter. The separation between
neighboring detectors is chosen to be finer than the spa-
tial resolution of the discrete wavefunction, making the
enclosure effectively complete in the sense that probabil-
ity current density does not pass the detector box unreg-
istered. Figure 2(b) is a lineout for fixed xo which illus-
trates the potential experienced by an electron when the
other is 75 a.u. away from the nucleus. Lastly, Fig. 2(c)
shows part of the eigenenergy spectrum of this model
atom.

The wavelength of the field is 780 nm (frequency w =
0.0584 a.u.) and its peak intensity is 0.5 PW /cm® (am-
plitude Fy = 0.119 a.u.). These parameters correspond
to the so-called nonsequential double ionization “knee”
regime in helium, where the e-e correlation strength is
enhanced [22, 52]. We take the temporal profile of the
laser pulse amplitude to be trapezoidal with a 6-cycle
plateau period and a 2-cycle linear turn-on and turn-off,
equaling a total pulse duration of 26 fs (the duration of
one optical cycle (o.c.) is 2m/w = 2.6 1s).

III. RESULTS
A. Wavefunction dynamics

In this coordinate representation, the two-electron
wavefunction is attracted to the z; and x5 axes by the nu-
clear potential, and it is repelled away from the x1 = o
diagonal due to inter-electron repulsion (see Fig. 2).
With every half-cycle, the field tilts the total potential
experienced by both electrons, energetically raising or
lowering it toward either the positive or negative side
of their axes. The four quadrants of the position-space
are readily understood: population in the x1z2 > 0 re-
gions signifies a non-zero probability of detecting both
electrons on the same side of the nucleus, and conversely
for population in the x1z2 < 0 regions. Additionally,
near-axis population far from the origin indicates that
one electron is bound while the other is well ionized.

A time-sequence of the 2e probability density p(Z, )
is shown in Fig. 3. Here, one observes the formation of
double-ionization (DI) jets every half-cycle, correspond-
ing to the ejection of both electrons in the same direction
x1x9 > 0. Alternatively, probability density develops in
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FIG. 3. (Color online). Snapshots of the two-electron probability density log,, p(Z,t). White arrow: instantaneous laser

electric force vector, — (1 + Z2)E(t).

Yellow arrows: direction of probability current flow on-axis. The trajectories of four

virtual particles initiated at 3 (1/8) o.c. are shown, which subsequently follow the stream of probability current.

the 129 < 0 quadrants primarily due to sequential field-
ionization, i.e., the electrons tunneling in opposite direc-
tions during opposite field half-cycles. The subsequent
dynamics can be understood from the trajectory evolu-
tion of virtual particles. Consider the four particles born
at tg =3 (1/8) o.c. around #; = (15, —30) a.u. as shown
in Fig. 3, all of which represent sequentially-ionized elec-
tron pairs. As the field reverses direction, the trajectories
illustrate how the first electron is driven back toward the
origin after which it scatters off the nuclear potential and
contributes to the double-ionizing jet population. This
reveals that double-ionization jets are not formed solely
because of both electrons tunneling out in the same laser
half-cycle. It is important to note how the virtual par-
ticles closely mimic the wavefunction probability density
despite evolving according to a classical equation of mo-
tion.

B. Virtual detector signals

The virtual detector signals also provide insight into
the ionization process, particularly regarding the timing
of events. In Fig. 4(a), the readouts of axial probabil-
ity current ji(t) = j(t) - &1 from the left- and right-most
detectors at Zy = (£30,0) a.u. are provided. With each
laser half-cycle, a probability current signal of compara-
ble duration is registered which lags the field crest by
~1/4th of a cycle. These axial, inward-directed current
signals are of particular relevance to the recollision sce-
nario of strong-field ionization, for they are associated
with the virtual particles of bound-recolliding electron
pairs (their dynamical behavior will be analyzed in what
follows). In Fig. 4(b), the two components of j(t) are
provided for the detector at Z4 = (30, 14) a.u., which ac-

cording to Fig. 3 is in the path of a double-ionization
jet. In this case, the probability current signal lags the
electric field crest by ~ 1/8th of a cycle.

The j,(t) signals provided in Figs. 4(a) and 4(b) rep-
resent single- and double-ionization events, respectively,
due to their associated detection points in space. Com-
paring the signal amplitudes, it is seen that the current
density for single ionization is approximately two orders
of magnitude stronger than that for double ionization.
Lastly, the sub-cycle oscillations in j, (¢) are due to spa-
tiotemporal wavefunction interference, and the signals
are modulated by the laser pulse profile in addition to
the depletion of bound population over time.
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FIG. 4. (a) Time series of the #;-directed probability current
density measured 30 a.u. to the right/left (in blue/orange)
of the atomic core. (b) Time series of the #1/Z2 compo-
nents of j(£) (in blue/orange) measured at the detection point
(30,14) a.u. Dashed line: laser electric force profile.



C. Photoelectron momentum distribution

The 2-e probability density exhibits a complex spatial
interference structure arising from field-driven collisions
between different wavepacket components (as evidenced
in Fig. 3). The virtual detector method captures this in-
formation by associating to each particle an initial phase,
given by the local wavefunction phase at birth, and track-
ing its evolution [37]. This brings the quantum-classical
correspondence between the wavefunction and virtual-
particle descriptions closer.

The phase calculation is based on the observation that
the quantum wave of a virtual particle may be approxi-
mated by a Volkov state [20, 21]:

U p(#.t) = (2m) ' exp(ik - @) exp[-iS(t)]  (6)
where k is the wavevector and S(t) = [ dt L is the action
integral of Lagrangian L. In accordance with \I/V,E(fv 1),
the evolving virtual-particle phase is

¢(t) = go — p(t) - F(t) + S(t) (7)

where ¢ is the initial phase from Eq. (2) and p(¢) is
the instantaneous virtual-particle momentum. At the
end of the pulse, the photoelectron momentum distribu-
tion (PMD) is calculated by binning the virtual-particle
weights with their path-integrated phase terms from
Eq. (7):

N
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where N is the total number of virtual particles and 0p’
is the vector of momentum bin widths. Virtual particles
for which either electron is still bound to the nucleus are
omitted from the summation to produce the distribution
of doubly-ionized electron pairs.

From the final position-space wavefunction ¥(Z), the
photoelectron momentum distribution can also be calcu-
lated via Fourier transformation after applying a suitable
masking function M(Z) to filter the bound population:

d(p) = % / d?z e PE(MT)(T). (9)

In this case, M(Z) is a cross-shaped Gaussian filter that
smoothly attenuates the bound population and all singly-
ionized wavepackets within 50 a.u. of the axes. Further, a
cross-shaped momentum-space filter was applied to ®(p)
to remove population for which either photoelectron mo-
mentum was low.

A third and related method of calculating the PMD is
the time-dependent surface flux (¢--SURFF) method [38-
40]. Briefly, it is based on time-integrating the wavefunc-
tion as it passes through a surface in the far field, anal-
ogously to the virtual detector box in Fig. 2. However,
in this case the ionized wavepackets are projected onto
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FIG. 5. The double photoelectron momentum distribution
calculated using (a) 54 million virtual electron pairs in W (p),
(b) the free-space wavefunction ®(p), and (c) the time-
dependent surface-flux amplitude F(p). The upper half of
panel (a) illustrates the effect of neglecting the virtual-particle
phase.

Volkov states whose momenta correspond to the observa-
tion values of interest. Under the aligned 2-e model ge-
ometry considered here, the t--SURFF momentum prob-
ability amplitude is given by [40]

F(@) = // Ridt di (10)
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wherein A(t) is the vector potential whose two compo-
nents are equal to — [ dt'E(t'), R; is the surface integra-
tion radius, and 7 = (cos ¢, sin @) for ¢ = arctan(xs/z1).
In Fig. 5, the double photoelectron momentum dis-
tributions calculated using W (p), ®(p), and F(p) are
provided. In panel (a), the phase-included half of W (p)
(lower diagonal) is sharper than its phase-omitted coun-
terpart (upper diagonal), and it reveals more of the
speckled interference pattern exhibited also by ®(p).
This calculation demonstrates one of the key applications
of the virtual detector method; it is able to effectively en-
code ionized wavepacket information in the form of vir-
tual particles and accurately reproduce the far-field PMD
that would be obtained by full wavefunction analysis.
Furthermore, it is advantageous for analyzing specific fea-
tures in the PMD via trajectory back-propagation. The
virtual-particle distribution is also in excellent qualita-
tive agreement with that obtained by the classical ensem-
ble method in a similar intensity and wavelength regime
(cf. Fig. 3 in Ref. [53]). However, the resolution is much
finer in this case due to the greater number of electron
pairs that comprise the distribution, which is on the or-
der of 107, versus the 10°> members used in Ref. [53].
The t--SURFF PMD in Fig. 5(c) was calculated using
103 surface points at R; = 90 a.u. in Eq. (10), and the in-
tegration time-step was 0.1 a.u. which corresponds to ap-
proximately 103 evaluations per field cycle. In this case,
we find that the t--SURFF PMD lacks many of the fine
details contained in the virtual-particle and Schrédinger
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in grayscale. Initially, electron 1 (in blue) is ionized, while electron 2 (in red) is bound. Inter-electron collisions appear as
sharp cusps in energy, most prominently seen in the bound electron curves. The four sets of panels show (a) nonsequential
double ionization, (b) recollision-excitation with subsequent ionization, (c) bound-ionized electron swapping, and (d) failure to

double-ionize after multiple collisions.

wavefunction PMDs, but qualitatively they share a sim-
ilar overall structure. This may be due in part to a
failure in the Volkov approximation when the two elec-
trons interact strongly. Additionally, we have found that
when the t-SURFF and virtual detector parameters are
set equal (equating the t--SURFF integration radius and
the detector box size, number of surface points and num-
ber of detectors, and so on) the --SURFF PMD does not
accurately approximate ®(p). This suggests that the vir-
tual detector method can operate on generally smaller
TDSE integration volumes than the --SURFF method.

In calculations involving single-active-electron atoms,
interference rings appear in the PMDs whose radii are
integer multiples of v/2w [37]. Thus, they correspond en-
ergetically to local maxima in the above-threshold ioniza-
tion spectrum. In the two-electron case, the e-e interac-
tion further complicates the energy transfer mechanisms
in the atom-field system, and the ripple-like pattern in
Fig. 5 does not have a direct interpretation. Further-
more, the maximum cutoffs in the PMDs correspond ap-
proximately to Fy/w ~ 2 a.u., which is the momentum
amplitude of a classical electron oscillating in a plane
electromagnetic wave.

To conclude this section, we remark on the similarities
and differences between the PMDs calculated in this work
and those obtained experimentally in Refs. [50, 51|, which
employ the cold target recoil ion momentum spectroscopy
(COLTRIMS) [54, 55| coincidence technique. First of all,
the characteristic ‘V’ shape in the p;ps > 0 quadrants is
accurately reproduced by our numerical calculations as
in experiment, and the momentum magnitudes are also
in good agreement. The field intensity and wavelength

considered here are both closest to that in Ref. [50], but
both experimental studies suggest a comparatively larger
probability of measuring electron pairs with longitudinal
momenta p; & po. This discrepancy may be due to the
model screened coulomb potential used in Eq. (5), whose
incorrect second-ionization threshold leads to an exagger-
ated sequential double-ionization yield, as noted previ-
ously. This results in a greater fraction of the population
occupying the anti-correlated pips < 0 quadrants of the
PMD. Moreover, as discussed in Ref. [46], the coulombic
repulsion in the aligned-electron model (characterized by
the diagonal band in the potential of Fig. 2) is exagger-
ated and so tends to distort the double-ionization data as
it prevents the electrons from being ejected in the same
direction with similar momenta. Attempts have been
made to resolve this deficiency in the aligned-electron
approximation, such as the Eckhardt-Sacha model [56]
which leads to more accurate ionization yield and mo-
mentum distribution data [57-59].

D. Virtual electron trajectories

Recall that a single virtual particle in this calculation
represents an interacting pair of virtual electrons. A key
advantage of the virtual detector method is that their
dynamical variables can be tracked in time, providing a
classical view into the ionization and e-e interaction pro-
cesses that is similar to the classical ensemble method and
is reminiscent of alternate formulations of Schrédinger
theory such as Bohmian mechanics [29] and the Feyn-
man path-integral approach [60].



TABLE I. The range of initial energies and momenta of the
virtual electron pairs shown in Fig. 6.

Electron n0.| 1 (in blue) 2 (in red)
Energy 213+ 1072 a.u. —2.67+1072 a.u.
Momentum 207+107% au.  (—4.3402) x 1072 a.u.

In this calculation, there are ~ 50 million virtual parti-
cles, equal to the product of the total number of detectors
and discrete time-steps used. Figure 6(a.1)—(d.1) (top
row) shows the energy-time evolution of a few represen-
tative virtual electron pairs which undergo multiple colli-
sion events. In Fig. 6(a.2)—(d.2) (bottom row), their cor-
responding position-time trajectories are shown overlaid
on the one-dimensional projection of the evolving wave-
function probability density p(z,t) = |f dz’' U(x, o, t)‘2
which in this case is symmetric between electrons x < .
Note once more how the virtual electron trajectories ac-
curately mimic the wavefunction’s oscillatory behavior.

Each virtual electron pair considered here was initial-
ized at (z1,22) = (—30,0) a.u. a few time-steps apart,
beginning around the 4th field cycle. According to
Fig. 4(a) (orange curve), the probability current at this
position and time is flowing in the positive direction to-
ward the nucleus, which signals an upcoming bound-free
e-e collision. In all cases, the first electron is ionized
while the second electron is still bound. In Table I, the
range of initial energies and momenta of each virtual elec-
tron pair is provided to convey their proximity. However,
their subsequent dynamical behavior is significantly dif-
ferent, as evidenced in Fig. 6, revealing the high degree
of sensitivity of the interaction on the initial conditions
which are derived from the wavefunction. For instance,
Fig. 6(a) illustrates the process of nonsequential double
ionization (NSDI) 22, 31, 52] in which a series of energet-
ically favorable collisions occurring approximately every
half-cycle causes the bound electron to transition into
the continuum. Figure 6(b) shows the related process of
recollision-excitation with subsequent ionization (RESI)
[61] in which, following a collision event, the bound elec-
tron occupies an excited intermediate state (in this case,
between t &~ 6 —7 o.c.) from which it is later field-ionized.

Figure 6(c) illustrates a situation in which the bound
and ionized electrons swap following interaction, result-
ing in a singly-ionized atomic state. In this case, the first
electron is recaptured by the nucleus after thrice-colliding
with the second electron, which emerges in the continuum
with more than double the initial energy of the former.
Lastly, Fig. 6(d) shows multiple e-e collision events that
ultimately fail to liberate the bound electron. This sug-
gests that double ionization is more sensitive to the tim-
ing of energy transfers, between the electrons themselves
and the electrons with the field, than it is to the overall
number of collision events. Evidently, the diverse range
of correlated inter-electron behavior can be interpreted
in a direct way using the virtual detector method.

IV. CONCLUSION

We have demonstrated how the virtual detector
method can be applied to probe the evolution of a two-
electron atom and its nonsequential ionization dynam-
ics arising from strong-field irradiation. The detector
signals and virtual particle dynamical variables provide
valuable insights into the behaviors leading up to single-
and double-ionization events, and the electron trajec-
tories accurately mimic the wavefunction evolution in
space and time. Furthermore, the virtual particle mo-
mentum distribution including path-integrated phase in-
formation agrees qualitatively with the full quantum-
mechanical solution based on numerical integration of the
time-dependent Schrédinger equation. Thus, one can use
the virtual detector method to accurately produce the
momentum distribution that would be obtained by full
wavefunction analysis on a comparatively large integra-
tion volume. The possibility of applying the virtual de-
tector method to elucidate other ionization-related pro-
cesses may be explored in the near future.
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