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We demonstrate resonant detection of rf electric fields from 240 MHz to 900 MHz (very-high-
frequency (VHF) to ultra-high-frequency (UHF)) using electromagnetically induced transparency
to measure orbital angular momentum L = 3 → L′ = 4 Rydberg transitions. These Rydberg
states are accessible with three-photon infrared optical excitation. By resonantly detecting rf in the
electrically small regime, these states enable a new class of atomic receivers. We find good agreement
between measured spectra and predictions of quantum defect theory for principal quantum numbers
n = 45 to 70. Using a super-hetrodyne detection setup, we measure the noise floor at n = 50 to
be 13µV/m/

√
Hz. Additionally, we utilize data and a numerical model incorporating a five-level

master equation solution to estimate the fundamental sensitivity limits of our system.

I. INTRODUCTION

Rydberg atoms have recently been used to measure
radio frequency (rf) electric field amplitude [1], polar-
ization [2], phase [3, 4], and angle of arrival [5]. The
detected field amplitude is traceable to fundamental
atomic structure and has led to an artifact-free paradigm
in rf field calibrations [6–9]. Since the rf field sens-
ing region is defined by laser-atom interaction volume,
new opportunities in sub-wavelength rf field visualiza-
tion have emerged [10, 11]. Temporal modulation of the
detected rf field has resulted in communications demon-
strations of atomic reception using: amplitude modula-
tion, frequency modulation (AM, FM) [12–16], Binary
Phase Shift Keying, and Quadrature Amplitude Modu-
lation [17]. A previous study demonstrated that atomic
receivers can operate non-resonantly in the electrically
small regime [18]. In this case, the data switching rate
was taken to be equal to the carrier frequency (DC to 30
MHz) and not resonant with nearby Rydberg transition
frequencies (> 10 GHz). In order for atomic receivers
to be compatible with common broadcast technologies
(AM FM radio, television [19]), they must be able to op-
erate with a tunable carrier frequency distinct from the
data rate. For example, U.S. UHF television channels 14
through 89 [20] occupy a frequency band from 470 MHz
to 890 MHz (with 6 MHZ allocated per channel).

Among the attractive properties of so-called Rydberg
receivers is the fact that they are not subject to the Chu
limit for electrically small antennas [21–23]. This stems
from the difference in the underlying physical mechanism
of rf reception between conducting antennas and atoms.
The Chu limit states that the bandwidth (BW ) is con-
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stricted for electrically small passive conductor antennas,
where the characteristic radius of the antenna is less than
the wavelength of the rf field, `ant < λrf . Specifically

BWChu

f0
.

(2π`ant)
3

λ3
rf

, (1)

where f0 = c/λrf is the carrier frequency and c is the
speed of light in vacuum. For example, for a lossless
electrically small classical antenna with 2π`ant/λrf = 0.5,
the bandwidth is limited to BW/f0 . 0.1 [24].

In a typical Rydberg atomic receiver experiment [12–
17], f0 ≈ 10 to 40 GHz, the BW . 30 MHz, and
the optical path length in the atomic vapor is 0.5 cm
< `v < 10 cm. To create an electrically small atomic
receiver able to surpass a Chu-limited antenna in the 10
to 40 GHz range, atomic receiver bandwidth will need
to be increased about 100-fold while reducing the appa-
ratus size from centimeters to millimeters. However, at
reduced carrier frequency, λrf becomes large such that
`v � λrf . For example, choosing f0 = 300 MHz with
typical atomic parameters (BW = 10 MHz, `v ≈ 3 cm
< λrf = 1 m) enables an electrically small receiver.

Here, we explore nF7/2 → nG9/2 Rydberg transitions
in rubidium vapor with resonances from 240 MHz to
900 MHz for VHF to UHF rf detection. Two demon-
strated approaches to reduce f0 are: (i) to use non-
resonant detection [25–28] and (ii) to increase the prin-
cipal quantum number, n, of resonant detection [1]. In
non-resonant detection schemes, the extension to low rf
frequency requires that the amplitude of the detected
field be large enough (V/cm to kV/cm) to mix in nearby
Rydberg states and can require the interpretation and
simulation of Floquet spectra [26–28]. To maximize sen-
sitivity to incident rf fields, we choose sensors where
Autler-Townes (AT) [29] splitting of Rydberg states
is resonantly detected with electromagnetically induced
transparency (EIT) [30, 31]. Resonant AT-EIT detection
has been shown to sense rf fields with amplitudes near
µV/cm at carrier frequencies defined by the difference in
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energy between Rydberg states [1, 4, 32]. Reducing f0

requires optical excitation to higher Rydberg states that
are increasingly susceptible to perturbation from other
effects, e.g. DC Stark induced state mixing and long
range Rydberg-Rydberg and Rydberg-ground state colli-
sions [33–35]. To our knowledge, the lowest published AT
EIT-detected rf signal is at 724 MHz with n > 130 [7].
Higher angular momentum (nF7/2 → nG9/2) Rydberg
transitions are more than an order of magnitude lower
in energetic separation at a given principal quantum
number compared to lower angular momentum transi-
tions (see Fig. 3). Using these higher angular momen-
tum states, we demonstrate resonant AT EIT rf sensing
with f0 from 240 MHz to 900 MHz using n = 75 to
n = 40. To achieve f0 = 240 MHz using the more fa-
miliar nP3/2 → (n − 1)D5/2 transitions would require
excitation to n > 200.

This paper is structured as follows: In Sec. II we
present our experimental apparatus and present measure-
ments of rf transitions between nF → nG. In Sec. III we
present a numerical model and in Sec. IV use it to assess
the sensitivity of the system estimate the fundamental
noise limits of our data. Finally, in Sec. V, we conclude
with an outlook for future work.

II. EXPERIMENT

To access Rydberg states with orbital angular momen-
tum, L > 3, we use the three photon ladder system
shown in Figure 1 a. This ladder system has previously
been studied in a number of contexts including funda-
mental atomic structure [36, 37], rf field calibration in
the 100 GHz range using both EIT and electromagnet-
ically induced absorption [38], time domain signal re-
ception at 1.2 GHz [39], and quantum optics [40]. A
variety of other multi-photon Rydberg excitation path-
ways have been explored [41–45] however, none of these
have been used to optically couple to L ≥ 3 states [46].
This ladder system is appealing for a number of reasons.
First, it utilizes transitions accessible by diode lasers.
The two initial steps are also accessible by frequency-
doubled telecom band fiber-lasers with linewidth be-
low the Rydberg-state linewidth. Second, the transi-
tion dipole moments between successive ladder states are
larger than in one- or two-photon Rydberg excitation
(increasing Rabi-excitation rates for fixed optical pow-
ers). Third, the near degeneracy in optical frequency
between the first two steps in optical excitation allows
access to a broader range of atomic velocity classes in a
vapor cell [38][47].

The EIT probe laser beam addresses the 5S1/2, F =
2 → 5P3/2, F ′ = 3 transition at 780 nm. The effec-
tive Rydberg EIT coupling beam is comprised of a two-
step optical excitation with a variable intermediate de-
tuning from the 5D5/2, F = 4 state. The 5P3/2, F =
3 → 5D5/2, F

′ = 4 dressing transition is at 776 nm, and
the 5D5/2, F = 4 → nF7/2, F

′ = 5 (or nP3/2, F
′ = 3)

is tuned from 1260 nm to 1253 nm to access n = 45 to
n = 70 Rydberg states. The intermediate detuning from
the 5D5/2 state can be adjusted to trade Rydberg ex-
citation rate and intermediate-state-lifetime broadening
effects.
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FIG. 1. (a) Level diagram for F -state Rydberg excitation and
rf induced Autler-Townes splitting in 87Rb. Three electric
dipole-allowed infrared transitions connect the ground state
to the Rydberg nF7/2 (or nP3/2) states. Dashed virtual lev-
els show the single photon detunings of each step from atomic
resonance. UHF to VHF fields, depicted with a green bidi-
rectional arrow, can be detected via Autler Townes splitting
on the nF → nG Rydberg transitions while 1 GHz to 500
GHz can be detected on nS → nP , nP → (n − 1)D, and
nF → (n+ 1)D transitions. (b) Experimental schematic: the
780 nm probe beam counter propagates in a Rb vapor cell
with 776 nm and 1260 nm beams which form the effective
EIT coupling beam. PD: photodiode; DBS1,2: dichroic beam
splitter; BD: beam displacer; Pset: polarization optics con-
sisting of a λ/2 waveplate and a polarizing beam splitter cube
for power control followed by λ/2 and λ/4 waveplates for po-
larization control.

The optical layout is shown in Figure 1 b. Our rf sens-
ing volume consists of a 75 mm long, 19 mm diameter
cylindrical atomic vapor cell with counter-propagating
probe and dressing and coupling laser beams. The room
temperature quartz vapor cell is filled with isotopically
pure (98 %) 87Rb, and has wedged fused silica windows
at a 11◦ angle with respect to the laser beam propagation
direction. After interacting with the atomic medium, the
780 nm probe beam is split from the 776 nm and 1260 nm
beams and monitored with a photodiode.

The 780 nm, 776 nm, and 1260 nm beam waists (1/e2

radius) are measured to be 587(60) µm, 598(60) µm,
and 592(60) µm with typical powers of 141(9) µW,
13.7(8) mW, and 233(14) mW, respectively. We esti-
mate the upper bounds for optical excitation Rabi rates
using the stretched-state dipole matrix elements to be
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2π×17(3) MHz for the 780 nm transition, 2π×52(6) MHz
for the 776 nm transition, and 2π×13(2) MHz {2π×7(1)
MHz} for the 1260 nm transition to n = 45 {n = 70}[34].
The 780 nm and 776 nm lasers are frequency stabi-
lized to reference vapor cells using one and two color
polarization-rotation spectroscopy [48, 49], respectively.
The probe laser is locked 10 MHz below the optical cy-
cling 5S1/2, F = 2 → 5P3/2, F = 3 transition. The in-
termediate coupling laser is locked 30 MHz below the
5P3/2F = 3 → 5D5/2F = 4 transition. The 1260 nm
laser can either be locked to a wavemeter or scanned
across the three photon resonance.

The 780 nm probe intensity is measured by a photodi-
ode during a scan of the 1260 nm laser frequency across
EIT resonance. To suppress probe-laser intensity noise,
we can optionally use a reference probe beam without
counter-propagating lasers and a differential photodetec-
tor [4, 50]. To calibrate the 1260 nm laser frequency scan,
we simultaneously record the transmission of a fiber-
based Michelson interferometer with a free spectral range
of 30(3) MHz, allowing frequency scan non-linearity to be
removed in post-processing. The scan center frequency is
recorded on a wavemeter with ±50 MHz accuracy. This
wavemeter accuracy is sufficient to identify the principal
quantum number of each Rydberg transition; it is not
used to measure rf transition frequencies.

The source of rf radiation in our setup is a linear 17 cm
monopole antenna connected to an rf synthesizer and
placed roughly 20 cm away from the vapor cell. The
cell and antenna are mounted 15 cm above an aluminum
bread board on a dielectric post. We expect non-trivial
contributions from the breadboard to the overall radia-
tion pattern of the antenna since the separation is smaller
than the 33 cm to 1.5 m rf wavelengths investigated here.

When the resonant nF → nG rf radiation coupling
strength exceeds the EIT linewidth, the EIT line splits
into two Autler Townes peaks. Figure 2 a shows the AT
splitting of the 50F → 50G transition as a function of
1260 nm laser detuning, in good agreement with a five-
level optical Bloch equation simulation of the spectrum
(see section IV for further discussion). The observed EIT
linewidth is primarily due to power broadening associ-
ated with the dressing and coupling Rabi rates and de-
tuning from the intermediate D5/2 state. In Figure 2
b we plot the measured Autler-Townes peak frequency
splitting of the 50F → 50G transition as a function of
the applied UHF electric field. This shows the expected
linear scaling, applicable for use as an rf power stan-
dard [1, 7, 9]. The rf electric field can be calculated as:

| ~E| = ~
µR

ΩRF (2)

using measured AT splitting, ΩRF, and the known transi-
tion dipole moment µR. The slope of Figure 2 b. and the
Rydberg transition dipole moment (for the |mJ | = 1/2
π-transition of 50F → 50G, µR = 1858ea0 [34]) can be
used to calibrate the apparatus calibration factor from
signal generator power Ps to electric field at the atomic
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FIG. 2. (a) AT-EIT Spectrum of the 50F → 50G transi-
tion with an applied rf field of 655 MHz (red). A 5-level
simulated spectrum is underlaid with the data (blue). (b)
Autler-Townes splitting of the 50F → 50G EIT signal as a
function of applied UHF electric field. Point markers (red)
are the measured uncertainties, with a linear fit to guide the
eye (blue). This plot confirms the expected linear scaling be-
tween rf electric field and Autler-Townes splitting.

sample, ξ = |E|P−1/2
s . This will be used in section IV to

evaluate the sensitivity of our system.
Figure 3 illustrates the > 10x reduction in carrier fre-

quency (increase in wavelength) at a given n that can be
attained by using transitions between higher (L ≥ 3)
angular momentum states. The experimentally mea-
sured resonant transition frequencies and uncertainties
are shown in green. The measurements are in good agree-
ment with carrier frequencies computed from the 85Rb
G-series quantum defect model [51–54] after mass scal-
ing [55]. These quantum defect-derived carrier frequen-
cies are shown as solid curves, with the nF7/2 → nG9/2

transitions shown in green. The upper curves on this
graph show resonant transition frequencies as a function
of n for transitions with lower (L ≤ 3) orbital angular
momenta: nS1/2 → nP3/2, nP3/2 → (n − 1)D5/2, and
nF7/2 → (n+ 1)D5/2. These transitions were chosen be-
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FIG. 3. The upper three (blue-dashed, red, and black) curves
show calculated rf carrier frequencies [34] of commonly used
lower angular momentum Rydberg states accessible by two
photon optical excitation. The middle (green) curve, located
primarily in the UHF band, is the calculated rf carrier fre-
quency associated with nF7/2 → nG9/2 transitions; the over-
laid (green) point markers with uncertainty show correspond-
ing measured carrier frequencies in the n = 45 to n = 70
range. The lowest (yellow) trace shows the calculated rf car-
rier frequency associated with nG9/2 → nH11/2 transitions.

cause they have the largest dipole matrix elements and
thus are the most sensitive for communications applica-
tions.

To determine the resonant Rydberg transition fre-
quency in Fig 3, we record the amplitude and separa-
tion of the Autler-Townes peaks as in Fig 2 a. [56]
On resonance, the amplitude of the peaks is equal and
the separation between the two peaks is minimized. Off
of resonance, the peak amplitudes become imbalanced
and the peak separation increases. The peak separations
as a function of rf frequency reveal an approximately
quadratic minimum about the rf carrier frequency. Spec-
tra were recorded in a 30 MHz region approximately cen-
tered about the nF → nG transition frequency, with a
frequency step size of 1 MHz. The peak positions are
found by fitting independent Gaussian functions to each
Autler-Townes peak. The peak separations are then fit to
a quadratic to determine Rydberg resonance, with com-
bined fit uncertainties of < 24 MHz on average. We
repeat this measurement for several principal quantum
numbers in the n = 45 to n = 70 range.

For this measurement at n = 70, the vapor cell is more
than an order of magnitude smaller than the rf wave-
length (`vapor/λrf ≈ 0.05). Carrier frequencies may be
further reduced using high angular momentum Rydberg
states, and future experimental work will will investigate
the lower-frequency limits of this approach. For example,

the nG9/2 → nH11/2 transitions, shown at the bottom of
Figure 3, are a factor of 4.6 lower in frequency at a given
principal quantum number than the nF7/2 → nG9/2

transitions. These transitions can be accessed with ad-
ditional rf fields. However, when the energetic spacing
between transitions approaches the Rabi coupling rate
(or potentially data bandwidth in communications ap-
plications) between the Rydberg states of interest, the
incident rf will couple nearly resonantly to other higher
L dipole allowed transitions. This will result in complex
spectra not easily interpreted for use in calibration or
communication.

III. NUMERICAL MODEL

We develop a numerical model to benchmark our ex-
perimental data and compute fundamental sensitivity
limits. We use a master equation formalism to simu-
late the light-atom interaction, as in previous work [38,
57, 58]. We numerically compute the steady-state den-
sity matrix for the thermal 87Rb sample. Our nu-
merical model includes the experimental laser beam
and rf intensities, propagation directions, polarizations,
and frequency detunings from relevant Rb electronic
transitions. We account for a number of state decay
(T1) and dephasing (T2) processes via Lindblad opera-
tors [59]. These transition broadening processes include
finite laser linewidth, Rb state decay, transit broaden-
ing, and electronic-state-dependent collisional broaden-
ing (see Fig. 4). We model the system using the five
electronic states: 5S1/2, 5P3/2, 5D5/2, nF7/2, and nG9/2

while neglecting the full 45-level Zeeman structure for
computational efficiency. The steady state is calculated
for a range of atom velocities chosen from the Maxwell-
Boltzmann distribution.

To account for collision broadening effects, we cal-
culate Van der Waals (C6) coefficients [60] for both
Rydberg-Rydberg (nF7/2-nF7/2 and nF7/2-nG9/2) and
5S1/2-Rydberg atomic collisions. We then use the eikonal
approximation with the optical theorem [61] to calculate
the total rate ΓSR (ΓRR) for 5S1/2-Rydberg (Rydberg-
Rydberg) collisions as shown in Fig. 4. We include 5S1/2-
Rydberg collisional broadening using a phenomenological
jump operator of the form ΓSR(|5S1/2〉〈R|+ |R〉〈5S1/2|),
where |R〉 is the relevant Rydberg state.

We calculate a transit broadening rate coefficient as the
inverse of the average laser beam transit time using a va-
por cell temperature T = 300 K and the beam waists and
generate a corresponding Lindblad operator by summing
the outer products of each state vector with the ground
state to indicate a T1 decay. Similarly, we include Lind-
blad operators for the laser linewidth broadening and the
various atomic state lifetimes. The magnitude of each de-
phasing rate is represented in Fig. 4, in addition to a “to-
tal atom” dephasing rate, which is the sum of all of the
non-laser-dependent atomic broadening effects (collisions
and Rydberg state lifetime). Remaining broadening not
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included in this model may be due to electric field inho-
mogeneity in the applied rf or nonuniform distribution of
metallic rubidium within the vapor cell along the axis of
beam propagation. Figure 4 shows two atomic structure
limitations to coherence time. At low principal quan-
tum number short atomic lifetimes dominate, while at
high principal quantum number Rydberg-Rydberg col-
lisions dominate. The atom-limited dephasing rate is
therefore minimized at intermediate principal quantum
number 40 < n < 80. This optimal atom-limited sen-
sitivity again supports the choice to use L ≥ 3 states
to achieve lower rf carrier frequencies rather than simply
going to higher n states.

To compare with absorption measurements, we com-
pute the detuning-dependent optical absorption coeffi-
cient (α) experienced by the 780 nm probe laser beam
as [38]

α =
2kpnV εµp
ε0Ep

, (3)

where

ε =

∫ ∞
−∞

P (vx)Im(ρ01)dvx (4)

is the atomic excitation fraction obtained via in-
tegration of the velocity-dependent quantity Im(ρ01)
weighted by the Maxwell-Boltzmann velocity distribu-
tion along the beam propagation direction, P (vx) =√

m
2πkT exp(−mv

2
x

2kT ). In Eq. (3), kp is the probe laser k-
vector magnitude, Ep is the probe laser electric field, nV
is the volumetric number density of 87Rb atoms in the

cell, µp is the electric dipole moment of the 5S1/2 →
5P3/2 probe transition, and ε0 is the permittivity of vac-
uum. Finally, we compute the fractional probe laser
beam transmission as exp(−α`v).

IV. SENSITIVITY ASSESSMENT

We characterize the sensitivity of our system using
the 50F → 50G transition. Experimentally we imple-
ment super-heterodyne detection [3, 4] using two rf fields:
a signal field Es cos [(ωLO + δ)t] and a local oscillator
ELO cos (ωLOt− φLO). We first make a series of calibra-
tion measurements to obtain ξ (Fig. 2b) relating the sig-
nal generator power setting Psto the electric field through

Eq. 2 and ξ = |E|P−1/2
s . We choose ΩLO ≈ Γ to bias

the sensor to maximum sensitivity [60] and apply a cal-
ibrated signal field Es � ELO. When δ � ωLO and
δ is within the atomic response bandwidth, the time-
dependent atomic response is Es/2 cos(δt+φLO) [62] The
beatnote amplitude then serves to calibrate the receiver
response χ between the photodiode voltage and signal
field Es. We measure an amplitude spectral density noise
floor of En = 13(2)µV/m/

√
Hz for the 50F − 50G tran-

sition. The LO parameters are ELO = 0.37 V/m (corre-
sponding to ΩLO/2π = 9.5 MHz) at ωLO/2π = 655 MHz.
The signal field parameters are Es = 9.3 mV/m with
δ/2π = 50 kHz. Both fields are applied via the same rf-
horn. Figure 5 compares this calibrated amplitude spec-
tral density with those of the probe only (without the
dressing or coupling lasers) and the electronic noise floor
without probe. We find the noise dominated by probe
detection and well above the photon shot noise floor, in-
dicating room for further improvement.

The fundamental sensitivity limits of Rydberg vapor
quantum sensors are determined by the quantum pro-
jection noise and the photon shot noise [63]. Below, we
utilize our model and measurements to estimate the ap-
plicable limits to our system in the UHF frequency range
investigated here.

The quantum projection noise limited sensitivity to an
rf electric field amplitude Eqpn is

Eqpn =
~
µR

1√
NT2t

, (5)

for the coherence time T2 and t is the total measurement
time. The number of atoms participating in the measure-
ment is N = εnV V for an interaction volume defined by
optical beam geometry V = πw2

0`eff for beam waists w0

and effective interaction lenth `eff . Typical parameters
in our simulations yield 10−3 < ε < 10−2, significantly
less than an estimation based on all available atoms in
the laser beam column [63, 64]. At principal n = 50
at room temperature and the experimental parameters
defined above, we estimate ε = 10.7 × 10−3 and partici-
pating atom number N ∼ 106. We use the bare EIT full
width at half maximum Γ = 2π × 9.7 MHz to estimate
T2 = Γ−1 [4] and estimate ∆Eqpn = 38 nV/m/

√
Hz.
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The photon shot noise for a single photodiode intensity
measurement is ∆Ipsn =

√
2e(ηeΦp)∆f , where e is the

electron charge, η is the photodiode quantum efficiency,
Φp is the probe photon flux incident upon the photodi-
ode, and ∆f is the measurement bandwidth [32]. Using
the transimpedance amplifier gain Gv and the receiver
response Gvχ = (V/(V/m)) in volts per applied Esig, we
can express this as a field sensitivity limit

∆Epsn = Gvχ∆Ipsn. (6)

The photon shot noise in Fig. 5 is ∆Epsn =

1.6µV/m/
√

Hz, a factor of 40 higher than Eqpn. Techni-
cal improvements that will be pursued in future work to
reach the photon shot noise limit include intensity sta-
bilization and the addition of a laser to repump ground
state population [50] and potentially comb-based optical
probing [65].

V. OUTLOOK

We have demonstrated AT-EIT rf field sensitivity on
nF → nG Rydberg transitions that enable resonant
electrically small UHF receivers. Future work includes
recording temporally modulated fields to characterize
sensitivity and bandwidth at UHF and lower frequen-
cies. This can be done by using portable laser systems
and operating in a controlled rf-environment, since λrf is
comparable to or larger than many optical elements. Fur-
thermore, this approach is compatible with using auxil-
iary rf fields to Stark-tune the desired rf frequency [57, 66]
offering continuous tuning between atomic transitions.

The three photon all-infrared optical excitation ap-
proach also offers a number of benefits that may be
further explored. The three optical beams may be
aligned in a planar orientation to achieve Doppler-free
and recoil-free excitation [67–69] potentially enabling Ry-
dberg lifetime-limited narrow spectral features useful in
precise rf field calibrations. Infrared optical excitation
may also enable simplified all-dielectric vapor cell sensor
heads with more uniformly applied EIT coupling fields
compared to infrared-blue excitation [70]. This should
reduce transit broadening and increase sensitivity in a
deployable package.
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