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This paper considers a quantum node tasked with the teleportation of multiple information car-
rying qubit (ICQ) streams, each to a different receiver, by means of entanglements, local operations,
and classical communication. Our vision is that the node establishes entangled qubit pairs (EQPs)
with the receivers before the arrival of ICQs, rather than waiting for their arrival. In this vein, the
paper focuses on the class of protocols referred to as class I that instantaneously teleport arriving
ICQs using pre-established EQPs, preventing arriving ICQs from decohering. The excess ratio εr
is introduced as a quantifier of the system resources per arriving ICQ and εr = 1 is shown to be
a critical threshold. With εr > 1: for arrival streams characterized by interarrivals stochastically
larger than exponential random variables, any member of I teleports all arriving ICQs after a fi-
nite transient. With εr < 1: for stationary ergodic arrival streams, there exists no protocol that
teleports all arriving ICQs after a finite transient. This work thus establishes the ultimate limit for
distributing quantum states with finite lifetime. Within I, a protocol referred to as fresh informa-
tion delivery (FID) is introduced and its optimality is proven. The operational characteristic of FID
is provided in terms of the tradeoff between the waiting time of the EQP before it is utilized for
teleportation and the excess ratio. Numerical experiments, comparing the proposed FID protocol
with alternatives, corroborate the theoretical results. The results in this paper can be used for
designing quantum nodes, paving the way for the implementation of the future quantum internet.

Keywords: Quantum Networks, Quantum State Distribution, Renewal Stochastic Processes, Finite Lifetime
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I. Introduction

The next technological revolution is expected to be driven
by quantum information science [1–3], which will trans-
form many fields including sensing, communication, con-
trol, computing, positioning, navigation, timing, and
more [4–14]. A crucial step towards this revolution in-
volves storing quantum states and distributing them to
spatially separated locations, paving the way for the
quantum internet [15–17]. The future quantum internet
is amongst the foremost anticipated technological break-
through [18].
One key physical phenomenon enabling the design of

future quantum networks is entanglement, a purely quan-
tum phenomenon with no classical counterpart [19–21].
Entanglement is the enabling mechanism for quantum
teleportation and plays a key role in quantum informa-
tion science [22–26]. The simplest form of a quantum
state suitable for teleportation is the qubit, which is a
representation of a two-level quantum system such as the
polarization of a single photon or the spin of an elec-
tron [27, 28].
Approaches, guidelines, and technological solutions

that drove the development of the internet in the last
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few decades are not directly applicable to the design of
the quantum internet [15–17]. While prototypical real-
word applications of quantum networks composed of a
few nodes are foreseeable [18], there are several challenges
in realizing large-scale quantum networks.
Storing, processing, and transmitting quantum states

are difficult tasks due to the decoherence phenomenon
caused by the uncontrolled interactions between the
quantum states and the environment. The environ-
ment behaves as a source of quantum noise which re-
duces the fidelity of quantum states [29, 30]. In addi-
tion, quantum states cannot be cloned [24, 31–33], mak-
ing it impossible to replicate information as in classical
repeaters. To efficiently transmit quantum information
over long distances, quantum repeaters [34, 35], entan-
glement distribution operations [29, 34], and distillation
operations [36–38] have been proposed.1

A crucial building block of future quantum networks is
a quantum node that can perform two basic operations:
(i) stores local qubits of entangled qubit pairs (EQPs)
shared between the source node and different destination
nodes; and (ii) teleports arriving information carrying
qubits (ICQs) to the intended destinations utilizing the
stored EQPs. Classical fundamental limits for the trans-
mission of qubits that decohere while waiting in a queue

1 Quantum error correction techniques [9, 39, 40] can also be used
for direct transmission over long distances. However, these tech-
niques require a large overhead and their implementation remains
largely problematic.
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have been derived in [41]. The design of the operative
modality of a quantum node is addressed in [42], based
on the assumption that quantum states do not decohere
in time, i.e., they have an infinite lifetime. However, life-
time of quantum states is limited by the decoherence phe-
nomenon and it may significantly affect the performance
of practical quantum networks. Thus, finite lifetime of
quantum states needs to be accounted in the design of
quantum network.
A central question related to the distribution of quan-

tum states with finite lifetime2 is: “How can protocols
be designed to prevent decoherence of the arriving ICQs
while efficiently utilizing EQPs?” The answer will make
a substantial stride towards enabling quantum networks
using noisy intermediate-scale quantum (NISQ) technol-
ogy. The goal of this paper is to design robust, scalable,
and reliable protocols for distributing quantum states.
Towards this end, protocols that immediately teleport
the arriving ICQs utilizing pre-established EQPs with an
appropriate establishment rate are conceived. The con-
cept is motivated by observing that information carried
by the arriving qubits cannot be replaced whereas estab-
lished EQPs can be replenished. In designing the proto-
cols the arrival time of ICQs and the establishment time
of EQPs are modeled as point processes. The arriving
ICQs and the established EQPs have finite lifetimes in
the sense that their states decohere in time.
This paper develops a framework in which distribut-

ing quantum states with finite lifetime is formulated as
a problem of matching points that belong to two point
processes. The key contributions are as follows:

• identification of the excess ratio εr as a fundamen-
tal parameter providing a threshold for statistical
consistency of the protocols;

• establishment of the ultimate limit for distribut-
ing quantum states with finite lifetime by means of
statistically consistent protocols;

• proof of optimality for the fresh information deliv-
ery (FID) protocol amongst all the instantaneous
protocols; and

• derivation of a simple and accurate closed-form for-
mula for the operational characteristic of the FID
protocol.

The remaining sections are organized as follows. Sec. II
introduces the basic elements of the quantum node and
describes the problem setting. Sec. III presents the quan-
tum protocols studied in the paper. The optimality of
the FID protocol is proven in Sec. IV. Characterization
of the protocols is discussed in Sec. V. A brief recapitula-
tion of the main analytical results is provided in Sec. VI.

2 For brevity, a quantum state that decoheres in time is referred
to as a “quantum state with finite lifetime.”

Sec. VII contains numerical experiments that corroborate
the analysis. Finally, Sec. VIII summarizes the findings
of the paper.
Notations : The set of integers, nonnegative integers,

positive integers, real numbers, nonnegative real num-
bers, and positive real numbers are respectively denoted
by Z, N0, N, R, R

+
0 , and R

+. The set of integers
{
1, 2, . . . , N

}
is denoted by IN . Quantum states and

quantum density operators are denoted by bold lower-
case (e.g., φ) and bold uppercase (e.g., Ξ) letters, re-
spectively. Random variables (RVs) are displayed in sans
serif, upright fonts; their instantiation in serif, italic fonts.
For example, a RV and its instantiation are denoted by
x and x, respectively. The functions fx(x) and Fx(x) de-
note the probability distribution function (PDF) and the
cumulative distribution function (CDF) of the RV x, re-
spectively. The notation x ∼ E(L, λ) denotes that the
RV x follows the indicated distribution where, as an ex-
ample, the Erlang distribution with parameters L ∈ N

and λ ∈ R
+ is used. Statistical expectation and prob-

ability operators are represented by E{·} and P{·}, re-
spectively. For two RVs x and y, x is stochastically larger
than y, written x < y, if P

{
x > t

}
≥ P

{
y > t

}
for all

t ∈ R. The indicator function of the set S is denoted by
1S(·), i.e., 1S(s) = 1 if s ∈ S and 1S(s) = 0 if s /∈ S.
The symbol K

{
S
}

denotes the number of elements in

the set S, with K
{
∅
}
= 0 where ∅ is the empty set. For

a ∈ R, (a, a] = ∅. Finally, Γ(x) =
∫∞
0 tx−1e−t dt denotes

the Gamma function and u(·) is the unit step function,
i.e., u(x) = 1 for x ≥ 0, and u(x) = 0 otherwise.

II. Model and assumptions

A quantum node is composed of: (i) L ≥ 1 queues, each
equipped with a dedicated quantum memory for stor-
ing ICQs intended for receiver ℓ ∈ IL; (ii) a platform
for establishing entanglements with the L receivers; and
(iii) a shared quantum memory for storing local qubits of
EQPs shared with each of the L receivers. For simplicity,
this paper considers a single-hop connection between the
quantum node and each of the L receivers. The problem
being addressed here is complementary to that consid-
ered in [42]; there the lifetime of the quantum states is
infinite and the memory size is limited, while in this work
the lifetime of the quantum states is finite and the mem-
ory size is treated as unlimited.3

A. Memories

Two kinds of memories are involved, namely informa-
tion qubit memory (IQM) and entangled qubit mem-
ory (EQM). IQM is not needed in the special case of

3 Note however that the finite lifetime of the quantum states pre-
vents the accumulation of a large number of “alive” qubits in
the system. Indeed, in practical implementations, qubits stored
in the memory for a long time can be eliminated with negligible
impact on the system performance.
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immediate ICQ teleportation. This paper considers on-
demand access to the memory, i.e., quantum states can
be stored and retrieved instantaneously with no fidelity
penalty associated with such accesses [30]. The consider-
ations in this paper hold for general memory models. For
concreteness, reference can be made to a hybrid imple-
mentation in which travelling light-based quantum states
are linked to matter-based quantum memories.
Light-matter coupling is a promising area of research

for the development of devices capable of storing, pro-
cessing, and transmitting quantum states [15, 27, 43–45].
Using light-matter coupling technology, a decoherence-
protected memory has been realized for a single-photon
qubit with coherence times on the order of 100 ms, av-
erage fidelity of about 0.8, and storage-and-retrieval effi-
ciency of 22% [45].

B. Arriving ICQs

The state of arriving ICQs is unknown to the quantum
node and these ICQs arrive with a “label” indicating
their destination.4 Upon arrival, they are either tele-
ported immediately or stored in the pertinent queue. For
concreteness, ICQs as well as EQPs can be thought of as
polarized photons which are excellent carriers and one
of the most effective forms of “flying qubits” [28]. How-
ever, the approach developed in this paper is applicable
to other kinds of physical qubits. Special attention will
be paid to the case where arriving ICQs are immediately
teleported,5 which prevents them from decohering and
relaxes the requirement of the L memories for storing
them in the queues.
The theoretical results in Sec. IV are valid for ICQ

arrival processes described by general point processes.
Specific statistical models for the arrival times of the
ICQs are used in Sec. V. In particular, Theorem 4 is
valid for any renewal process with interarrivals stochasti-
cally larger than exponential RVs. Theorem 5 is valid for
any stationary ergodic interarrival process. Both theo-
rems cover the homogeneous Poisson point process (PPP)
model [47] as a special case. For brevity, the term PPP
will be used to refer to the natural and popular homoge-
neous PPP [48–51].

C. ICQ decoherence models

Let the two-dimensional Hilbert space H2, having
{
|0〉, |1〉

}
as computational basis, be the reference space

for ICQs. Let Ξ0 be the density operator representing
the quantum state6 of the arriving ICQ. As soon as an

4 For example, the insertion of labels can be obtained by “piggy-
backing” classical information on a stream of qubits [46].

5 Here “immediately” means that the local operations and classical
communication (LOCC) required to teleport the ICQ begin as
soon as it arrives, in contrast to the case in which the ICQ is
stored in a memory and retrieved at a later time to perform
LOCC for teleportation.

6 For brevity, the term “quantum state” will be used for “density
operator describing the quantum state” whenever there is no
ambiguity.

arriving ICQ is stored in the IQM, it starts to decohere.
Let τ ∈ R

+
0 denote the waiting time (in seconds) of the

ICQ, namely the duration that the ICQ is stored in the
IQM before it is teleported. The following three decoher-
ence models deserve special attention.

• Depolarizing model : After a time interval of dura-
tion τ , the original quantum state Ξ0 becomes

Ξτ = pτ Ξ0 + (1− pτ ) I2/2 (1)

where I2/2 =
(
|0〉〈0| + |1〉〈1|

)
/2 is the one-qubit

maximally-mixed state [24, 25].

• Erasure model : After a time interval of duration τ ,
the original quantum state Ξ0 becomes

Ξτ = pτ Ξ0 + (1− pτ ) |v〉〈v| (2)

where |v〉 is some pure state in a Hilbert space that
is different from H2 [25, 41].

• Bi-state model : The original quantum state Ξ0 re-
mains unaffected for a fixed time interval of du-
ration 1/rq, rq ∈ R

+, and then becomes |v〉〈v|,
namely,

Ξτ = 1Grq
(τ)Ξ0 + 1Brq

(τ) |v〉〈v| (3)

where Grq = [0, 1/rq] and Brq = (1/rq,∞).

A generally accepted model for the probability pτ in (1)
and (2) is exponential [24], i.e.,

pτ = e−rqτ (4)

where rq ∈ R
+ is the decoherence rate (in Hz) of ICQs.7

The bi-state model (3) can be obtained from the erasure
model (2) with pτ = 1 for τ ∈ Grq and pτ = 0 for τ ∈ Brq .

D. Establishment of EQPs

The platform for establishing entanglements in the quan-
tum node supplies EQPs, entangled with each receiver,
for teleporting the arriving ICQs. This paper considers
a fully heralded entanglement establishment mechanism,
similar8 to that in [29, 42], which makes multiple at-
tempts until an EQP is successfully established with a
given receiver. Let

λe , EQP establishment rate (Hz) (5)

λa , entanglement attempt rate (Hz) (6)

ps , probability of successful attempt (7)

7 The environment, e.g., a quantum memory, causing a quantum
state to decohere exponentially in time is called “Ohmic.” In this
model, the state is coupled with a bath of harmonic oscillators.

8 In [29] the system is composed of nitrogen vacancy diamond spin
qubit nodes separated by only two meters.
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with λe ∈ R
+, λa ∈ R

+, and ps ∈ (0, 1]. The number
of attempts to obtain the first occurrence of a success
is a discrete geometric RV [52, 53]. Clearly, λe = λa ps.
Assuming λa ≫ λe, namely ps ≪ 1 [29], the geometric
RV can be approximated by an exponential RV having
expected value 1/λe. Thus, the random establishment
delay z ≥ 0 (in seconds) needed to successfully establish
an EQP with a given receiver satisfies

P
{
z > z

}
= e−λez, z ≥ 0 . (8)

As soon as a success is achieved, the established EQP is
stored in EQM9 and a new series of attempts starts again,
and so forth indefinitely. Successive establishment delays
are independent and identically distributed (IID) [42].
These settings will be used in Sec. VA to derive the sta-
tistical model for the establishing times of the EQPs.
When the classical communication delay dominates

platform-dependent delays, the time needed to complete
an attempt is limited by the propagation distance. De-
noting by c the speed of light, this time is 3× 103/c ≈ 10
µs for a receiver located at a distance of 3 km from the
quantum node (100 µs at a distance of 30 km), which
corresponds to the attempt rate λa . 105 Hz (λa . 104

Hz). These values will be used to compute λe in (16) of
Sec. II E.

E. EQP decoherence models

Let the four-dimensional Hilbert space H4, having
{
|00〉, |01〉, |10〉, |11〉

}
as computational basis, be the ref-

erence space for EQPs. Suppose, for concreteness, that
the established EQP is a depolarized version of the
maximally-entangled Bell state |φ+〉 =

(
|00〉+ |11〉

)
/
√
2.

In this case,

Ξ0 = w0 |φ+〉〈φ+|+ (1 − w0) I4/4 (9)

where 0 ≤ w0 ≤ 1 and I4/4 =
(
|00〉〈00| + |01〉〈01| +

|10〉〈10|+ |11〉〈11|
)
/4 is the two-qubit maximally-mixed

state [24, 25]. As soon as the established EQP is stored
in the EQM, it starts to decohere. Let τ ∈ R

+
0 denote

the waiting time (in seconds) of the EQP, namely the
duration that the local qubit of the EQP spent in the
EQM before it is utilized for teleportation. The following
three decoherence models, analogous to those in (1), (2),
and (3) for a single qubit, concern a pair of qubits.

• Depolarizing model : After a time interval of dura-
tion τ , the original quantum state Ξ0 becomes

Ξτ = pτ Ξ0 + (1 − pτ ) I4/4 (10)

• Erasure model : After a time interval of duration τ ,
the original quantum state Ξ0 becomes

Ξτ = pτ Ξ0 + (1− pτ ) |v〉〈v| (11)

9 In many scenarios of practical interest, the EQM consists of two
local EQMs each of which stores the local qubit of the EQP.

where |v〉 is some pure state in a Hilbert space that
is different from H4.

• Bi-state model: The original quantum state Ξ0 re-
mains unaffected for a fixed time interval of du-
ration 1/re, re ∈ R

+, and then becomes |v〉〈v|,
namely,

Ξτ = 1Gre
(τ)Ξ0 + 1Bre

(τ) |v〉〈v| (12)

where Gre = [0, 1/re] and Bre = (1/re,∞).

The probability pτ in (10) and (11) is given by

pτ = e−reτ (13)

where re ∈ R
+ is the decoherence rate (in Hz) of the

EQP which depends on the implementation technology
of the local EQMs [30]. The bi-state model (12) can be
obtained from the erasure model (11) with pτ = 1 for
τ ∈ Gre and pτ = 0 for τ ∈ Bre .

When arriving ICQs are immediately teleported, their
degradation is mainly determined by the decoherence of
the EQPs that are utilized to teleport them. Such degra-
dation can be characterized by the fidelity

̺(Σ,Ψ ) =

(

tr
{√√

Ψ Σ
√
Ψ
})2

∈ [0, 1] (14)

where Σ and Ψ respectively denote the decohered and
the original state of the EQP that is utilized for teleporta-
tion [24, 25]. When the original state is a Bell state, e.g.,
Ψ = |φ+〉〈φ+|, the fidelity is called Bell-state fidelity.
For the depolarizing model in (10), it can be shown that

̺
(
Ξτ , |φ+〉〈φ+|

)
=

1

4
+

3

4
w0 e

−reτ . (15)

Let ̺0 , ̺
(
Ξ0, |φ+〉〈φ+|

)
denote the initial fidelity

of an established EQP before it is stored in the EQM.
The success probability of a single attempt to establish
an EQP is given by ps = 10−3

(
1 − ̺0

)
[42]. Thus, the

corresponding EQP establishment rate is

λe = λa ps = λa 10
−3
(
1− ̺0

)
. (16)

Using the values of λa provided in Sec. II D gives λe ≤ 10
Hz at a distance of 3 km (λe ≤ 1 Hz at a distance of
30 km) for ̺0 = 0.9. Note from (15) that ̺0 = 0.9
corresponds to w0 ≈ 0.87.

III. Quantum node protocols

This section first defines the point processes and the
corresponding counting processes describing the arrival
times of the ICQs and the establishment times of the
EQPs. Then, the teleportation protocols are introduced.
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A. Point processes

For brevity, “ICQ point” and “EQP point” will be used
to refer to arrival time of the ICQ and establishment time
of the EQP, respectively. ICQ points and EQP points are
measured in seconds. In the following, reference is made
to a generic receiver ℓ ∈ IL.

Definition 1 (Point Processes). The ICQ point pro-
cess over the (time) real half-axis R

+
0 is a collection

of nonnegative RVs
{
q
(ℓ)
i , i ∈ N0

}
with the proper-

ties that q
(ℓ)
k−1 < q

(ℓ)
k almost surely (a.s.), k ∈ N, and

limk→∞ q
(ℓ)
k = ∞ a.s. By convention, q

(ℓ)
0 = 0. The cor-

responding counting process is
{
n
(ℓ)
q (t), t ∈ R

+
0

}
where

n
(ℓ)
q (t) , K

{
i ∈ N0 : 0 < q

(ℓ)
i ≤ t

}
satisfies n

(ℓ)
q (t) < ∞

and limt→∞ n
(ℓ)
q (t) = ∞. Similar definitions hold for the

EQP point process
{
e
(ℓ)
j , j ∈ N0

}
and the corresponding

counting process
{
n
(ℓ)
e (t), t ∈ R

+
0

}
.

It is assumed that q
(ℓ)
i 6= e

(ℓ)
j a.s., for all i, j ∈ N. ICQ

point processes
{
q
(ℓ)
i , i ∈ N0

}
for different ℓ ∈ IL are

IID point processes. Furthermore, ICQ point processes
{
q
(ℓ)
i , i ∈ N0

}
, ℓ ∈ IL, are independent of EQP point

processes
{
e
(ℓ)
j , j ∈ N0

}
, ℓ ∈ IL.

In the remainder of Sec. III and in Sec. IV the su-
perscript (ℓ) is omitted for notational simplicity. The
random quantities nq(t) and ne(t) describe the number
of arriving ICQs and established EQPs in the interval
(0, t], respectively, where t ∈ R

+
0 denotes time. The in-

terarrivals of the ICQ and the EQP point process are
respectively given by

xk , qk − qk−1, k ∈ N (17a)

yk , ek − ek−1, k ∈ N . (17b)

The point process is said to be generated by its interar-
rivals. Note that the definition of the point process does
not require a specific statistical model for these interar-
rivals; in particular, the interarrivals are not necessarily
independent.

Definition 2 (Superposed Process). The superposed
point process

{
sk, k ∈ N0

}
is defined as the collection of

elements from ICQ and EQP point processes, arranged
in increasing order a.s.

{
sk, k ∈ N

}
=
{
qi, i ∈ N

}
∪
{
ej, j ∈ N

}
, s1 < s2 < . . .

(18)

By convention, s0 = 0. The corresponding counting pro-
cess

{
ns(t), t ∈ R

+
0

}
is given by ns(t) = nq(t)+ne(t). The

superposed point process
{
sk, k ∈ N0

}
is marked so that

a point of
{
sk, k ∈ N

}
can be distinguished as belonging

to
{
qi, i ∈ N

}
or
{
ej , j ∈ N

}
.

B. Protocols

The key aspect to efficiently distribute quantum states
with finite lifetimes is the protocol that matches arriving
ICQs to established EQPs. To introduce the protocols,
let
{
qim , m ∈ IM

}
and

{
ejm , m ∈ IM

}
respectively de-

note the subsequence of ICQs that are teleported and
the subsequence of the EQPs that are utilized for tele-
portation, where M denotes the number of ICQs that
are teleported, with M = ∞ not excluded. The subse-
quences of teleported ICQs and utilized EQPs are respec-
tively extracted from the point processes

{
qi, i ∈ N0

}

and
{
ej, j ∈ N0

}
, with q0 and e0 excluded, i.e., im 6= 0

and jm 6= 0 for all m ∈ IM . For m ∈ IM , the mappings
m 7→ im and m 7→ jm indicate that the m-th teleported
ICQ arrived at qim utilized the EQP established at ejm .
The mappings m 7→ im and m 7→ jm are one-to-one,
since any teleported ICQ is matched to one and only one
utilized EQP and any utilized EQP is matched to one
and only one teleported ICQ.

The teleportation protocol is a rule for matching ele-
ments of

{
qi, i ∈ N

}
to elements of

{
ej , j ∈ N

}
, i.e., a

rule for determining the subsequences
{
qim , m ∈ IM

}

and
{
ejm , m ∈ IM

}
. The vector [ejm qim ] is re-

ferred to as the m-th matched vector and the sequence
{
[ejm qim ], m ∈ IM

}
is referred to as the matched se-

quence. Any point of
{
sk, k ∈ N

}
is called matched if it

belongs to some vector in the matched sequence, other-
wise it is called unmatched. The teleportation protocol
can be executed at the points of

{
sk, k ∈ N

}
sequentially;

if previously stored in a memory, matched points are re-
moved from the memory because either they (ICQs) are
teleported or they (EQPs) are utilized for teleportation.

This paper focuses on the class I of instantaneous pro-
tocols, which consists of the following operations exe-
cuted at the points of

{
qi, i ∈ N

}
sequentially.

• As soon as an ICQ arrives at the quantum node, it
is immediately teleported utilizing an EQP that has
been stored in the EQM, if any. The utilized EQP
is effectively removed from the EQM. If the EQM
is empty, the ICQ is deleted, i.e., it is irremediably
lost.

With instantaneous protocols, the arriving ICQs are
never stored in the IQM. If multiple EQPs are available
in the EQM, one of them is selected for teleportation
according to some rule. One member of the class I de-
serving special attention is the FID protocol hF, which
consists of the following operations executed at the points
of
{
qi, i ∈ N

}
sequentially.

• As soon as an ICQ arrives at the quantum node, it
is immediately teleported utilizing the most recent
EQP that has been stored in the EQM, if any. The
utilized EQP is effectively removed from the EQM.
If the EQM is empty, the ICQ is deleted, i.e., it is
irremediably lost.
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Algorithm 1: Fresh Information Delivery

Input: q =[q1 q2 . . . qn], ICQ arrival times;
e =[e1 e2 . . . ek], EQP establishment times,
with ek ≥ qn.

Output: δ = [δ1 δ2 . . . δn], delays (∞ if not
teleported).

Initialize: δ ← n-vector of ∞; e2q ← k-vector of 0.
for i← 1 to n do

m← find
{

e ≤ qi & e2q == 0, largest
}

if m is not empty then

e2qm ← i
δi ← qi − em

end

end

return δ

The pseudocode10 illustrating the FID protocol is
shown in Algorithm 1. For each ICQ, the algorithm out-
puts a nonnegative number referred to as “the delay.”
The delay is equal to the waiting time of the EQP that
is matched to the ICQ before it is utilized for teleporta-
tion. For the depolarizing model in (10), the sequence
of delays can be used to compute the sequence of fidelity
values by (15).
With the FID protocol, an ICQ is irremediably lost if

the EQM is empty when the ICQ arrives. This is still
the case even if an EQP is established shortly after the
ICQ arrives. To avoid this, protocols not belonging to
the class I are also conceived and one such protocol is
now introduced. Define two time intervals of duration
Wb and Wf (in seconds). The bounded delay delivery
(BDD) protocol11 hB consists of the following operations
executed at the points of

{
sk, k ∈ N

}
sequentially.

• If the point corresponds to an ICQ, then it is tele-
ported utilizing the most recent EQP that has been
stored in EQM for no more than Wb seconds ago.
The utilized EQP is effectively removed from the
EQM. If such an EQP does not exist, the ICQ is
stored in the IQM.

• If the point corresponds to an EQP, then it is uti-
lized to teleport the most recent ICQ that has been
stored in the IQM for no more thanWf seconds ago.
The teleported ICQ is effectively removed from the

10 Algorithms 1 and 2 utilize a MATLAB
®
-like pseudocode; e2qm

denotes the m-th element of vector e2q; e2qm = i indicates that
the i-th ICQ is teleported utilizing the m-th EQP; q2em = i in-
dicates that the m-th ICQ is teleported utilizing the i-th EQP;
inequalities between vectors and scalars are applied element-wise
and result in vectors of logicals; find

{

a, largest
}

returns the
largest index of the “true” elements of the logical vector a; and
cumsum

{

a
}

returns the vector of the cumulative sums of vec-
tor a.

11 The BDD protocol is similar to the BGM algorithm used in [54,
55].

Algorithm 2: Bounded Delay Delivery

Input: q =[q1 q2 . . . qn], ICQ arrival times;
e =[e1 e2 . . . ek], EQP establishment times,
with ek ≥ qn; Wb, Wf , window lengths.

Output: δ = [δ1 δ2 . . . δn], delays (∞ if not
teleported).

Initialize: e2q ← k-vector of 0;
q2e ← n-vector of 0;
δ ← n-vector of ∞;
isq ← (n+ k)-vector of 0.

s← superposition of q and e (see (18))
Set to 1 all entries of isq corresponding to ICQs of s

indq ← cumsum
{

isq == 1
}

inde ← cumsum
{

isq == 0
}

for i← 1 to n+ k do

if isqi == 1 then

m← find
{

e ≤ si & e ≥ si −Wb

& e2q == 0, largest
}

if m is not empty then

q2eindqi
← m

e2qm ← indqi

δindqi
← si − em

end

else

m← find
{

q ≤ si & q ≥ si −Wf

& q2e == 0, largest
}

if m is not empty then

e2qindei
← m

q2em ← indei

δm ← qm − si

end

end

end

return δ

IQM. If such an ICQ does not exist, the EQP is
stored in the EQM.

The pseudocode illustrating the BDD protocol is
shown in Algorithm 2. For each ICQ, the algorithm out-
puts a real number referred to as “the delay.” By conven-
tion, a nonnegative delay occurs when the EQP precedes
the ICQ matched to it, in which case the delay is equal
to the waiting time of the EQP in the EQM. Conversely,
a negative delay occurs when the EQP follows the ICQ
matched to it, in which case the negative of the delay is
equal to the waiting time of the ICQ in the IQM.

The EQP utilized for teleporting the arriving ICQ is
contained in a window beginning Wb seconds prior to the
arrival and endingWf seconds after the arrival. Quantum
states stored in EQM and IQM for more than Wb seconds
and Wf seconds, respectively, can be removed from the
memory. With Wb = ∞ and Wf = 0, the BDD protocol
reduces to FID. When Wb = ∞ and Wf > 0, BDD
retains most advantages of FID at the cost of an IQM
for storing the ICQs. In the following, the quantities Wb

and Wf are considered to be finite.
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IV. Optimality analysis

This section first introduces the performance indicators
for characterizing the teleportation protocols and then
proves the path-optimality of the FID protocol.

A. Performance indicators

Let h ∈ P denote a teleportation protocol, where P is
a given class of protocols. Let

{
δi(h), i ∈ N

}
be the

sequence of delays (in seconds) associated with the se-
quence of ICQ points

{
qi, i ∈ N

}
and let

{
δim(h), m ∈

IM

}
be the subsequence of delays associated with the

teleported ICQs arriving at times described by the sub-
sequence

{
qim , m ∈ IM

}
, i.e.,

δim(h) , qim − ejm . (19)

The delays associated to the arriving ICQs that are not
teleported take on a dummy value.
The arithmetic mean of the absolute values of the de-

lays (in seconds) using protocol h ∈ P is defined as

d(h) , lim
n→∞

∑n
i=1 1A(h)(i) |δi(h)|
∑n

i=1 1A(h)(i)
(20)

where A(h) =
{
i1, i2, . . .

}
, in ∈ N, denotes the set of

indices describing arrival times of the teleported ICQs
using protocol h. For h ∈ I, the absolute value in (20) is
immaterial and the delay δim(h) in (19) coincides with the
waiting time in the EQM of the EQP established at time
ejm . The fraction of teleported ICQs using protocol h ∈
P is defined as

ηt(h) , lim
n→∞

∑n
i=1 1A(h)(i)

n
. (21)

The two limits in (20) and (21) are assumed to exist
in the a.s. sense and they exist as deterministic val-
ues in most cases of practical interest.12 The quantities
in (20) and (21) are key parameters for determining the
performance of the teleportation protocols. The former
quantity, d(h), characterizes the quality of the teleported
ICQs. Indeed, the delay in (19) regulates the quantum
state degradation for the decoherence models (1)-(3) and
(10)-(12). The latter quantity, ηt(h), characterizes the
probability of teleportation.
Next, the indicators for characterizing the teleporta-

tion protocols are introduced; these indicators will be
used in Sec. VII to illustrate the performance of FID and
BDD protocols.

12 For a stationary sequence
{

|δim(h)|, m ∈ N
}

, rewrite (20) as

d(h) = limν→∞
1
ν

∑

ν

m=1 |δim(h)|. A sufficient condition for the

existence of this limit as a RV is E
{

|δim(h)|
}

< ∞, m ∈ N; if in
addition the sequence is ergodic, then the limit is deterministic
and given by E

{

|δim(h)|
}

[56]. Similarly, for a stationary se-

quence
{

1A(h)(i), i ∈ N
}

a sufficient condition for the existence

of the limit in (21) as a RV is E
{

1A(h)(i)
}

< ∞, i ∈ N; if in
addition the sequence is ergodic, then the limit is deterministic
and given by E

{

1A(h)(i)
}

.

Definition 3 (Path-Optimality). A teleportation proto-
col h∗ ∈ P is path-optimal in the class P if, for any
instantiation of the point processes

{
qi, i ∈ N0

}
and

{
ej , j ∈ N0

}
, it simultaneously solves the following two

optimization problems

inf
h∈P

d(h) (22a)

sup
h∈P

ηt(h) (22b)

where d(h) and ηt(h) respectively denote the instantia-
tions of d(h) in (20) and ηt(h) in (21).

Definition 4 (Statistical Consistency). Under a given
statistical model for the point processes

{
qi, i ∈ N0

}
and

{
ej , j ∈ N0

}
, a teleportation protocol is statistically con-

sistent if all arriving ICQs (q0 excluded) are teleported
a.s., possibly after a transient of finite duration t0 (in
seconds), where

t0 , min
i∈N0

{
qi : i+ k ∈ A(h), ∀k ∈ N

}
. (23)

For a statistically consistent protocol h ∈ P , ηt(h) = 1
a.s.

B. Optimality of FID protocol

To prove the path-optimality of the FID protocol, the
matched sequence

{
[ejm qim ], m ∈ IM

}
resulting from

applying the FID protocol to the superposed point pro-
cess

{
sk, k ∈ N0

}
is characterized.

Definition 5 (Bridges and Covers). Let [ejm qim ] be a
matched vector. Then: (i) a bridge is said to connect
the points ejm and qim ; (ii) any point of

{
sk, k ∈ N

}
in

the interval
(
min

{
ejm , qim

}
,max

{
ejm , qim

} )
is said to

be covered by the bridge connecting ejmand qim .

Proposition 1 (FID Bridges). Consider the superposed
point process

{
sk, k ∈ N0

}
defined in (18). The bridges,

resulting from using the FID protocol, do not cover a.s.
any unmatched point.

Proof. The proof employs the principle of contradiction.
Consider the superposed point process

{
sk, k ∈ N0

}

in (18) and suppose that the FID protocol leaves at least
one unmatched point of

{
sk, k ∈ N

}
covered a.s. by the

bridge connecting some points ejm and qim . Let sν be the
minimum amongst the unmatched points; it satisfies a.s.
the inequalities 0 < ejm < sν < qim . The point sν can
be either an ICQ or an EQP point. In the former case,
FID protocol would match sν to ejm , implying that ejm
would be matched a.s. to at least two ICQs. In the latter
case, FID protocol would match qim to sν , implying that
qim would be matched a.s. to at least two EQPs. Both
cases lead to a contradiction.

Definition 6 (FID Clusters). A cluster induced by the
FID protocol (henceforth simply cluster) is any collection
of consecutive matched points of

{
sk, k ∈ N

}
delimited to

the left-end by an unmatched point unless the collection
contains s1 and to the right-end by an unmatched point
unless the collection is right-unbounded.
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Definition 7 (FID Holes). A hole induced by the FID
protocol (henceforth simply hole) is any collection of con-
secutive unmatched points of

{
sk, k ∈ N

}
delimited to the

left-end by a matched point unless the collection contains
s1 and to the right-end by a matched point unless the col-
lection is right-unbounded.

In both definitions, the delimitation points are not part of
the cluster or hole. Holes can be made of a single point,
while clusters contain at least one ICQ point and one
EQP point. The following theorem gives the structure of
clusters and holes.

Theorem 1 (FID Clusters and Holes). Consider the
points

{
sk, k ∈ N

}
of the superposed point process

{
sk, k ∈ N0

}
defined in (18). With the FID protocol,

the following assertions are a.s. true.

(i) For any cluster, the first element is an EQP point
and the last element, if any, is an ICQ point.

(ii) There exists a one-to-one correspondence between
ICQ points and EQP points belonging to the same
cluster; the clusters contain an equal number of
ICQ points and EQP points.

(iii) Any hole has one of the following structures: (a) all
elements are ICQ points; (b) all elements are EQP
points; (c) it consists of a sequence of all ICQ
points followed by a sequence of all EQP points.

(iv) If there exists a hole containing an EQP point, then
all successive holes consist of EQP points only.

Proof. The arguments in the proof are intended in the
a.s. sense. Suppose that, contrary to the assertion in (i),
the first element of a cluster is an ICQ point. If such
an ICQ point is s1, then it cannot be matched to some
EQP point to its left, leading to a contradiction. If such
an ICQ point is not s1, then it is matched necessarily
to some EQP point to its left, forming a bridge. Fur-
thermore, the point immediately to the left of the cluster
is unmatched implying that the bridge covers this un-
matched point. This contradicts Proposition 1. Simi-
lar arguments show that the last element of a cluster is
an ICQ point. To prove (ii), note that clusters contain
only matched points and the matching must be made
necessarily within the same cluster as, otherwise, there
exists a bridge connecting two clusters covering at least
one unmatched point, which contradicts Proposition 1.
Therefore, the matching defines a one-to-one correspon-
dence between ICQ points and EQP points belonging to
the same cluster. To prove (iii), note that in a hole an
EQP point cannot be followed by an ICQ point as, oth-
erwise, the ICQ point would be matched. The structures
of holes asserted in (iii) (a)-(c) follow from this observa-
tion. To prove (iv), note that if an EQP point in a hole
was followed by one or more unmatched ICQ points in
successive holes, then the smallest of those unmatched
ICQ points would be necessarily matched and cannot be
part of a hole.

Corollary 1. With the FID protocol, all ICQ points ap-
pearing after the occurrence of an unmatched EQP point
are a.s. teleported.

Proof. This follows from the last assertion of Theorem 1.

The importance of the FID protocol is apparent in the
next theorem. Note that the theorem is valid for gen-
eral point processes without requiring specific statistical
models for ICQ and EQP points.

Theorem 2 (Path Optimality of FID). For ICQ and
EQP point processes, the FID protocol hF ∈ I is path-
optimal in the class I of instantaneous protocols.

Proof. Consider an instantiation
{
sk, k ∈ N

}
of
{
sk, k ∈

N
}
. For protocol h ∈ I, let d(h) and ηt(h) denote the

instantiations, corresponding to
{
sk, k ∈ N

}
, of d(h) and

ηt(h) defined respectively in (20) and (21). Any two pro-
tocols belonging to class I teleport the same collection
of ICQs. The only difference amongst the protocols is
the policy for matching those ICQs to EQPs. There-
fore, ηt(h) does not depend on h ∈ I and the second
objective (22b) of the multiobjective optimization prob-
lem in (22) is maximized by any h ∈ I.
Consider the first objective (22a) and recall that each

of the clusters in
{
sk, k ∈ N

}
induced by hF contains an

equal number of ICQs and EQPs. For any such cluster C,
let qim , qim+1

, . . . , qim+ν−1
and ejm , ejm+1

, . . . , ejm+ν−1
de-

note its ICQ and EQP points, respectively, where 2ν is
the cluster size, which can be finite or infinite.
Suppose first ν < ∞. The contribution of the cluster C

to the sum of the delays is

m+ν−1∑

k=m

δik(hF) =
m+ν−1∑

k=m

qik −
m+ν−1∑

k=m

ejk . (24)

For any alternative protocol h ∈ I, there are two pos-
sible cases. In the first case, all the ν ICQ points
in C are matched to all the ν EQP points in C, yield-
ing

∑m+ν−1
k=m δik(h) =

∑m+ν−1
k=m δik(hF). This is true re-

gardless of the specific matching as long as all matched
points belong to C. In the second case, at least one
of the ICQ points in C is matched to an EQP point
not belonging to C. Such an EQP point is necessar-
ily smaller than min

{
ejm , ejm+1

, . . . , ejm+ν−1

}
, yielding

∑m+ν−1
k=m δik(h) >

∑m+ν−1
k=m δik(hF).

Combining the conclusions for the two cases, the con-
tribution of the ICQ points qim , qim+1

, . . . , qim+ν−1
to the

sum of the delays at the numerator of (20) satisfies

m+ν−1∑

k=m

δik(h) ≥
m+ν−1∑

k=m

δik(hF) (25)

implying that the contribution of those ICQ points to
the arithmetic mean of the delays for protocol h ∈ I is
not smaller than the corresponding contribution for FID
protocol hF ∈ I. Repeating the argument for all clusters
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in
{
sk, k ∈ N

}
proves that the FID protocol is an optimal

solution to the first objective (22a) of the multiobjective
optimization problem in (22).
Suppose now ν = ∞. The size of cluster C is in-

finite and the arithmetic mean in (20) for FID proto-
col hF ∈ I can be computed considering only the ICQ
and EQP points belonging to the cluster C as d(hF) =

limµ→∞
1
µ

∑m+µ−1
k=m δik(hF). Dividing both sides of (24)

by µ and using similar arguments as in the case of fi-
nite clusters gives a scaled version of inequality (25) with
scaling factor 1/µ. Finally letting µ → ∞ proves that
d(h) ≥ d(hF).

V. Characterization of protocols

This section presents the renewal process for the ICQ
points, describes the functionality of the quantum node,
and derives the renewal process for the EQP points.
Based on the renewal process models for the ICQ and
EQP points, the statistical consistency of the instanta-
neous protocols is proven and the operational character-
istic of the FID protocol is derived.

A. Consistency theorems

The L ICQ streams
{
q
(ℓ)
i , i ∈ N0

}
for ℓ ∈ IL arriving

at the quantum node are described by point processes,

each generated by IID interarrivals
{
x
(ℓ)
k , k ∈ N

}
with

E
{
x
(ℓ)
k

}
= 1/λq, where limt→∞ n

(ℓ)
q (t)/t = λq a.s. is the

rate (in Hz) of each ICQ stream, with λq ∈ R
+.

EQPs represent the resources of the quantum node.
From (8), the EQP establishment time is an exponential
RV having expected value 1/λe, where λe ∈ R

+ is deter-
mined by setting λa ∈ R

+ in (16) compatible with the
distances of the receivers. Our vision is that the node
establishes EQPs with the receivers before the arrival of
ICQs, rather than waiting for their arrival. Thus, it is
natural to establish as many EQPs as possible with the
receivers, in which case the intervals between adjacent
EQP points form a sequence of IID exponential RVs.
To accommodate ICQ streams with the same arrival

rate λq for L different receivers, the resources of the
quantum node are equally apportioned amongst the L
receivers in a round-robin fashion without considering
the instantiation of the arriving ICQ streams. More
specifically, the platform first makes attempts to estab-
lish an EQP with receiver ℓ = 1 until the first occur-
rence of a success; this process is repeated with receiver
ℓ = 2, 3, . . . , L; and then a new round-robin cycle takes
place.
With the round-robin EQP establishment procedure,

the sequence
{
e
(ℓ)
j , j ∈ N0

}
is a delayed renewal process

generated by independent interarrivals
{
y
(ℓ)
k , k ∈ N

}
for

each ℓ ∈ IL:
13

e
(ℓ)
j ∼ E

(
L(j − 1) + ℓ, λe

)
, j ∈ N (27a)

13 Recall that the RV z has the Erlang distribution with shape

y
(ℓ)
k ∼ E(ℓ, λe), k = 1

y
(ℓ)
k ∼ E

(
L, λe

)
, k = 2, 3, . . .

(27b)

The rate of the EQP point process is [51]

lim
t→∞

n
(ℓ)
e (t)

t
=

λe

L
(28)

where the limit is the a.s. sense. The rate λq of the ICQ
point process together with the rate λe/L of the EQP
point process define the excess ratio.

Definition 8 (Excess Ratio). The excess ratio is defined
to be

εr ,
λe

Lλq
. (29)

The excess ratio serves as a fundamental parameter that
characterizes the functionality of the quantum node with
respect to arriving ICQ streams. It represents a quanti-
fier of the node’s resources (number of established EQPs)
per arriving ICQ.
Consider a single receiver L = 1 and an arriving

stream with exponentially distributed ICQ interarrivals
{
xk, k ∈ N

}
; the superscript (ℓ) is superfluos because

ℓ = 1. Then the point processes
{
qi, i ∈ N0

}
and

{
ej , j ∈ N0

}
become two PPPs with rates λq and λe, re-

spectively. If εr > 1, the next theorem shows that for any
instantaneous protocol the probability P

{
nq(t) < ne(t)

}

is close to unity for large t. In other words, if λq < λe,
ICQs that arrive at the quantum node at large times have
a good chance of being teleported.

Theorem 3 (Excess of EQPs for L = 1). For a quan-
tum node serving a single receiver, consider: (i) the
ICQ point process

{
qi, i ∈ N0

}
generated by IID inter-

arrivals
{
xk, k ∈ N

}
with xk ∼ E(1, λq); (ii) the EQP

point process
{
ej , j ∈ N0

}
generated by IID interarrivals

{
yk, k ∈ N

}
with yk ∼ E(1, λe). Let the node employ an

instantaneous protocol and let εr = λe/λq > 1. For any
0 < ǫ ≤ 1, the following holds

P
{
nq(t) ≥ ne(t)

}
≤ ǫ for t ≥ tǫ (30)

where

tǫ ,
− log ǫ

(√
λe −

√
λq

)2 . (31)

parameter i ∈ N and rate parameter λ ∈ R+, denoted by z ∼
E(i, λ), if its PDF is [57]

fz(z) =
λi zi−1e−λz

Γ(i)
u(z) (26)

having expected value E
{

z
}

= i/λ. For i = 1, the Erlang distri-
bution E(1, λ) coincides with the exponential distribution having
expected value 1/λ.
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Proof. For any fixed t > 0, the probability mass function
(PMF) of the RV nq(t)− ne(t) is the Skellam PMF

P
{
nq(t)− ne(t) = k

}
= e−t(λq+λe)

(λq

λe

) k
2

Ik
(
2t
√

λqλe

)

(32)

where k ∈ Z and Ik(w), w ∈ R
+
0 , is the modified Bessel

function of the first kind, see [58, 8.445, p. 919]. The
moment generating function of the RV nq(t)−ne(t) is [59]

E
{
eξ [nq(t)−ne(t)]

}
= et(−λq−λe+λqe

ξ+λee
−ξ) (33)

with ξ ∈ R. Using the Chernoff–Rubin14 bound [63] gives

P
{
nq(t) ≥ ne(t)

}
≤ inf

ξ>0
M(ξ) . (34)

The infimum in (34) can be found since the moment gen-
erating function M(ξ) is a convex function [64]. Indeed,
the right-hand side of (33) is a composition of an inner
strictly convex function with an outer convex increasing
function [65, 66]. The upper bound in (34) can be com-
puted by noting that the exponent on the right-hand side
of (33) attains its minimum at ξ∗ = 1

2 log
λe

λq
> 0, yielding

P
{
nq(t) ≥ ne(t)

}
≤ e−t(

√
λe−

√
λq )

2

. (35)

Therefore, if t ≥ tǫ, then P
{
nq(t) ≥ ne(t)

}
≤ ǫ.

While Theorem 3 considers L = 1, Theorems 4 and 5
refer to an arbitrary number L ≥ 1 of receivers.

Theorem 4 (Statistical Consistency). For ℓ ∈ IL, con-

sider: (i) the ICQ point process
{
q
(ℓ)
i , i ∈ N0

}
generated

by IID interarrivals
{
x
(ℓ)
k , k ∈ N

}
having a PDF with re-

spect to the Lebesgue measure; (ii) the EQP point process
{
e
(ℓ)
j , j ∈ N0

}
generated by the IID interarrivals (27b),

yielding e
(ℓ)
j ∼ E

(
L(j − 1) + ℓ, λe

)
, j ∈ N. If x

(ℓ)
k < x̃k

and x̃k ∼ E(1, λ̃q), ∀k ∈ N, with λ̃q < λe/L, then any
instantaneous protocol is statistically consistent.

Proof. Dropping the superscript (ℓ) for notational sim-

plicity, consider the RV qi =
∑i

k=1 xk that represents
the i-th ICQ point. The RV qi has a PDF with respect
to the Lebesgue measure since the RV xk has a PDF with
respect to the Lebesgue measure. Define the denumer-
able collection of events Ei ,

{
ICQ corresponding to the

arrival time qi is not teleported
}
, i ∈ N. The following

relationships between events hold for any instantaneous
protocol: Ei =

{
at qi, no unmatched EQP established

at time ≤ qi exists
}
⊆
{
ne(qi) ≤ nq(qi)

}
=
{
ne(qi) ≤ i

}
.

14 Inequality (34) is referred to as Chernoff–Rubin bound, although
often named as Chernoff bound, to reflect the contribution of
Herman Rubin [60–63].

Thus, denoting the PDF of qi by fqi(t), the total proba-
bility law gives [52]

P
{
Ei

}
=

∫ ∞

0

P
{
Ei | qi = t

}
fqi(t) dt

≤
∫ ∞

0

P
{
ne(qi) ≤ i | qi = t

}
fqi(t) dt

=

∫ ∞

0

P
{
ei+1 > qi | qi = t

}
fqi(t) dt

=

∫ ∞

0

P
{
ei+1 > t

}
fqi(t) dt (36)

where the last equality follows from the independence of
the RVs ei+1 and qi. Thus, P

{
Ei

}
≤ E

{
g(qi)

}
with

g(t) , P
{
ei+1 > t

}
. Using xk < x̃k, Theorem 1.A.3b

in [67] gives qi =
∑i

k=1 xk <
∑i

k=1 x̃k , q̃i. Since g(t)

is a nonincreasing function of t ∈ R
+
0 , Theorem 1.A.3a

in [67] implies g(qi) 4 g(q̃i), resulting in E
{
g(qi)

}
≤

E
{
g(q̃i)

}
. Therefore

P
{
Ei

}
≤
∫ ∞

0

P
{
ei+1 > t

}
fq̃i(t) dt , Ai (37)

where fq̃i(t) is the PDF of q̃i, which has an Erlang

distribution. For q̃i ∼ E(i, λ̃q) and λ̃q < λe/L, Ap-
pendix A proves that

∑

i∈N
Ai < ∞. This implies

∑

i∈N
P
{
Ei

}
< ∞. Then, by the first Borel–Cantelli

Lemma [64, Thm. 4.3]

∑

i∈N

P
{
Ei

}
< ∞ ⇒ P

{

lim sup
i→∞

Ei

}

= 0

⇔ P
{
infinitely many events Ei occur

}
= 0 (38)

where the equivalence in (38) follows by recalling the set-

theoretical definition lim supi→∞ Ei ,
⋂

i∈N

⋃∞
k=i Ek =

{
infinitely many events Ei occur

}
. Equation (38) implies

that, a.s., only finitely many events Ei occur, namely,
only finitely many ICQs are not teleported. Thus, there
exists a finite time after which all arriving ICQs are tele-
ported a.s., which proves the statistical consistency.

Theorem 4 proves the statistical consistency of instan-
taneous protocols for all renewal processes generated by
interarrivals that are stochastically larger than exponen-

tial RVs having expected value 1/λ̃q. Note that x
(ℓ)
k < x̃k

implies E
{
x
(ℓ)
k

}
≥ E

{
x̃k
}
, namely, the rate λq of the ICQ

point process with interarrivals
{
x
(ℓ)
k , k ∈ N

}
is less than

or equal to the rate λ̃q of the PPP with interarrivals
{
x̃k, k ∈ N

}
. Thus, the assumptions of the theorem im-

ply εr > 1. If λq = λ̃q, then x
(ℓ)
k ∼ E(1, λ̃q) and the ICQ

point process reduces to the PPP [67].
The next theorem establishes an upper bound on the

ICQ arrival rate, above which no statistically consistent
teleportation protocol can be found.

Theorem 5 (Excess of ICQs). For ℓ ∈ IL, consider ICQ
and EQP point processes, each with interarrivals forming
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a stationary and ergodic sequence of RVs having finite ex-
pected values 1/λq and L/λe, respectively. If εr < 1, then
no statistically consistent teleportation protocol exists a.s.

Proof. The definitions of ICQ and EQP point processes
imply the following a.s. relationships (superscript (ℓ) is
dropped)

nq(t)∑

k=1

xk = qnq(t) ≤ t < qnq(t)+1 =

nq(t)+1
∑

k=1

xk (39a)

ne(t)∑

k=1

yk = ene(t) ≤ t < ene(t)+1 =

ne(t)+1
∑

k=1

yk . (39b)

Dividing (39a) by nq(t) and (39b) by ne(t), lower and
upper bounds for t/nq(t) and t/ne(t) can be obtained.
From these bounds, it follows that

(∑ne(t)
k=1 yk

ne(t)

)

︸ ︷︷ ︸
a.s.−−→L/λe

(

nq(t)
∑nq(t)+1

k=1 xk

)

︸ ︷︷ ︸
a.s.−−→ λq

<
nq(t)/t

ne(t)/t

<

(∑ne(t)+1
k=1 yk

ne(t)

)

︸ ︷︷ ︸
a.s.−−→L/λe

(

nq(t)
∑nq(t)

k=1 xk

)

︸ ︷︷ ︸
a.s.−−→ λq

. (40)

Letting t → ∞ yields nq(t) → ∞ a.s. and ne(t) → ∞
a.s. The pointwise ergodic theorem [56] then implies the
a.s. convergences indicated in (40). Thus, letting t → ∞
in (40) gives the a.s. limit

lim
t→∞

nq(t)

ne(t)
=

1

εr
. (41)

The proof now employs the principle of contradiction.
Suppose that εr < 1 and there exists some statistically
consistent protocol, even noninstantaneous. This implies

1

εr
= lim

t→∞

nq(t)

ne(t)

(a)
= lim

t→∞

nq(t)− nq(t0)

ne(t)

(b)

≤ 1 (42)

where the limits are in the a.s. sense, t0 is defined in (23),
equality (a) follows from the fact that nq(t0) is a.s. finite,
and inequality (b) follows from the supposed statistical
consistency. Thus, (42) contradicts that εr < 1.

B. Operational characteristic

Armed with the renewal models described at the begin-
ning of Sec. VA, a simple closed-form expression for the
operational characteristic of the FID protocol is derived
in the following, assuming M = ∞.
The resources of the quantum node are the EQPs es-

tablished with the L receivers. Part of these EQPs is
eventually utilized to teleport arriving ICQs and the re-
maining part is eventually dissipated, i.e., never utilized
for teleportation. Using a protocol h ∈ P , the expected
number of eventually utilized EQPs per unit time is

E
{
ηt(h)

}
Lλq. By Little’s law [68], the expected num-

ber of eventually utilized EQPs that are in the EQM is
given by

Nd = E
{
d(h)

}
E
{
ηt(h)

}
Lλq . (43)

The value of E
{
d(h)

}
in (43) is the same for all ℓ ∈ IL.

Since
(
E
{
ηt(h)

}
Lλq

)−1
represents the interval between

the arrival times of two consecutive teleported ICQs in
the aggregate L arriving ICQ streams, Nd in (43) will
also be referred to as the normalized delay. A large value
of Nd indicates that the quantum node is inefficient in
consuming its resources. When ηt(h) = 1 a.s., the rela-
tionship between Nd and εr represents the fundamental
tradeoff between the inefficiency in consuming resources
and the amount of resources supplied by the EQP estab-
lishment platform per arriving ICQ.
Consider now the FID protocol hF ∈ I operating on

ICQ and EQP point processes as described in Theorem 4,
yielding ηt(hF) = 1 a.s. in view of the statistical consis-
tency of the protocol. For receiver ℓ ∈ IL (superscript
(ℓ) is dropped), let t denote the instantiation of the ar-
rival time qim corresponding to the m-th teleported ICQ,
m ∈ N. For εr ≫ 1 and m ≫ 1, with high probability the
ICQ point qim = t is matched to the closest EQP point
ek < t, because it is unlikely that the arrival time of the
(m−1)-th teleported ICQ satisfies ek < qim−1

< t. If the
ICQ point qim = t is matched to the closest EQP point
ek < t, then jm = k and k = ne(t). The first equality
is due to the matching of the FID protocol and the sec-
ond equality is due to the observation that k is simply
the number of EQP points up to time t. Therefore, for
qim = t, the delay in (19) can be approximated as

δim(hF) = t− ejm ≈ t− ene(t) , ae(t) (44)

where ae(t) is known as the age at t of the renewal process
{
ej , j ∈ N0

}
. The conditions εr ≫ 1 and m ≫ 1 imply

that t is large and from [51, Prop. 3.4.6]

lim
t→∞

E
{
ae(t)

}
=

E
{
y2k
}

2E
{
yk
} =

L+ 1

2λe
(45)

where yk is given in (27b) and k > 1 because εr ≫ 1 and
m ≫ 1.
Two ages ae(t1) and ae(t2) can be considered indepen-

dent if |t2 − t1| ≫ L/λe because they correspond, with
high probability, to fractions of two distant interarrivals
of the EQP point process established with receiver ℓ.
When t1 and t2 correspond to arrival times of two ICQs
teleported to receiver ℓ, the condition |t2 − t1| ≫ L/λe is
implied by εr ≫ 1. When, in addition to |t2−t1| ≫ L/λe,
t1 and t2 are large, then both the CDFs characteriz-
ing ae(t1) and ae(t2) can be approximated by the same
asymptotic CDF [51, Prop. 3.4.5]. Thus, the subsequence
{
δim(hF),m ∈ N

}
can be considered IID for εr ≫ 1 and

m ≫ 1. For an IID sequence
{
δim(hF),m ∈ N

}
the

strong law of large numbers implies d(hF) = E
{
δim(hF)

}
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a.s. [52], thus E
{
d(hF)

}
= d(hF). This motivates the

approximation

E
{
d(hF)

}
≈ lim

m→∞
E
{
δim(hF)

}
=

L+ 1

2λe
(46)

where the last equality is due to (44) and (45).
It will be apparent in Sec. VII that (46) is accurate

for εr ≫ 1. However, for moderate values of εr > 1,
the probability that the ICQ point qim = t is matched
to the closest EQP point ek ≤ t is no longer close to
unity and (46) requires a correction. A correction factor
is given by the ratio between the number of established
EQPs and the number of eventually dissipated EQPs,

i.e., λe/L
λe/L−λq

, thus yielding

E
{
d(hF)

}
≈ L+ 1

2

1

λe − Lλq
(47)

which is valid for any ℓ ∈ IL. For a given L and λe, (47)
characterizes the tradeoff between E

{
d(hF)

}
and λq. For

example, fixed values of L = 1 and λe = 10 Hz imply
that E

{
d(hF)

}
≤ 0.2 s can be achieved for arriving ICQ

streams having rate λq ≤ 5 Hz. Similarly, fixed values
of L = 5 and λe = 10 Hz imply that E

{
d(hF)

}
≤ 0.6

s can be achieved for arriving ICQ streams having rate
λq ≤ 1 Hz.
The operational characteristic Nd(εr) of the quantum

node using the FID protocol operating on ICQ and EQP
point processes as described in Theorem 4 is obtained for
εr > 1 by substituting (47) and ηt(hF) = 1 into (43) as

Nd(εr) ≈
L+ 1

2

1

εr − 1
. (48)

Node inefficiency in consuming its resources, Nd, is
inversely proportional to the eventually dissipated re-
sources per arriving ICQ, εr−1, through the proportion-
ality factor (L+1)/2. No protocol of class I operating on
ICQ and EQP point processes that are described in The-
orem 4 can achieve Nd(εr) smaller than the right-hand
side of (48) and the approximation in (48) is tight for
εr ≫ 1.

VI. Recapitulation of the main analytical results

Before delving into the numerical investigations, a brief
recapitulation of the main analytical results is provided.

• FID is path-optimal in the class I of instantaneous
protocols in the sense that it achieves both the
smallest delay and the largest teleportation proba-
bility.

• For arriving ICQ streams described by renewal pro-
cesses with interarrivals stochastically larger than
exponential RVs having expected value 1/λ̃q >
L/λe, any instantaneous protocol is statistically
consistent.

1 2 4 6 8 10 15 20
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-1

10
0

10
1
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2

10
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FIG. 1. Operational characteristic Nd(εr) of the quantum
node serving L = 1, 5, and 20 receivers, using the FID and
BDD protocols. The arriving ICQ streams are characterized
by independent PPPs having a common rate λq. The solid
lines refer to the closed-form expression (48).

• For arriving ICQ streams described by point pro-
cesses with stationary ergodic interarrivals having
finite expected values, no statistically consistent
teleportation protocol exists for εr < 1.

• A simple closed-form analytical expression de-
scribing the fundamental operational characteristic
Nd(εr) of the quantum node using the statistically
consistent FID protocol has been derived for εr > 1.

VII. Numerical experiments

Statistical consistency is a desirable property for the de-
sign of the quantum node and motivates the adoption
of instantaneous protocols since they permit statistically
consistency for εr > 1. This section presents the results
of numerical experiments for the FID protocol hF, which
is optimal in the class I of instantaneous protocols. The
BDD protocol hB is also considered for comparison.
The main parameters characterizing the functionality

of the quantum node are L, λq, λe, rq, and re. The nu-
merical experiments consider: (i) a quantum node serv-
ing multiple receivers L ≥ 1; (ii) arriving ICQ streams,
having a common rate λq, characterized by independent
point processes with interarrivals stochastically larger
than exponential RVs; and (iii) an established EQP point
process, having rate λe/L, characterized by (27). The
role of λq and λe is manifested in the excess ratio εr
defined by (29). The parameters rq and re, characteriz-
ing IQM and EQM, span several orders of magnitude to
reflect the large variability of the decoherence rates asso-
ciated with different technologies for quantum memories.
The numerical experiments are based on Monte Carlo
simulations and these simulations show no appreciable
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FIG. 2. Probability of loss as a function of the excess ratio
εr of the quantum node using the BDD protocol hB. The
arriving ICQ streams are characterized by independent PPPs
having a common rate λq.

difference for different values of ℓ ∈ IL. This is expected
because the value of ℓ only affects the first interarrival of
the EQP point process, see (27b). The results described
in Figs. 1-5 are based on numerical experiments using
5× 104 Monte Carlo runs with an observation window of
length 2× 103/λq s.
For arriving ICQ streams characterized by indepen-

dent PPPs having a common rate λq, Fig. 1 shows the
operational characteristic Nd(εr) of the quantum node
using the FID protocol hF, for different values of L. An
excellent match between closed-form expression (48) and
simulation results is observed, except for values of εr close
to unity. Fig. 1 also shows the results of numerical exper-
iments for the BDD protocol hB, assuming two values of
W , Wb = Wf . It can be seen that the operational char-
acteristic of the quantum node using the BDD protocol
is not monotonic with respect to εr. Furthermore, the
BDD and FID protocols yield similar normalized delays
Nd for large εr. This is expected because for large εr,
the probability that an ICQ arriving at t is immediately
teleported by the BDD protocol utilizing an EQP estab-
lished between t −W and t is close to one, yielding Nd

similar to that obtained by the FID protocol.
The appearance that the BDD protocol outperforms

the FID protocol for small εr should not be misinter-
preted, since BDD protocol incurs ICQ losses as shown
in Fig. 2 while the FID protocol is statistically consistent
as proven by Theorem 4 in Sec. V. In particular, Fig. 2
shows that the probability of loss forWλq = 10 is smaller
than that for Wλq = 1. This is expected because with
the BDD protocol, an ICQ is teleported by utilizing an
available EQP established within a window of length 2W
centered on the arrival time of the ICQ and increasing
W gives more chances of finding an available EQP.
Consider next arriving ICQ streams characterized by
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FIG. 3. Operational characteristic Nd(εr) of the quantum
node serving L = 1, 5, and 20 receivers using the FID proto-
col hF. The arriving ICQ streams are renewal point processes
with interarrivals stochastically larger than exponential RVs.
The parameter υ ≥ 1 serves as a quantifier of deviation from
the PPP. The solid lines refer to the closed-form expres-
sion (48).

independent renewal point processes with interarrivals
stochastically larger than exponential RVs. Specifically,
the IID interarrivals

{
xk, k ∈ N

}
of the ICQ point pro-

cess
{
qi, i ∈ N0

}
are given by xk = x̀k + x́k, with x̀k and

x́k being independent Gamma15 RVs

x̀k ∼ E
(1

2
, λ̃q

)

, x́k ∼ E
(1

2
,
λ̃q

υ

)

(49)

where λ̃q ∈ R
+ and υ ≥ 1. The rate of the ICQ point pro-

cess
{
qi, i ∈ N0

}
is λq = 2λ̃q/(1+ υ). The stochastic or-

der relation xk < x̃k, where x̃k ∼ E(1, λ̃q), follows by [69,
Thm. 3], and Theorem 4 in Sec. V then proves that the

FID protocol is statistically consistent for λ̃q < λe/L.
The parameter υ ≥ 1 in (49) serves as a quantifier of
the largeness in the relation xk < x̃k. For υ = 1, xk has
the same distribution as x̃k and the PPP with interar-
rivals xk ∼ E(1, λq) is obtained for the ICQ interarrivals.
Fig. 3 shows the operational characteristic Nd(εr) of the
quantum node using the FID protocol hF. The figure
confirms the accuracy of the closed-form expression (48)
even when arriving ICQ streams are characterized by re-
newal processes that severely deviate from the PPP ac-
cording to (49).
Figs. 4-5 consider the same case study illustrated in

Fig. 1 of arriving ICQ streams characterized by indepen-

15 The Gamma RV z ∼ E(i, λ), i ∈ R
+, is a generalization of the

Erlang RV z ∼ E(i, λ) for which i ∈ N; in both cases, the PDF
of the RV is given by (26).
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FIG. 4. Arithmetic mean of the fidelity (15) for the FID pro-
tocol as a function of the decoherence rate re of the EQPs, for
several values of the excess ratio εr. Upper and lower dashed
lines correspond to re = 0 and re = ∞, respectively. The
parameter w0 is equal to 0.87 and the quantum node serves
L = 5 receivers. The arriving ICQ streams are characterized
by independent PPPs having a common rate λq.

dent PPPs having a common rate λq. The fidelity ob-
tained by the FID protocol hF for the depolarizing model
in (10) is considered in Fig. 4. The figure shows the arith-
metic mean 1

n

∑n
m=1 ̺m as a function of the decoherence

rate re of the EQPs. Here, n is the number of Monte
Carlo runs and ̺m is the fidelity (15) with τ replaced
by the instantiation of the delay δim(hF) = qim − ejm ,
which is the duration that the EQP established at time
ejm is stored in the EQM before it is utilized to teleport
the ICQ arrived at time qim . The fidelity of the EQP
at the time of its establishment is 0.9. The two dashed
asymptotes in the figure depict two extreme cases. Up-
per dashed line corresponds to the ideal EQM (re = 0)
in which the established EQP does not decohere regard-
less of the duration that it spends in the EQM. Lower
dashed line corresponds to the worst-case EQM (re = ∞)
in which the state of the established EQP decoheres to
I4/4 as soon as it is stored in the EQM. It can be seen
from Fig. 4 that the arithmetic mean of the fidelity is
a decreasing function of re. It can be also seen that the
arithmetic mean of the fidelity is an increasing function of
the excess ratio εr, which is expected because increasing
εr reduces δim(hF).

Finally, Fig. 5 refers to the case in which the tele-
portation of the ICQ arrived at time qim is success-
ful if

∣
∣δim(h)

∣
∣ =

∣
∣qim − ejm

∣
∣ is less than or equal to a

preassigned threshold value. Otherwise, if
∣
∣δim(h)

∣
∣ =

∣
∣qim−ejm

∣
∣ is larger than the preassigned threshold value,

a failure is said to occur because the teleported ICQ is
severely degraded due to outdated EQP or ICQ. This
fits the bi-state models for ICQs and EQPs respectively
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FIG. 5. Failure probability as a function of the memory de-
coherence rate r = re = rq, for several values of the excess
ratio εr. The quantum node serves L = 5 receivers. The ar-
riving ICQ streams are characterized by independent PPPs
having a common rate λq.

described in Sec. II C and Sec. II E. In such scenario, the
BDD protocol hB may represent a valid alternative to the
FID protocol hF, because severely degraded teleported
ICQs are equivalent to lost ICQs. Fig. 5 considers L = 5,
with various values of Wλq, and εr. For simplicity of

analysis, r , re = rq and the teleportation is successful
if
∣
∣δim(h)

∣
∣ ≤ 1/r. The figure shows the failure probabil-

ity for the FID and the BDD protocols versus r. When
Wλq = 10, the failure probabilities of the two protocols
are close for large values of r (severe decoherence) while
the BDD outperforms the FID for small values of r (high-
quality memories). As to the case Wλq = 1, for large εr,
the BDD outperforms the FID, while for small εr and
small r the FID is superior. For instance, with εr = 2,
FID exhibits smaller failure probability than BDD for
r . 0.34 Hz.

VIII. Summary

This paper puts forth a framework in which distributing
information-carrying quantum states with finite lifetime
is formulated as a problem of matching between two point
processes. Performance degradation due to the decoher-
ence of the arriving ICQs is mitigated by the utilization of
EQPs established prior to their arrivals. We consider the
class I of instantaneous matching protocols that guar-
antee zero waiting time for distributing the information-
carrying quantum states. The excess ratio εr is identi-
fied as a fundamental parameter and εr = 1 as a critical
threshold. With εr > 1: under qualifying conditions on
the arriving ICQ streams, any protocol belonging to I
is statistically consistent. With εr < 1: no statistically
consistent protocol, even not belonging to class I, ex-
ists. This establishes the ultimate limit for distributing
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quantum state with finite lifetime. Within class I, the
FID protocol is introduced and its optimality is proven.
The operational characteristic of the optimal FID pro-
tocol, describing the functional relationship between the
normalized waiting time of the pre-established EQPs and
the excess ratio, is derived. The proposed framework has
been validated by numerical experiments which corrob-
orate the theoretical analysis. The results obtained in
this paper provide guidelines for the design of quantum
nodes, paving the way for future quantum networks using
NISQ technology.
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A. Proof of
∑

i∈N
Ai <∞

With reference to the proof of Theorem 4 in Sec. VA,
this appendix shows that

∑

i∈N
Ai < ∞, where

Ai ,

∫ ∞

0

P
{
ei+1 > t

}
fq̃i(t) dt . (A.1)

The moment generating function of an Erlang distribu-
tion E(i, λe) with shape parameter i ∈ N and rate pa-
rameter λe ∈ R

+ is

M(ξ) =
(

1− ξ

λe

)−i

, ξ < λe . (A.2)

Exploiting (A.2), Chernoff–Rubin bound gives [60–63]

P
{
ei+1 > t

}
≤ inf

0<ξ<λe

e−ξ t
(

1− ξ

λe

)−(iL+ℓ)

=

{

1, t < iL+ℓ
λe

e−tλe+iL+ℓ
(

t λe

iL+ℓ

)iL+ℓ
, t ≥ iL+ℓ

λe

(A.3)

where the value of ξ attaining the infimum is ξ∗ =
max

{
0, λe − (iL+ ℓ)/t

}
. Using (A.3) in (A.1),

Ai ≤

∫ iL+ℓ
λe

0

fq̃i(t) dt+

∫

∞

iL+ℓ
λe

fq̃i(t)e
−tλe+iL+ℓ

( t λe

iL+ ℓ

)iL+ℓ

dt

≤ Bi + Ci (A.4)

where

Bi ,

∫ iL+ℓ
λe

0

fq̃i(t) dt (A.5a)

Ci ,

∫

∞

0

fq̃i(t)e
−tλe+iL+ℓ

(

t λe

iL+ ℓ

)

iL+ℓ

dt . (A.5b)

In order to show that
∑

i∈N
Ai < ∞, it is sufficient to

show that
∑

i∈N
Bi < ∞ and

∑

i∈N
Ci < ∞.

Consider the integral Bi in (A.5a). Using the expres-
sion for fq̃i(t) given in (26) yields

Bi =
λ̃i
q

Γ(i)

∫ iL+ℓ
λe

0

ti−1e−tλ̃q dt =
γ
(
i, iL+ℓ

λe
λ̃q

)

Γ(i)
(A.6)

where γ(a, b) =
∫ b

0
ta−1e−t dt is the incomplete Gamma

function. Since ℓ ≤ L and γ(a, b) is monotonically in-
creasing in b,

Bi =
γ
(
i, iL+ℓ

λe
λ̃q

)

Γ(i)
≤ γ

(
i, (i+ 1)κ

)

Γ(i)
, B̌i (A.7)

where κ , Lλ̃q/λe ∈ (0, 1). The condition
∑

i∈N
Bi < ∞

is implied by the condition
∑

i∈N
B̌i < ∞. In order to

show that
∑

i∈N
B̌i < ∞, it is sufficient to show that

limi→∞ B̌i+1/B̌i < 1, in view of the ratio test for the
convergence of the series [70, Thm. 2, p. 117].
Consider the ratio

B̌i+1

B̌i

=
1

i

γ
(
i+ 1, (i+ 2)κ

)

γ
(
i, (i+ 1)κ

) . (A.8)

Using the recurrence formula γ(a + 1, b) = aγ(a, b) −
ba e−b [71, 6.5.22] yields

γ
(

i, (i+ 1)κ
)

=
γ
(

i+ 1, (i+ 1)κ
)

i
+

[

(i+ 1)κ
]

i
e−(i+1)κ

i
.

(A.9)

Since κ ∈ (0, 1), for a → ∞, γ(a, aκ) can be replaced with
the following asymptotically equivalent expression [72,
8.11.6]

(aκ)ae−aκ
∞∑

m=0

(−a)mcm(κ)
[
a(1− κ)

]2m+1 (A.10)

where c0(κ) = 1. Eqs. (A.9) and (A.10) give an asymp-
totically equivalent expression for iγ

(
i, (i+1)κ

)
as follows

([
(i + 1)κ

]i+1
e−(i+1)κ

∞∑

m=0

(−1)mcm(κ)

(i+ 1)m+1(1− κ)2m+1

)

+
[
(i+ 1)κ

]i
e−(i+1)κ . (A.11)

Retaining the dominant term in the series of (A.11),

namely
[
(i+1)(1−κ)

]−1
corresponding to them = 0 term,

expression (A.11) reduces to
[
(i + 1)κ

]i
e−(i+1)κ/(1 −

κ). Using this asymptotically equivalent expression for
iγ
(
i, (i+ 1)κ

)
in (A.8) and taking the limit yields

lim
i→∞

B̌i+1

B̌i

= lim
i→∞

1

i+ 1

[
(i+ 2)κ

]i+1
e−(i+2)κ

[
(i+ 1)κ

]i
e−(i+1)κ

= lim
i→∞

κ e−κ

(
i+ 2

i+ 1

)i+1

= κ e1−κ . (A.12)



16

The value on the right-hand side of (A.12) is less than
unity for κ ∈ (0, 1), which proves that limi→∞ B̌i+1/B̌i <
1.
Consider the integral Ci in (A.5b). Using the expres-

sion for fq̃i(t) given in (26) yields

Ci ,
λ̃i

q

Γ(i)
e
iL+ℓ

∫

∞

0

t
i−1

e
−t(λe+λ̃q)

(

t λe

iL+ ℓ

)

iL+ℓ

dt

= e
iL+ℓ

(

λ̃q

λe + λ̃q

)i(

λe

λe + λ̃q

1

iL+ ℓ

)iL+ℓ Γ
(

i(L+ 1) + ℓ
)

Γ(i)
.

(A.13)

In order to apply the ratio test for the convergence of the
series [70, Thm. 2, p. 117], consider the ratio

Ci+1

Ci

=
eL

i

λ̃q

λe + λ̃q

(

λe

λe + λ̃q

)L

×
(iL+ ℓ)iL+ℓ

(iL+ ℓ+ L)iL+ℓ+L

Γ
(

(i+ 1)(L+ 1) + ℓ
)

Γ
(

i(L+ 1) + ℓ
) .

(A.14)

Using the asymptotic expansion Γ(ia + b) ∼
√
2πe−ia

(ia)ia+b− 1
2 valid for a > 0 and i → ∞ [71, 6.1.39], the ra-

tio of Gamma functions on the right-hand side of (A.14)
can be replaced by the asymptotically equivalent expres-

sion
[
i(L+1)

]L+1
. Thus, taking the limit of (A.14) yields

lim
i→∞

Ci+1

Ci
=

λ̃q

λe + λ̃q

(
e λe

λe + λ̃q

)L

(L + 1)L+1

× lim
i→∞

(iL+ ℓ)iL+ℓ

(iL+ ℓ+ L)iL+ℓ+L
iL

= (L + 1)
λ̃q

λe + λ̃q

(
λe

λe + λ̃q

L+ 1

L

)L

. (A.15)

For any integer L ≥ 1 and any λe > 0, the function on
the right-hand side of (A.15) is nonnegative and strictly

increasing for 0 ≤ λ̃q ≤ λe/L, taking value 0 at λ̃q = 0

and value 1 at λ̃q = λe/L. This shows that the right-

hand side of (A.15) is less than unity when λ̃q < λe/L,
which proves that limi→∞ Ci+1/Ci < 1.
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A. Peres, and W. K. Wootters, Teleporting an unknown
quantum state via dual classical and Einstein-Podolsky-
Rosen channels, Phys. Rev. Lett. 70, 1895 (1993).

[23] C. H. Bennett and S. J. Wiesner, Communication via
one- and two-particle operators on Einstein-Podolsky-
Rosen states, Phys. Rev. Lett. 69, 2881 (1992).

[24] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press,
Cambridge, UK, 2010).

https://www.quantum.gov/wp-content/uploads/2020/10/2018_NSTC_National_Strategic_Overview_QIS.pdf
https://doi.org/10.22331/q-2018-08-06-79
https://royalsocietypublishing.org/doi/10.1098/rsta.2003.1227
https://doi.org/10.1103/PhysRevLett.87.270404
https://doi.org/10.1103/PhysRevA.94.012101
https://doi.org/10.1103/PhysRevLett.113.250801
https://doi.org/10.1109/JSAIT.2020.3012944
https://doi.org/10.1109/COMST.2018.2864557
https://doi.org/10.1109/TQE.2022.3176870
https://doi.org/10.1103/PhysRevA.83.052313
https://doi.org/10.1109/ACCESS.2017.2763325
https://doi.org/doi: 10.1109/MNET.001.1900092
https://www.technologyreview.com/technology/unhackable-internet/
https://doi.org/10.1017/S0305004100013554
https://doi.org/10.1103/PhysRevA.66.042111
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1103/PhysRevLett.69.2881


17

[25] M. M. Wilde, Quantum Information Theory, 2nd ed.
(Cambridge University Press, 2017).

[26] A. S. Cacciapuoti, M. Caleffi, R. Van Meter, and
L. Hanzo, When entanglement meets classical commu-
nications: Quantum teleportation for the quantum inter-
net, IEEE Trans. Commun. 68, 3808 (2020).

[27] S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and
S. L. Braunste, Advances in quantum teleportation, Na-
ture Photonics 9, 641 (2015).

[28] Q. Zhuang and B. Zhang, Quantum communication
capacity transition of complex quantum networks,
arXiv:2011.07397v1 [quant-ph] (2020).

[29] P. C. Humphreys, N. Kalb, J. P. J. Morits, R. N.
Schouten, R. F. L. Vermeulen, D. J. Twitchen,
M. Markham, and R. Hanson, Deterministic delivery
of remote entanglement on a quantum network, Nature
558, 268 (2018).

[30] S. Brand, T. Coopmans, and D. Elkouss,
Efficient computation of the waiting time
and fidelity in quantum repeater chains,
IEEE J. Sel. Areas Commun. 38, 619 (2020).

[31] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher,
J. A. Smolin, and W. K. Wootters, Purification of noisy
entanglement and faithful teleportation via noisy chan-
nels, Phys. Rev. Lett. 76, 722 (1996).

[32] W. K. Wootters and W. H. Zurek, A single quantum
cannot be cloned, Nature 299, 802 (1982).

[33] A. Mitra and P. Mandayam, On op-
timal cloning and incompatibility,
Journal of Physics A: Mathematical and Theoretical 54, 405303 (2021).

[34] W. Dai, T. Peng, and M. Z. Win, Op-
timal remote entanglement distribution,
IEEE J. Sel. Areas Commun. 38, 540 (2020), spe-
cial issue on Advances in Quantum Communications,
Computing, Cryptography and Sensing.

[35] S. Muralidharan, L. Li, J. Kim, N. Lütkenhaus,
M. D. Lukin, and L. Jiang, Optimal architec-
tures for long distance quantum communication,
Nature Scientific Report 6, 20463, 1 (2016).

[36] W. Dür and H. J. Briegel, Entanglement
purification and quantum error correction,
Reports on Progress in Physics 70, 1381 (2007).

[37] L. Ruan, W. Dai, and M. Z. Win, Adaptive recur-
rence quantum entanglement distillation for two-Kraus-
operator channels, Phys. Rev. A 97, 052332 (2018).

[38] L. Ruan, B. T. Kirby, M. Brodsky, and M. Z.
Win, Efficient entanglement distillation for quan-
tum channels with polarization mode dispersion,
Phys. Rev. A 103, 032425 (2021).

[39] A. S. Fletcher, P. W. Shor, and M. Z. Win, Optimum
quantum error recovery using semidefinite programming,
Phys. Rev. A 75, 012338 (2007).

[40] P. W. Shor, Scheme for reducing decoherence in quantum
computer memory, Phys. Rev. A 3, 52, R2493 (1995).

[41] P. Mandayam, K. Jagannathan, and A. Chatterjee, The
classical capacity of additive quantum queue-channels,
IEEE J. Sel. Areas Inf. Theory 1, 432 (2020).

[42] W. Dai, T. Peng, and M. Z. Win, Quantum queuing
delay, IEEE J. Sel. Areas Commun. 38, 605 (2020), spe-
cial issue on Advances in Quantum Communications,
Computing, Cryptography and Sensing.

[43] B. Zeng, X. Chen, D.-L. Zhou, and X.-G. Wen, Quan-
tum Information Meets Quantum Matter (Springer, New
York, 2019).

[44] E. Fredkin, Field Theories of Condensed Matter Physics,
2nd ed. (Cambridge University Press, New York, 2013).

[45] M. Körber, O. Morin, S. Langenfeld, A. Neuzner, S. Rit-
ter, and G. Rempe, Decoherence-protected memory for a
single-photon qubit, Nature Photonics 12, 18 (2018).

[46] M. Chiani, A. Conti, and M. Z. Win, Piggybacking on
quantum streams, Phys. Rev. A 102, 012410 (2020).

[47] M. Z. Win, P. C. Pinto, and L. A. Shepp, A mathemat-
ical theory of network interference and its applications,
Proc. IEEE 97, 205 (2009), special issue on Ultra -Wide
Bandwidth (UWB) Technology & Emerging Applications.

[48] H. ElSawy, A. Sultan-Salem, M.-S. Alouini, and M. Z.
Win, Modeling and analysis of cellular networks using
stochastic geometry: A tutorial, IEEE Commun. Surveys
Tuts. 19, 167 (2017).

[49] P. C. Pinto and M. Z. Win, Communication in a Poisson
field of interferers – Part I: Interference distribution and
error probability, IEEE Trans. Wireless Commun. 9, 2176
(2010).

[50] P. C. Pinto and M. Z. Win, Communication in a Pois-
son field of interferers – Part II: Channel capacity and
interference spectrum, IEEE Trans. Wireless Commun.
9, 2187 (2010).

[51] S. Ross, Stochastic Processes (John Wiley & Sons, Inc.,
New York, 1996).

[52] D. P. Bertsekas and J. N. Tsitsiklis, Introduction to Prob-
ability, 2nd ed. (Athena Scientific, Belmont, MA, 2008).

[53] W. Feller, An Introduction to Probability Theory and Its
Applications, 3rd ed., Vol. 1 (John Wiley & Sons, New
York, NY, 1968).

[54] T. He and L. Tong, Detection of information flows, IEEE
Trans. Inf. Theory 54, 4925 (2008).

[55] S. Marano, V. Matta, and L. Tong, The embedding ca-
pacity of information flows under renewal traffic, IEEE
Trans. Inf. Theory 59, 1724 (2013).

[56] R. M. Gray and L. D. Davisson, An Introduction to Sta-
tistical Signal Processing (Cambridge University Press,
Cambridge, UK, 2004).

[57] N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous
Univariate Distributions, 2nd ed., Wiley Series in Prob-
ability and Statistics, Vol. 1 (John Wiley & Sons Ltd.,
New York, NY, 1994).

[58] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals,
Series, and Products, seventh ed. (Academic Press, Inc.,
San Diego, CA, 2007).

[59] J. G. Skellam, The frequency distribution of the differ-
ence between two Poisson variates belonging to different
populations, Journal of the Royal Statistical Society 109,
296 (1946).

[60] H. Chernoff, Private conversation, Workshop in Memory
of Herbert E. Robbins (2001), Columbia University.

[61] A. Conti, M. Z. Win, and M. Chiani, On the inverse sym-
bol error probability for diversity reception, IEEE Trans.
Commun. 51, 753 (2003).

[62] A. Conti, M. Z. Win, M. Chiani, and J. H. Winters, Bit
error outage for diversity reception in shadowing envi-
ronment, IEEE Commun. Lett. 7, 15 (2003).

[63] H. Chernoff, A measure of asymptotic efficiency for test
of a hypothesis based on a sum of observations, Ann. of
Math. Stat. 23, 493 (1952).

[64] P. Billingsley, Probability and Measure, 3rd ed. (John Wi-
ley & Sons, New York, NY, 1995).

[65] D. P. Bertsekas, Convex Optimization Theory (Athena
Scientific, Belmont, MA, 2009).

https://doi.org/doi: 10.1109/TCOMM.2020.2978071
https://doi.org/doi: 10.1109/JSAC.2020.2969037
https://doi.org/10.1103/PhysRevLett.76.722
https://doi.org/10.1088/1751-8121/ac20b7
https://doi.org/10.1109/JSAC.2020.2969005
https://doi.org/10.1038/srep20463
https://iopscience.iop.org/article/10.1088/0034-4885/70/8/R03/pdf
https://doi.org/10.1103/PhysRevA.97.052332
https://doi.org/10.1103/PhysRevA.103.032425
https://doi.org/10.1103/PhysRevA.75.012338
https://doi.org/doi: 10.1109/JSAIT.2020.3015055
https://doi.org/10.1109/JSAC.2020.2969000
https://doi.org/10.1103/PhysRevA.102.012410


18

[66] S. Boyd and L. Vandenberghe, Convex Optimization
(Cambridge University Press, Cambridge, UK, 2004).

[67] M. Shaked and J. G. Shanthikumar, Stochastic Orders
(Springer, New York, 2007).

[68] J. D. C. Little, A proof for the queuing formula: L = λW ,
Oper. Res. 9, 296 (1961).

[69] Y. Yu, Stochastic ordering of exponen-
tial family distributions and their mixtures,

Journal of Applied Probability 46, 244 (2009).
[70] K. Knopp, Theory and Application of Infinite Series

(Blakie & Son Limited, London and Glasgow, 1954).
[71] M. Abramowitz and I. A. Stegun, Handbook of Mathe-

matical Functions (Dover Publications, 1970).
[72] NIST Digital Library of Mathematical Functions (Re-

trieved: Feb. 1, 2021).

http://www.jstor.org/stable/25662418
https://dlmf.nist.gov/

