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Abstract

We report a comprehensive experimental and theoretical study of the autoionization of core-

excited 5p1/2n`j strontium Rydberg states for intermediate values of `j in the range 0 . `j . 5.

For a given value of `j autoionization, which results from energy exchange between the two excited

valence electrons, is found to scale as ∼ 1/n3, mirroring the decrease in the Rydberg electron

probability density in the vicinity of the inner 5p1/2 electron cloud. In contrast, the `j - dependence

of the autoionization rate is more complex. For the larger values of `j (≥ 4), the autoionization

rate decreases as `−5
j due to the centrifugal barrier which prevents the Rydberg electron from

penetrating the core and inner 5p1/2 electron cloud. For the low-`j core-penetrating Rydberg

states, the scattering phase shift induced by the effective core potential becomes important in

determining both the autoionization rates, which no longer show a monotonic variation with `j ,

and the quantum defects.
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I. INTRODUCTION

The ground state of an alkaline-earth atom contains two ns valence electrons in a closed

outer shell. Rydberg atoms can be formed by exciting one of these electrons to an excited

state. Due to their strong tunable interactions with both external electromagnetic fields

and neighboring Rydberg atoms, Rydberg atoms have found wide application in the study

of quantum information and quantum simulation [1, 2]. The second electron, however, can

also be excited optically to form a doubly-excited state [3, 4], which opens up additional

opportunities. For example, circular Rydberg states can be manipulated optically through

laser dressing of the core ion which modifies the polarizability of the Rydberg atom and en-

ables the simultaneous trapping of both Rydberg and ground-state atoms [5–9]. The second

valence electron can be used to detect Rydberg atoms through fluorescence imaging [10, 11].

One of the key prerequisites for such applications is to understand the interaction between

the “inner” excited valence electron and the “outer” Rydberg electron, which shifts the en-

ergy levels of the core ion and can lead to autoionization, which provides a convenient means

to detect Rydberg atoms [4, 12–15]. The sensitivity of the energy shifts and the autoion-

ization rates to the quantum numbers n and ` of the Rydberg electron can be exploited to

obtain state-selective detection. At the same time, autoionization represents a loss channel

and a source of decoherence when studying quantum phenomena.

Autoionization is triggered by energy exchange during a collision between the two valence

electrons [4, 12]. The autoionization rate can be controlled (and suppressed) by exciting the

outer electron to different high-n levels and/or different high-` states. The n-dependence

results from changes in the Rydberg electron probability density in the vicinity of the Sr+

ion core, which decays as ∼ n−3. In the limit of very-high-n levels the autoionization rate

decreases to a level such that radiative decay of the inner excited electron rather than au-

toionization limits the lifetime of two-electron-excited states [16]. The competition between

radiative decay and autoionization is also of interest in the context of the time-reversed

process, dielectronic recombination, in electron-ion collisions which is an important recom-

bination mechanism in many plasmas [17–19]. Such collisions can result in the transient

capture of the incident electron through excitation of the ion and the formation of a quasi-

bound two-electron-excited state. The latter can then either autoionize, thereby regenerating

the electron-ion pair, which corresponds to a quasi-elastic electron-ion scattering channel,
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or can be stabilized by radiative decay of the inner excited electron leading to formation of

a neutral atom.

The ` dependence of the autoionization rate turns out to be more complex. In the limit of

high `, the electron-electron interaction is suppressed because the electrons are separated by

the centrifugal barrier and the autoionization rate exhibits a rapid decay with increasing `,

scaling as ∼ `−5 [20]. However, even at large distances, the outer electron polarizes the inner

valence electron cloud causing small but non-negligible electron-electron correlations [21, 22].

For low quantum numbers n or `, the autoionization rate deviates from these scaling laws

due to coupling to perturbers (or intruder states) and the exchange interaction between

the two valence electrons. In particular, exchange effects are observed for low-` Rydberg

electrons which penetrate the inner valence electron cloud [23]. In this paper we analyze

the dependence of the electron-electron interaction on `, covering the range from low- to

intermediate-` and identify the onset of the high-` behavior.

Many experimental studies of two-electron-excited states have employed alkaline-earth

and alkaline-earth-like atoms [4, 11, 21, 22, 24–30] because the wavelengths required for

their production can be conveniently generated. For strontium, the 5p1/2n` autoionizing

levels have been studied extensively for a wide range of ` levels but mostly for states with

relatively low values of n, n < 40 [4, 31–33]. Their study has been recently extended to much

higher n levels (280 . n . 430), but only for 5p1/2np and 5p1/2nf autoionizing states [16].

In the presence of intruder states, however, the autoionization rates deviate from the ∼ 1/n3

scaling and can not easily be extrapolated to higher n. In the limit of very high `, the outer

electron forms a circular state and autoionization becomes negligible [34]. Even if the inner

valence electron is excited to a level somewhat above the 5p1/2 state, Rydberg electrons

with values of ` ≥ 9, do not penetrate the Sr+ ion core and autoionization is suppressed.

Nevertheless, the wavefunction of the (polarized) inner valence electron influences the outer

electron and the resulting correlation effects can be detected in energy shifts conveniently

parameterized in terms of quantum defects [21, 22]. The autoionizing states for high-` levels

have been frequently analyzed using a perturbative approach [23, 35, 36] by considering

the weak electron-electron interaction as the perturbation. For low `, where the Rydberg

electron penetrates the inner valence electron, the perturbative approach breaks down and

multi-channel quantum defect theory [37] can be used to analyze the autoionizing levels.

Here we present a comprehensive study, using both theory and experiment, of 88Sr
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5p1/2n`j autoionizing Rydberg states. Experimentally-determined lifetimes and quantum

defects of the autoionizing states are compared with theoretical non-perturbative solu-

tions of this quasi-two electron problem employing the exterior complex rotation (ECR)

method [16, 22, 38]. This method of calculating atomic resonances in the complex plane

allows the discrimination of quasi-bound autoionizing levels from scattering states using

square-integrable wavefunctions. We examine, in particular, the `-dependence of the au-

toionization rates. While the latter is expected to follow the `−5 scaling derived from the

perturbation theory, the deviations from this scaling law at low ` help elucidate the effects

of exchange interactions and intruder states. For states with n ≤ 60, a direct state-resolved

comparison between our theoretical predictions and earlier measurements is possible. For

a comparison with new measurements for very high n (120 . n . 200) we apply an ex-

trapolation of our ECR results for low n in order to predict autoionization rates. These

high-lying autoionizing states are prepared by exciting first a singly excited Rydberg state

5sn` followed by excitation of the 5s1/2 → 5p1/2 transition in the core ion (see Fig. 1). In

the high n limit, typically, the intruder states are absent and the scaling with respect to n

and ` can be extracted with small uncertainties. While several autoionizing resonances can

overlap due to the high density of states, the extracted values of calculated autoionization

rates, energy shifts and oscillator strengths reproduce well the measured excitation profiles.

The structure of the paper is as follows. In Sec. II we briefly review our present experi-

mental approach. The properties of lower lying autoionizing Rydberg states of Sr (n ≤ 60)

and their theoretical description are presented in Sec. III. The application to atom loss

spectra for high lying autoionizing Rydberg states with n ≥ 120 is discussed in Sec. IV

followed by concluding remarks (Sec. V).

II. EXPERIMENTAL APPROACH

In the present work autoionization is explored through studies of Rydberg atom loss

induced by excitation of the 422 nm 5s 2S1/2 → 5p 2P1/2 transition in the Sr+ core ion.

Measurements focus on the fractional loss of Rydberg atoms due to autoionization which

is determined through alternating measurements of the number of Rydberg atoms created

and the number that remain following exposure to the 422nm radiation. Autoionization loss

spectra are obtained by recording the fractional loss as the 422nm laser is scanned across
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FIG. 1: Schematic energy-level diagram for autoionization of doubly-excited strontium Rydberg

states near the Sr+ ionization threshold. Initially, the ground-state atom is excited to a singly

excited 5sn` 1LJ Rydberg state by three-photon excitation (in some cases with an additional mi-

crowave field). The second valence electron is then excited to create doubly excited 5p1/2n`j states.

These autoionize predominantly to 5s1/2ε`
′
j or 4d3/2ε`

′
j levels. The state of the second valence elec-

tron for each Sr+ threshold is indicated.

the core ion transition. Initial Rydberg states with 120 . n . 200 are selected for study

because, for such states, decay due to autoionization is more rapid than that due to radiative

decay of the inner valence electron, whereupon the loss of Rydberg atoms can be identified

as a measure of the autoionization rate. Autoionization loss profiles recorded using several

different values of n and a given ` are used to extract the n scaling of the autoionization

rates, and the quantum defects.

A schematic diagram of the present apparatus, component parts of which are described in

detail elsewhere [16], is shown in Fig. 2. Briefly, strontium atoms contained in a collimated

beam are excited to the selected high-n 5sn` state by multiphoton excitation near the center

of an interaction region defined by three pairs of copper electrodes. 5snp 1P1 and 5snf 1F3

states are created by the three-photon excitation schemes shown in Fig. 2 that utilize the

5s5p 1P1 and 5s5d 1D2 intermediate states. The required radiation at 461, 767, and 893 nm

is provided by diode laser systems. All three laser beams are polarized along the x-axis

resulting in creation of states with |MJ | = 1 (and 3). Other ` levels (5sns, 5snd, 5sng,

and 5snh) are created by multiphoton optical and microwave excitation (see Fig. 2). The

893 nm laser is first detuned by ∼ 45−60 MHz from the transition to a 5snp 1P1 or 5snf 1F3
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FIG. 2: Schematic diagram of the present apparatus. The schemes employed to create the different

5snl states are also shown where blue (red) arrows denote optical (microwave) photons.

state which is sufficient to suppress any significant direct excitation of either state. Rydberg

production is then recovered by the simultaneous addition of a microwave field tuned to allow

direct combined four- or five-photon optical and microwave excitation of the desired state.

The microwave radiation is generated by applying the output of a frequency synthesizer to a

circular electrode positioned above the excitation volume. The amplitudes of the microwave

drive voltages are typically rather small, . 20 mV. Ancillary studies show that application

of a DC bias of 20 mV to the electrode results in the Rydberg atoms experiencing a DC

field of ∼ 3 mV cm−1. Here we use microwave frequencies of ∼ 2 − 4 GHz. Because of

retardation effects it is not possible to directly relate the amplitude of the microwave drive

voltage to the microwave field generated in the excitation region. Furthermore, because of

possible internal reflections the polarization of the microwave field is not well defined leading

to ambiguity in the distribution of final |MJ | states populated. However, it is reasonable

to expect that, for a given drive frequency, the amplitude of the microwave field will be

proportional to the drive voltage.

Experiments are conducted in a pulsed mode. The output of the 461 nm laser and (if

required) frequency synthesizer are chopped into a series of simultaneous pulses of ∼ 1µs
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duration with a pulse repetition frequency of ∼ 10 kHz (the other two laser beams remain

on at all times). After a brief (∼ 200 ns) delay autoionization can be induced by exciting

the 5s 2S1/2 → 5p 2P1/2 transition in the Sr+ ion using a 1µs-long pulse of 422 nm radiation

polarized along the z axis that is generated by a diode laser system whose output frequency

is referenced to the 5s 2S1/2(F ′ = 2) → 5p 2P1/2(F ′ = 3) transition in 85Rb which lies

440 MHz to the red of the core ion transition [39]. After a brief time delay to allow electrons

produced by autoionization to be lost to the walls, the number of surviving Rydberg atoms is

determined by selective field ionization (SFI) [40, 41]. An increasing electric field is produced

in the experimental volume by applying a linearly-increasing positive voltage ramp (rise

time ∼ 4µs) to the lower electrode. The product electrons are collected and detected using

a dual microchannel plate. The probability that a Rydberg atom is created during any

experimental cycle is small, . 0.6, and data are accumulated over many cycles to build up

good statistics. The fractional loss of Rydberg atoms due to autoionization is determined

through measurements of the Rydberg atom signal with and without the 422m laser pulse

applied. Before analyzing the measured autoionization profiles, we look at the properties

of autoionizing states. In particular, the autoionization rates, the quantum defects and the

oscillator strengths of autoionizing states are examined since they are necessary information

to simulate the excitation dynamics.

III. PROPERTIES OF AUTOIONIZING STATES

The autoionization of quasi-two-electron systems, such as strontium, can be numerically

analyzed using the two-active-electron approximation [42]. Denoting the Sr2+ ion core po-

tential with Vc(r) the Hamiltonian of the two-valence-electron system can be written as

H =
2∑

i=1

(
p2
i

2
+ Vc(ri) + Vso(ri)

)
+ Vee . (1)

where ~pi and ~ri (i = 1, 2) are the momenta and positions of the two valence electrons

(atomic units are used throughout unless otherwise noted). The electron-electron interaction

is denoted by

Vee =
1

|~r1 − ~r2|
(2)
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and the spin-orbit interaction is given by

Vso(r) =
α2

2

(
~̀ · ~s

) 1

r

dVc(r)

dr
, (3)

where α is the fine structure constant. In strontium, the spin-orbit coupling is relatively

large giving rise to a fine-structure splitting between the 5p1/2 and 5p3/2 levels in the Sr+

ion of ∼ 3.7 × 10−3 a.u. (or ∼ 0.1 eV). For high Rydberg states with n � 1 the electron-

electron interaction Vee is strongly reduced for 5pn` autoionizing states and, therefore, is

often treated as a perturbation. We first briefly review the well-known perturbative treat-

ment for autoionization of these states (see, e.g., [23, 35, 36]) which will serve as point of

reference for our present non-perturbative simulations. This will aid in understanding both

the measured data and numerical results presented in the later sections.

A. Perturbative approach

In the perturbative treatment the electron-electron interaction Vee is considered as a

perturbation and expanded in multipole terms, i.e.

Vee =
∞∑
k=0

Uk(~r1, ~r2) (4)

with

Uk(~r1, ~r2) =
k∑

mk=−k

[
rk<
rk+1
>

4π

2k + 1
Y mk
k (Ω1)Y mk∗

k (Ω2)

]
, (5)

where r> (r<) indicates the larger (smaller) between r1 and r2 and Ωi (i = 1, 2) the solid

angle of the i-th electron. The “unperturbed” Hamiltonian, defined as

H0 =
2∑

i=1

(
p2
i

2
+ Vc(ri) + Vso(ri)

)
+ U0(~r1, ~r2), (6)

includes the zeroth order multipole (or screening) term U0(~r1, ~r2) = 1/r> of the core potential

by the inner valence electron while the higher multipoles Uk (k ≥ 1) represent the pertur-

bation. H0 is diagonalized using the (non-antisymmetrized) basis states given in coordinate

representation as

〈~r1, ~r2|(nv, `jv , n, `j)J〉0 =
ψnv ,`jv

(r1)

r1

Fn,`j(r2)

r2

〈Ω1,Ω2|(`jv , `j)J〉, (7)
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where n is the principal quantum number and ` the orbital angular momentum of the

Rydberg electron. ψnv ,`jv
and Fn,`j are the radial wavefunction of the inner valence electron

(with sub-index v) and of the Rydberg electron, respectively. The total angular momentum

of each electron is ~j(v) = ~̀
(v) + ~s(v) and the total angular momentum ~J = ~jv +~j. The radial

wavefunctions satisfy the eigenvalue equations[
−1

2
∂2
rv + Vc(rv) + Vso(rv)

]
ψnv ,`jv

(rv) = Inv ,`jv
ψnv ,`jv

(rv) (8)

and [
−1

2
∂2
r + Veff(r) + Vso(r)

]
Fn,`j(r) = E

(0)
n,`j

Fn,`j(r) (9)

with the effective core potential

Veff(r) = Vc(r) +

∫ r

0

drv|ψnv ,`v(rv)|2 +

∫ ∞
r

drv
1

rv
|ψnv ,`v(rv)|2 . (10)

For two valence electrons outside a closed-shell core, the two-electron basis states should be

anti-symmetrized, i.e.

|(nv, `jv , n, `j)J〉A =
1√
2

(
|(nv, `jv , n, `j)J〉0 − (−1)jv+j+J |(n, `j, nv, `jv)J〉0

)
.

(11)

As a result of anti-symmetrization, wavefunctions belonging to different two-electron con-

figurations, e.g., 5s1/2npj and 5pjns1/2, are no longer orthogonal to each other. Therefore,

when the radial equation for the Rydberg electron is solved for each two-electron configura-

tion, the Hamiltonian matrix is diagonalized in a subspace of the Hilbert space orthogonal

to all other configurations to maintain the orthogonality in the anti-symmetrized basis.

The autoionization rate follows now in first-order approximation from the Wentzel-Fermi

golden rule [23, 36, 43, 44] as

Γ = 2π
∑

n′
v ,`

′
v ,j

′
v ,`

′,j′

|Ad − (−1)jv+j+JAex|2 (12)

and the energy shift as

∆E(2) =
∑

n′
v ,`

′
v ,j

′
v ,`

′,j′

P
∫
dε
|Ad − (−1)jv+j+JAex|2

Inv ,`jv
− In′

v ,`
′
jv

+ E
(0)
n,`j
− ε

, (13)

where P indicates the principal value. The direct and exchange amplitudes are defined as

Ad =
∞∑
k=1

0〈(n′v, `′jv , ε, `
′
j)J |Uk|(nv, `jv , n, `j)J〉0 (14)
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and

Aex =
∞∑
k=0

0〈(ε, `′j, n′v, `′jv)J |Uk|(nv, `jv , n, `j)J〉0 , (15)

where |(n′v, `′jv , ε, `
′
j)J〉 is a continuum state lying energetically above the ionization threshold

In′
v ,`

′
jv

. The evaluation of the direct and exchange amplitudes employs the numerically-

evaluated bound and continuum radial wavefunctions, which account for the phase shift

induced by the effective core potential [Eq. (10)]. The continuum state in Eq. (12) satisfies

the resonance condition In′
v ,`

′
jv

+ ε ' Inv ,`jv
+ E

(0)
n,`j

. In Eq. (13) the integral over energy

includes not only the continuum states but also the bound states. The exchange amplitude

is non-vanishing when the selection rule ` ≤ `′v + k is satisfied. For the 5p1/2n` autoionizing

states of strontium, the inner valence electron decays from the 5p to the 5s or 4d state

(Fig. 1) and couples predominantly to the neighboring 5s, 4d, 6s, and 5d states (i.e. `′v ≤ 2).

The leading terms in Eqs. (14) and (15) are therefore k = 1 for the direct term and k = 0, 1

for the exchange. Consequently, the exchange interaction contributes significantly only for

` ≤ 3. Moreover, the radial wavefunction of the Rydberg electron, Fn,`j(r), with ` ≥ 4

barely overlaps with the inner valence wavefunction, ψn′
v ,`

′
jv

(r), with `′v ≤ 2 suppressing the

exchange amplitude for ` ≥ 4. Thus, for large angular momentum states with ` ≥ 4 the

energy shift can be simplified [20, 45] to

∆E(2) ' −1

2
αd〈n, `|r−4|n, `〉 (16)

where αd is the effective dipolar polarizability of the excited Sr+ ion core and where it

is assumed that the dominant contributions to the integral [Eq. (13)] originate from the

states with transition frequencies of the outer electron small compared to that of the inner

electron, i.e., |ε − E(0)
n,`j
| � |Inv ,`jv0

− In′
v ,`

′
jv0
|. The effective polarizability accounts for the

relative angles between the induced dipoles of the inner valence and the Rydberg electrons

[see Eq. (5) with k = 1] and therefore depends not only on the state of the inner electron

but also on the angular momentum of the Rydberg electron. The quantum defect of the

high-` autoionizing states can thus be evaluated as

µ = µ(0) + µ(2) , (17)

where the zeroth-order correction is given by E
(0)
n,`j

= −1/[2(n−µ(0))2] ' −1/(2n2)−µ(0)/n3
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and the second-order correction is

µ(2) = −n3∆E(2)

' 3αd

4(`+ 3/2)(`+ 1)(`+ 1/2)`(`− 1/2)
. (18)

In Eq. (18) the expectation value 〈n, `|r−4|n, `〉 is evaluated using hydrogenic wavefunctions

in the limit of large n. The static polarizability of the 5p1/2
2P1/2 strontium ion is estimated

to be αd = −49 [46, 47]. This negative polarizability may affect the sign of the quantum

defect [Eq. (17)] for large `. For two-electron atoms, the transition energy |ε− E(0)
n,`j
| of the

Rydberg electron in Eq. (13) may not be negligible compared to that of the inner valence

electron, |Inv ,`jv0
− In′

v ,`
′
jv0
|, and the approximation [Eq. (16)] to the energy shift may break

down requiring a more accurate estimate [35].

For Rydberg states with small angular momenta, ` < 4, the evaluation of autoionization

rates [Eq. (12)] and energy shifts [Eq. (13)] is more involved due to the non-negligible

contributions from the exchange amplitude [Eq. (15)]. The exchange interaction [Eq. (15)]

can also lead to sizable couplings between the autoionizing states, 5p1/2nsj and 5p1/2ndj,

as well as between the 5p1/2n`j state and the intruder 5p3/2n`j state. Such couplings are

neglected in the perturbative approach. In the next section, we compare the estimates from

perturbation theory [Eq. (12)] with numerical non-perturbative calculations.

B. Non-perturbative quasi-two electron approximation

The autoionization rate of the 5p1/2n`j autoionizing states is evaluated using an ab initio

calculation by numerically diagonalizing the Hamiltonian [Eq. (1)]. The Hilbert subspace is

defined by limiting the inner valence electron configurations to 5s1/2, 4djv , 5pjv , 6s1/2, 5djv ,

and 6pjv . This limits also the number of contributing multipole terms Uk, all of which are in-

cluded in the calculation. For the evaluation of autoionization rates, we employ the exterior

complex rotation (ECR) method [16, 38]. While the radial wavefunction of the outer elec-

tron is evaluated within a finite region of coordinate space, an outgoing boundary condition

(instead of hard wall) is enforced at the boundary. Scattering states feature, typically, large

loss rates due to this imposed outgoing boundary condition. On the other hand, autoioniz-

ing states are quasi-bound and couple only weakly to scattering states. Consequently, the

loss rates for autoionizing states become nearly independent of the outgoing boundary con-
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` a1 a2 a3 rc αcp

0 3.01 1.00 1.07 3.00

5.3
1 3.15 0.89 1.21 1.38

2 4.20 1.59 1.12 0.62

≥ 3 4.81 4.07 1.76 0.95

TABLE I: Parameters for the model potential [Eq. (19)]

dition. Thus, in the ECR method, the autoionizing states can be distinguished from nearby

scattering states by their insensitivity to the variation of the outgoing boundary condition.

Moreover, they, typically, feature much smaller imaginary parts of the eigenenergies than a

scattering state which allows the extraction of autoionization rates. Correspondingly, the

energy shifts of the autoionizing states can be extracted from the real part of the eigenenergy.

In our simulations the converged autoionization rates and eigenenergies can be obtained up

to n ∼ 60. they are extrapolated to higher n for a comparison with the new measure-

ments in the high-n (n > 120) limit. In this regime, several resonances are overlapping and

cannot be resolved experimentally. The application of the ECR method is particularly con-

venient as it does not require any fitting to state-resolved autoionization spectra as needed

in multi-channel quantum defect theory.

In our simulation we employ the core potential representing the closed-shell Sr2+ core

[Eq. (1)]

Vc(r) = −1

r

(
1 + 37e−a1r + a2e

−a3r − αcp

2r4
(1− e−(r/rc)6)

)
, (19)

which includes the effects of the static dipolar polarizability αcp of the Sr2+ ion (see the

parameters in Table I). The potential has been optimized to obtain the quantum defects for

singly excited states with deviations of < 0.01. This error implies deviations in energy of

< 0.01/n3. While small on an absolute scale, it may result in errors on the scale of the fine

structure splitting. For example, the measured fine structure splitting of the 5p state of Sr+

ion is 3.65× 10−3 a.u. while the model potential yields 3.99× 10−3. Therefore, the effects of

intruder states (5p3/2n`j) on the 5p1/2n`j autoionizing states cannot be accurately described.

However, in the absence of such intruder states at large n, autoionization rates and energy

shifts have well converged. We have verified convergence by additional calculations using

different core potentials that yield slightly different Sr+ energies and shifts in the position
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of the intruder states. In the following, autoionization rates calculated using ECR will be

compared to those obtained using the perturbative approach [Eqs. (12) and (13)]. The latter

can also serve as a benchmark for spectra in the absence of intruder states and configuration

mixing. The perturbative approach can be easily applied to autoionizing states with values

of n up to ' 200 while the ECR method is limited to states with n < 70. We therefore

employ perturbation theory to extrapolate ab-initio results to higher n, as discussed below.
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FIG. 3: Autoionization rates of 5p1/2ns1/2(J = 1) states calculated by the ECR method (triangles)

and by perturbation theory (PT, solid line) [Eq. (12)]. The effective quantum number ν5p1/2 is

defined with respect to the ionization threshold I5p1/2 . The autoionization rate is scaled by a factor

ν3
5p1/2

. The open circles are the measured data from [31] and the dashed lines show the value of

Γ0 obtained by fitting the ECR results [see text, Eq. (20)]. The results from the ECR method are

connected by dotted lines to visualize the peak positions.

Figure 3 shows autoionization rates for the 5p1/2ns1/2(J = 1) states calculated by both the

ECR method (triangles) and perturbation theory (PT, solid line) [Eq. (12)]. The effective

quantum number ν5p1/2 is defined with respect to the ionization threshold I5p1/2 associated

with the Sr+ ion state 5p1/2
2P1/2, i.e. ν5p1/2 = [2(I5p1/2−E)]−1/2, where E is the energy of the

autoionizing state. In the perturbative approach ν5p1/2 is evaluated using the unperturbed

energy E = E
(0)
ns1/2 [Eq. (9)]. For comparison the experimental data (circles) from Ref. [31]

are also included in Fig. 3. The ECR results show strongly fluctuating autoionization rates

where the “peaks” result from the coupling to 5p3/2ns1/2(J = 1) intruder states. Since

these intruder states have smaller effective quantum numbers ν5p3/2 defined with respect to

the ionization threshold I5p3/2 , such couplings tend to increase the autoionization rate Γ.
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State
Γ0/(2π) ∆Lν

3
5s Quantum defect, µ5p1/2

Expt. (MHz) Expt. (a.u.) Calc. (a.u.) Expt. (MHz) Expt. (a.u.) Calc. (a.u.)

5p1/2ns1/2(J = 1) 5.2× 108 0.079 0.078 −8.0× 108 0.39 0.394

5p1/2np1/2(J = 0) — — 0.082 — — 0.78

5p1/2np1/2(J = 1) — — 0.043 −1.4× 109 0.94 0.92

5p1/2np3/2(J = 1) 3.3× 108 0.050 0.061 −7.2× 108 0.84 0.815

5p1/2np3/2(J = 2) (5.0× 108∗) (0.076∗) 0.073 (−7.3× 108∗) (0.84∗) 0.83

5p1/2nd3/2(J = 1)

7.1× 108 0.108

0.378 0.74

5p1/2nd3/2(J = 2) 0.096 −2.4× 109 0.74 0.81

5p1/2nd5/2(J = 2) 0.230 3.7× 109 — 0.70

5p1/2nd5/2(J = 3) 0.128 0.76

5p1/2nf5/2(J = 2) 0.199 0.12

5p1/2nf5/2(J = 3) 1.19× 109 0.181 0.164 −2.8× 108 0.13 0.1

5p1/2nf7/2(J = 3) (1.34× 109∗) (0.204∗) 0.201 (−3.0× 108∗) (0.13∗) 0.13

5p1/2nf7/2(J = 4) 0.230 0.05

5p1/2ng7/2(J = 3)

3.7× 108 0.056

0.081

1.8× 108 0.01

0.996
5p1/2ng9/2(J = 4)

5p1/2ng7/2(J = 4)
0.046 0.993

5p1/2ng9/2(J = 5)

5p1/2nh9/2(J = 4)

1.8× 108 0.027

0.015

0.7× 108 0.002

0.991
5p1/2nh11/2(J = 5)

5p1/2nh9/2(J = 5)
0.006 0.993

5p1/2nh11/2(J = 6)

TABLE II: Fitted values of the scaled autoionization rate Γ0 [see Eq. (20)], and the scaled line center

shifts, ∆L [see Eq. (22)] together with the fractional part of quantum defect µ5p1/2 = dν5p1/2e−ν5p1/2

where ν5p1/2 is the effective quantum number with respect to the ionization threshold I5p1/2 . Values

from new measurements are discussed in Sec. IV. Values derived from earlier studies at higher n [16]

are included and indicated by an asterisk. (In this earlier work the np1/2 and np3/2 features could

not be resolved, resulting in a broader overall linewidth.) For ` = 2, the line centers for both the

features at positive and negative detunings are indicated. Γ0 and µ5p1/2 are approximately equal

for both features.
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The positions of these peaks are slightly shifted relative to those in the experimental data

because of the discrepancy in the fine structure splitting of the 5p Sr+ ion state discussed

above. The autoionization rates calculated using the ECR method are fit to a power law

scaling

Γ ' Γ0ν
−3
5p1/2

. (20)

(see the dashed line in Fig. 3) where Γ0 is determined from the intruder-free region at large

values of the effective quantum number ν5p1/2 (in the present case ν5p1/2 > 50). Correspond-

ingly, Eq. (20) provides a lower bound to the autoionization rates Γ for smaller values of

ν5p1/2 , consistent with the enhancement of Γ by the presence of intruder states. We note that

the present fitting procedure differs from that employed in [16] where Γ was determined by

a least-squares deviation fit to all data rather than to the data in the intruder-free region.

Therefore, the values of Γ extracted from the current fit are slightly smaller (see Table II).

The perturbative approach also shows a ν−3
5p1/2

scaling but consistently overestimates the

autoionization rate. The discrepancy between the values of Γ derived using perturbation

theory and ECR results primarily from the non-negligible admixture (1-5%) of the configu-

ration |5p1/2nd3/2, J = 1〉0. Similar interactions between different configurations have been

observed for small ν5p1/2 [31].

For the 5p1/2npj autoionizing states (see Fig. 4), the measured data (circles) and the

ECR calculations (triangles) agree well with each other. Again the perturbative approach

(solid line) yields results that deviate from both of these. These deviations originate from

the mixing between the bound configurations (5pjvnpj) induced by the exchange interaction

of the Uk=0 term [Eq. (15)] and by the higher multipole term Uk=2, The fitted value of Γ0

[Eq.(20)] to the ECR results can be found in Table II. For ` = 1, intruder states (5p3/2npj)

are present around ν5p1/2 ' 50 and Γ0 is obtained by fitting to the lower bound of the

(fluctuating) Γ. As is the case for ` = 0 states (see Fig. 3), the positions of peaks caused

by the intruder states (5p3/2npj) are shifted relative to the measured data but the overall

magnitudes of Γ agree reasonably well.

With further increases in `, the mixing of configurations is suppressed and the ECR and

perturbative calculations move into agreement. (The fitted values of Γ0 for other values

of ` are also listed in Table II.) For example, for the 5p1/2ngj states (Fig. 5), the two

calculations of Γ agree reasonably well except for the effects of intruder states. The narrow

width of the peaks induced by intruder states indicate that the mixing between the intruder
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state and the nearby autoionizing state is weak for large `. In this high-n, high-` limit, the

spin of the Rydberg electron becomes less important and the autoionizing states are often

represented by the intermediate coupling scheme using the quantum number ~K = ~jv + ~̀.

States with the same quantum number K become degenerate regardless of j values. Indeed,

the transformation between the jj and intermediate representations [48] for J = ` is
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FIG. 4: Autoionization rates of 5p1/2npj states calculated by the ECR method (triangles) and by

perturbation theory (PT, solid line) [Eq. (12)]. The open circles are the measured data from [33]

and the dashed lines show the value of Γ0 obtained by fitting the ECR results. [Eq. (20)].

 |(p1/2`j=`−1/2)J〉0
|(p1/2`j=`+1/2)J〉0

 =

 cos θ − sin θ

sin θ cos θ

 |((p1/2`)K = `+ 1/2, s)J〉0
|((p1/2`)K = `− 1/2, s)J〉0

 (21)

with θ = arctan(1/(2
√
J(J + 1))). In the limit of large J , or equivalently, of large `, the

mixing angle θ vanishes and two representations become identical. States with (j, J) =

(`− 1/2, `) and (`+ 1/2, `+ 1) having K = `+ 1/2 become degenerate and so do the states

with (j, J) = (`+ 1/2, `) and (`− 1/2, `− 1) with K = `− 1/2.

The real parts of the complex energy eigenvalues resulting from the ECR calculation,

parameterized in terms of quantum defect µ can be compared with the measured data [31–

33] as well (Fig. 6). The quantum defect µ5p1/2 is defined as µ5p1/2 = dν5p1/2e−ν5p1/2 with the

ceiling function d·e. Similar to Γ, the effects of intruder states are clearly seen. While the

exact positions of the intruder states in the calculation are again slightly shifted as compared

to the experimental data, their overall behavior appears to agree well. For most states, the

asymptotic value of the quantum defect in the large ν5p1/2 limit can be extracted from the
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FIG. 5: Autoionization rates for 5p1/2ngj states calculated by the ECR method (triangles) and by

perturbation theory (PT, solid line) [Eq. (12)]. The dashed lines show the values of Γ0 obtained

from a fit to the ECR results.

calculations near ν5p1/2 ' 60 (Fig. 6). For the 5p1/2npj, J = 1 states, however, deviations

due to intruder states are present around ν5p1/2 ' 50 - 60. Therefore, the asymptotic value

is, instead, fit to the region where the autoionizing states have only a small admixture of

|5p3/2n`j〉0 configurations.

Due to the singularity present in the integrand [Eq. (13)] it is challenging to obtain

converged energy shifts from the perturbative approach. Only for large `, does the exchange

amplitude become negligible allowing the approximation [Eq. (16)] to be applied. The

quantum defect due to the ion core screened by the 5p1/2 inner valence electron is µ(0) '

0.0033 for ` = 4 and 0.00085 for ` = 5. The additional correction due to the electron-electron

interaction [Eq. (17)] derived using the polarizability αd = −49 [46] is µ(2) ' −0.021 for

` = 4 and −0.0076 for ` = 5. The resulting total quantum defects (modulo 1) within

perturbative theory are µ5p1/2 = 0.982 for ` = 4 and 0.993 for ` = 5, as shown in Fig. 7. The

corresponding results from the ECR calculation agree with perturbation theory in regions

well-removed from the spectral positions of the intruder states to within an error of about

0.01. However, near ν5p1/2 ' 40 the distortion introduced by the intruder state, which is

included in the ECR calculation but is absent in the perturbation theory, leads to significant

discrepancies. In turn, the asymptotic value of µ5p1/2 (Table II) is extrapolated by fitting the

Rydberg-Ritz formula to the ECR results in the intruder-free region around ν5p1/2 > 55. The

perturbative approximation [Eq. (16)] assumes that the inner and outer valence electrons

17



0.4

0.45
ECR

0

0.5

Expt.

0.9

0.95

Asymptotic value

0.7

0.8

µ
5
p

1
/2

0.7

0.8

0.9

20 40 60
ν

5p
1/2

0.7

0.8

0.9

5p
1/2

ns
1/2

 (J=1)

5p
1/2

np
1/2

 (J=0)

5p
1/2

np
1/2

 (J=1)

5p
1/2

np
3/2

 (J=1)

5p
1/2

np
3/2

 (J=2)

5p
1/2

nd
5/2

 (J=3)

FIG. 6: Quantum defects of µ5p1/2 = dν5p1/2e − ν5p1/2 for 5p1/2ns1/2, 5p1/2npj , and 5p1/2ndj

autoionizing states calculated by the ECR method (triangles) and measured values (open circles)

(5p1/2ns1/2 from [31], 5p1/2npj from [33] and 5p1/2ndj from [32]) The dashed lines are the fitted

asymptotic values.

are uncorrelated and, therefore, the resulting energy shift does not depend on K = `± 1/2.

To remove the degeneracy, a more accurate estimate [Eq. (13)] would be required by taking

the energy difference in unperturbed energy E
(0)
n,`j

between different K levels.

IV. RYDBERG ATOM LOSS SPECTRA

In this section, we compare the theoretical predictions discussed above with the new

measurements of autoionizing states for 120 . n . 200. The calculated autoionization

rates for n < 60 are extrapolated to the high-n levels following the Γ = Γ0ν
−3
5p1/2

scaling.

The quantum defects fitted to the ECR results are assumed to be the asymptotic value

and valid for the measured data for n > 120. Different from the autoionizing states for

low n, due to high density of states, several autoionizing resonances overlap and can not
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expanded scale of the µ5p1/2 axis.

often be resolved. Therefore, the information on each individual autoionizing state cannot

be extracted and the comparison between the measurements and the calculations need to

be done differently. We simulate the excitation dynamics using the calculated Γ0 and µ5p1/2

and, also, the numerically evaluated oscillator strengths. The resulting excitation profiles

can be tested against the measured data.

Autoionization loss profiles recorded using 5sns 1S0 Rydberg atoms are presented in

Fig. 8. To facilitate a visual comparison of the different profiles, the 422 nm laser power

was adjusted to achieve similar peak losses of ∼ 30− 35% in each profile. Considering that

direct photoionization from the singly-excited state is negligible, an autoionizing state can

be considered to represent a Breit-Wigner resonance with a Lorentzian profile. The red

solid lines in Fig. 8 are Lorentzian fits to the measurements. The line center is associated

with the quantum defect µ5p1/2 and the width with the autoionization rate Γ. To correct for

saturation near the line center and for ac Stark shifts, for each value of n loss profiles were

measured for several values of 422 nm laser power and the results extrapolated to zero laser

power. The resulting widths, together with the shifts in the core ion 5s1/2
2S1/2 - 5p1/2

2P1/2

transition frequencies (from that of a bare Sr+ ion) are plotted in Fig. 9 as a function of the

effective quantum number ν5s of the initial Rydberg state for several values of `. The line
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FIG. 8: n-dependence of the autoionization loss profiles for singly-excited 5sns 1S0 Rydberg atoms.

Each data set is normalized to the total initial number of Rydberg atoms created and for each value

of n the 422 nm laser power was adjusted to achieve similar fractional peak losses. A Lorentzian

fit (red solid line) to each profile with line centers (dotted lines) and widths Γ (arrows) indicated

is included.

center shifts ∆L can be well approximated as

∆L = − 1

2ν2
5p1/2

+
1

2ν2
5s

'
ν5p1/2 − ν5s

ν3
5s

. (22)

Correspondingly, the effective quantum numbers of the autoionizing states are determined

by ν5p1/2 ' ν5s+ν3
5s∆L and the fractional part of the quantum defect is µ5p1/2 ' dν5se−ν5s−

ν5p1/2 . In the high n limit the quantum defect reaches the asymptotic value and ν5p1/2 − ν5s

becomes nearly constant. The widths w can be well fit by an expression of similar form

w = Γ0/ν
3
5p1/2

+ ∆ω0 , (23)

where ∆ω0 (=21.7 MHz) is the radiative decay rate of the 5p1/2 state of an Sr+ ion. The

fitted values of quantum defect µ5p1/2 and Γ0 are listed in Table II.

Representative autoionization loss spectra recorded for singly-excited states 5sn` with

different values of ` are shown in Fig. 10(a). Since several autoionizing states are optically

accessible from a given singly-excited state with ` > 0, the measured spectra become a sum
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FIG. 9: Line center shifts for ` 6= 2 (a) and for ` = 2 (b) and values of w−∆ω0 (c) extracted from

the measured autoionization loss spectra for ` ≤ 5. For ` = 1, the line center shifts associated with

the two atom loss features corresponding to j = 1/2 and 3/2 are extracted (see the text for details)

but the width is extracted only from the larger (j = 3/2) feature. Since the line center shifts for

` = 2 are much larger than for other `, they are shown separately in (b) which includes the features

seen at both negative and positive detuning. The width is extracted only from the larger feature

at negative detuning. The dashed lines are the fits to the measured data [Eqs.( 22) and ( 23)]. In

(a) and (b) the size of the data points indicates the size of the measuremental uncertainties.
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FIG. 10: (a) Autoionization loss profiles recorded for the states indicated. The spectra were

obtained using identical 422 nm laser powers and pulse durations and each data set is normalized

to the initial number of Rydberg atoms created. A Lorentzian fit (red solid line) to each profile

is included. (b) Simulated survival probability of Rydberg atoms representing autoionization loss

profiles for the states indicated.

of several Lorentzian profiles. Since the integral over the Lorentzian is proportional to the

oscillator strength, autoionizing states with larger dipole transition strengths and smaller

decay rates are expected to be more prominent, i.e., the depth of each Rydberg atom loss

feature is expected to be proportional to the squared dipole transition matrix element and

inversely proportional to Γ.

The dipole transition matrix elements can be evaluated by expanding each autoionizing

state |(5p1/2n`j)JMJ〉 in terms of the unperturbed basis [Eq. (7)]. The dipole transition
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matrix elements between unperturbed basis states are given by

0〈(5p1/2n
′`j)J

′MJ |zv|(5s1/2n`j)JMJ〉0 ' −
1

3
〈5p|r|5s〉 5p〈n′`|n`〉5s

×

[
δj,`−1/2

(√
(J −MJ)(J +MJ)

J
δJ ′,J−1 +

MJ

J
δJ ′,J

)

+δj,`+1/2

(
− MJ

J + 1
δJ ′,J +

√
(J ′ −MJ)(J ′ +MJ)

J ′
δJ ′,J+1

)]
. (24)

In Eq. (24) the magnetic quantum number MJ is defined relative to the laser polariza-

tion taken to be the quantization axis. The overlap 5p〈n′`|n`〉5s in Eq. (24) does not van-

ish [49] since the Rydberg states n and n′ are associated with differently effective ionic cores

[Eq. (10)]. Typically, the initial singly-excited states with the 5s inner valence electron are

well represented by the LS coupling scheme since the spin-orbit coupling is negligibly small.

In this case, the matrix elements in the jj coupling representation [Eq. (24)] need to be trans-

formed to the LS basis where the transition is given by a Wigner 9j symbol [50]. However,

for ` > 4 the singly-excited states are well represented by the jj-coupling scheme [50, 51]

and no transformation is required. The selection rules for the inner valence electron excita-

tion are |∆`v| = 1 and |∆J | ≤ 1. In the limit of large J , the two valence electrons become

uncorrelated and the latter selection rule is reduced to |∆J | = 1 and the J ′ = J states will

not be populated.

Using the calculated dipole matrix elements and complex eigenenergies (the imaginary

part representing Γ/2), the photoexcitation of the inner valence electron by a 1 µs laser

pulse from the initial singly-excited Rydberg atom is simulated using the rotating wave

approximation. The probability of remaining in the initial Rydberg state after the excitation

pulse followed by autoionization is shown in Fig. 10(b). Since the initial 1P1 and 1F3 singly

excited states are prepared in the absence of the microwave field, the magnetic quantum

numbers (quantized along the z axis) |MJ | = 1 for 1P1 and |MJ | = 1 or 3 for 1F3 are well

defined. Due to the experimental uncertainty in the microwave polarization, the magnetic

quantum numbers MJ of the initial singly-excited Rydberg states for ` 6= 1, 3 are unknown.

In the simulation, we set the magnetic quantum number of the initial Rydberg states to

MJ = 0 for the 1S0 state and to MJ = 1 for all other ` > 0 states. The autoionizing loss

spectra are insensitive to MJ of the initial state except for large MJ when some autoionizing

states with J < |MJ | cannot be reached.
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Starting from the 5s147s 1S0 state, the 5p1/2ν5p1/2s1/2(J = 1) autoionizing state with

effective quantum number ν5p1/2 ' 143.6 is predominantly excited. As discussed earlier,

due to configuration mixing, the 5p1/2ν5p1/2d3/2(J = 1) state has a small admixture of the

|(5p1/2ν5p1/2s1/2)J = 1〉0 state and can be excited from the singly-excited 1S0 Rydberg state

as well. However, this admixture is small and the width Γ large (Table II). Consequently,

the ` = 2 state contributes only as a shallow and broad dip which is barely visible in

the plot. As a result, the measured Γ0 and µ5p1/2 closely resemble the calculated values

for the 5p1/2ν5p1/2s1/2(J = 1) autoionizing state. Indeed the measured autoionization rate

agrees with the ECR calculation within the error of 0.01 (corresponding to ∼ 20 MHz at

ν5p1/2 = 150) and is consistent with the measurement for low n (Fig. 3). Similarly, the

quantum defect agrees reasonably well (Table II).

Starting from the 5s148p 1P1(MJ = 1) state, two atom loss peaks are observed. While

the 5p1/2ν5p1/2p1/2, J = 0 state is optically inaccessible for MJ = 1, the calculated quan-

tum defects µ5p1/2 are larger for the 5p1/2ν5p1/2p1/2, J = 1 state than for the other two

5p1/2ν5p1/2p3/2, J = 1, 2 states. Consequently, the autoionizing state 5p1/2ν5p1/2p1/2, J = 1

gives rise to a shallow loss feature around −450 MHz and the 5p1/2ν5p1/2p3/2, J = 1, 2 states

to a more pronounced loss feature near −300 MHz. Since the difference in quantum defect

(∼ 0.1) between j = 1/2 and 3/2 is comparable to the width Γ0, they partially overlap.

Each feature is fitted separately (Table II) and the agreement between the measured data

for low n and the ECR calculation is comparable to that for the ` = 0 state.

For ` = 2, Rydberg atom loss features are evident at both positive and negative detunings

(see Fig. 11 and [13, 32]). By determining the occupation probabilities predicted by the ECR

calculation projected onto the unperturbed basis, they can be identified as the 5p1/2ndj and

5p1/2(n+1)dj autoionizing states. These multiple peaks are due to the non-negligible overlap

5p〈n′`|n`〉5s even when the principal quantum numbers differ, n′ 6= n [Eq. (24)]. Indeed, the

atom loss spectra measured for several values of n show that the separation of the two peaks

agrees well with the energy difference between adjacent n levels, i.e. ∼ 3 GHz at n = 131,

∼ 2 GHz at n = 150, and ∼ 1 GHz at n = 182 . (Note that the laser powers were again

chosen to obtain similar fractional peak losses of ∼ 30%. However, the powers required to

induce these losses were significantly larger than those required to produce similar losses for

the other ` states.) Moreover, atom losses are seen at large detunings which are comparable

to 1/ν3 indicating that the autoionizing state excited has an effective quantum number very
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different from that of the initial singly-excited state. This significant change in the effective

quantum number is caused by the relatively large energy splitting between the singlet and

triplet states of the singly-excited 5snd Rydberg states (µ = 2.38 for S = 0 and µ = 2.66 for

S = 1) [52, 53]. This is different from the other ` levels for which the fine structure splittings

are smaller. The width and line center can be extracted from the measured spectra for each

peak separately. The fitted values of Γ0 and µ5p1/2 are nearly the same for the both peaks

(Table II). Each atom loss peak of the 5p1/2ndj autoionizing state includes contributions

from states with different values of j and J with the oscillator strengths being largest for

J = 1 and 3 states [Eq. (24)]. Since the calculated autoionization rate is much smaller for

J = 3 than for J = 1, the atom loss contains a narrow and deep dip from the excitation of

the J = 3 autoionizing state and a broad and shallow dip from excitation of the J = 1 state.

Therefore, the autoionization rate and the quantum defect of the J = 3 autoionizing state

are most easily extracted from the measured spectra. This tendency is even enhanced when

the initial singly-excited state has significant |MJ | = 2 components for which the dipole

transition to J = 1 states is forbidden. Indeed, the fitted values of Γ0 and µ5p1/2 are close to

those of the J = 3 autoionizing states while small deviations are caused by the contributions

from the J = 1, 2 autoionizing states.

FIG. 11: n-dependence of the autoionization loss profiles for singly-excited 5snd 1D2 Rydberg

atoms. For each value of n the 422 nm laser power was adjusted to achieve similar peak losses. A

fit to each loss feature using a Lorentzian is included (red solid line).
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With further increases in `, the dipole transition to the autoionizing states with J = ` are

suppressed and the J = `± 1 states become dominant. For ` = 3, the large autoionization

rate of the individual J levels results in relatively broad atom loss feature. Additionally,

Γ0 ∼ 0.2 is much larger than the difference in the calculated difference between the quantum

defects of J = 2 and J = 4 (∆µ ' 0.07). These two states cannot be resolved in the measured

spectra and the effective width of the atom loss peak, which includes the contributions

from both autoionizing states, will be only slightly broadened by the splitting ∆µ. Indeed,

the measured value of Γ0 agrees quite well with the calculations. For ` ≥ 4, the excited

Rydberg electron is simply a spectator during the excitation of the inner valence electron

and modifications in the outer electron wavefunction are expected to be small. Therefore, in

this so-called isolated core excitation regime, the oscillator strength becomes approximately

that for excitation of a bare Sr+ ion [Eq. (24)] and largely independent of ν5p1/2 and `. Since

the autoionization rates decrease with `, narrower and more pronounced loss features are

expected. This is seen for the Rydberg atom loss spectrum of the 5s148g state. Calculations

indicate that this trend continues for ` = 5. However, the measured loss for the 5s149h state

appears to be significantly smaller than that for the 5s148g state implying that the excitation

probability for the inner valence electron is suppressed for the 5s149h state compared to that

of the 5s148g state. Discrepancies between the measured data and the non-perturbative

calculation are also found in the quantum defects for the autoionizing states with ` = 4 and

5. The calculated quantum defects (defined as modulo 1) reflects the negative polarizability

of Sr+ ion [46, 47] and the energy levels are blue-shifted from the hydrogenic level while

the measured quantum defects indicate the red-shifted energy levels (Table II). Differences

are seen but are very small, and when translated to effective quantum numbers, amount

to . 0.02 requiring a higher accuracy in both experiment and theory (e.g., more accurate

model potentials) to resolve this discrepancy.

Overall, the measured autoionization rates exhibit a power law scaling of ν−3
5p1/2

. Whereas

at low n the calculated rates fluctuate due to the presence of intruder states, the calculated

autoionization rates do agree well with the measurements (Table II) if Γ0 is fit to the lower

limit of these fluctuations. Currently, convergence in the calculation of the autoionization

rates can be achieved for ν5p1/2 . 70. This scaling with ν5p1/2 is intuitive in that the

autoionization rate decreases as the electron-electron interaction becomes weak for large n.

In contrast, the autoionization rates do not display a simple monotonic behavior as `
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FIG. 12: `-dependence of (a) Γ0 and (b) µ5p1/2 . The measured data (open circles), the ECR

calculations (filled triangles), and the prediction [Eq. (25)] from [20] (solid line). The dashed line

in (b) indicates the quantum defect µ(0) without the second-order correction [Eq. (17)].

is increased, as shown in Fig. 12(a), for the lower values of `. Figure 12 also includes the

prediction from [20]

Γ =
παd

2(`+ 3/2)(`+ 1)(`+ 1/2)`(`− 1/2)
(25)

which is valid for high ` states. Naively, it might be expected that with increasing

` the centrifugal barrier would increasingly limit core penetration by the Rydberg elec-

tron, whereupon, the electron-electron interactions and autoionization rates would decrease

steadily. The autoionization rate [Eq. (12)], however, is influenced by the radial integral

5s(4d)〈ε, `′|r−2|n, `〉5p involved in the direct amplitude Ad [Eq. (14)]. At large r the scattering

state |ε, `′〉 is a rapidly oscillating function while the bound state |n, `〉 is slowly oscillating.

Therefore, the radial integral is determined by the behavior at small r. Whereas the radial

integral decreases with increasing ` due to the centrifugal barrier, the phase shift µ(0) induced

by the effective ion core [Eq. (10)] also affects the integral. Indeed, phase matching between

the bound and scattering wavefunctions at small distances (r ' 10 a.u.) for ` = 2 and 3

states enhances the radial integral as well as the autoionization rate. On the other hand,
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the differences in phase shifts suppresses the autoionization rate for ` = 0 and 1. This phase

(mis)match is at the core of the non-monotonic behavior of Γ0 as a function of `. Similarly,

the measured quantum defect can also be compared with the prediction [Eqs. (16) and (17)]

for high-` states. (We note that Fig. 12(b) shows only the fractional part of the quantum

defect. The quantum defect including the integer part may decrease monotonically with `.)

For low-` states, the quantum defect is well approximated by the phase shift µ(0) induced

by the effective ion core and higher-order corrections appear to be much smaller than those

predicted by Eq. (16) for µ(2). For ` ≥ 4, however, the zeroth-order correction µ(0) becomes

negligible and, as expected, the quantum defects are well approximated by the second-order

corrections [Eq. (16)].

V. CONCLUSIONS

We have experimentally and theoretically investigated the n and ` dependence of the

autoionization rates of doubly-excited 88Sr high Rydberg states. Autoionization rates Γ and

quantum defects µ5p1/2 for such states are calculated within a quasi-two electron description

employing the exterior complex rotation method and the results compared to experimental

data and the predictions of perturbation theory. As expected, the autoionization rates

decrease with increasing effective quantum number ν5p1/2 (∼ n) as ∼ Γ0/ν
3
5p1/2

. This scaling

emerges, however, only for large n where the distortion introduced by intruder states has

subsided. For lower n the presence of intruder states requires great care when extracting

the asymptotic value of Γ0 for a given series. The values of Γ0 found using ECR calculations

and experiment agree well but differ from those provided by perturbation theory because of

configuration mixing and exchange effects not included in the perturbative approach. The

` dependence of the autoionizing rates was found to be non-monotonic. For high values

of `, the autoionization rate decreases as `−5 due to the centrifugal barrier which prevents

the outer electron from penetrating the core and the inner valence electron cloud. In this

regime autoionization is found to be well described by the perturbative approximation. For

low-` core-penetrating states, the scattering phase shift µ(0) associated with the effective

core potential, which includes the screening effects of the inner valence electron, plays an

important role in determining both autoionization rates and quantum defects. In particular,

the local maximum in the rate near ` ' 2-3 was found to be the consequence of phase
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matching between the bound and the scattering wave functions, which is not accounted for

in a perturbative approach. Similar trends can be observed for quantum defects. Whereas,

for high `, perturbation theory and the non-perturbative ECR calculation tend to agree,

significant discrepancies are seen for low to intermediate `.
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[22] M. Génévriez, C. Rosen, and U. Eichmann, Phys. Rev. A 104, 012812 (2021).

[23] M. Poirier, Phys. Rev. A 38, 3484 (1988).

[24] N. H. Tran, P. Pillet, R. Kachru, and T. F. Gallagher, Phys. Rev. A 29, 2640 (1984).

[25] J. Boulmer, P. Camus, and P. Pillet, J. Opt. Soc. Am. B 4, 805 (1987).

[26] J. Boulmer, P. Camus, J.-M. Lecomte, and P. Pillet, J. Opt. Soc. Am. B 5, 2199 (1988).

[27] R. D. Verma and A. Chanda, J. Opt. Soc. Am. B 5, 86 (1988).

[28] P. Camus, T. F. Gallagher, J.-M. Lecomte, P. Pillet, L. Pruvost, and J. Boulmer, Phys. Rev.

Lett. 62, 2365 (1989), URL https://link.aps.org/doi/10.1103/PhysRevLett.62.2365.

[29] G. Waligorski, L. Zhou, and W. E. Cooke, Phys. Rev. A 55, 1544 (1997).

[30] H. Lehec, X. Hua, P. Pillet, and P. Cheinet, Phys. Rev. A 103, 022806 (2021).

[31] E. Y. Xu, Y. Zhu, O. C. Mullins, and T. F. Gallagher, Phys. Rev. A 33, 2401 (1986).

[32] E. Y. Xu, Y. Zhu, O. C. Mullins, and T. F. Gallagher, Phys. Rev. A 35, 1138 (1987).

30



[33] S. Cohen, M. Aymar, A. Bolovinos, M. Kompitsas, E. Luc-Koenig, H. Mereu, and P. Tsekeris,

Eur. Phys. J. D 13, 165 (2001).

[34] R. C. Teixeira, A. Larrouy, A. Muni, L. Lachaud, J.-M. Raimond, S. Gleyzes, and M. Brune,

Phys. Rev. Lett. 125, 263001 (2020).

[35] J. H. Van Vleck and N. G. Whitelaw, Phys. Rev. 44, 551 (1933).

[36] U. Fano, Phys. Rev. 124, 1866 (1961).

[37] W. E. Cooke and C. L. Cromer, Phys. Rev. A 32, 2725 (1985), URL https://link.aps.

org/doi/10.1103/PhysRevA.32.2725.

[38] B. Simon, Physics Letters A 71, 211 (1979), ISSN 0375-9601.

[39] A. Sinclair, M. Wilson, and P. Gill, Optics Communications 190, 193 (2001), ISSN 0030-4018.

[40] R. F. Stebbings and F. B. Dunning, Rydberg States of Atoms and Molecules (Cambridge

University Press, 1983).

[41] T. F. Gallagher, Rydberg atoms (Cambridge Univ. Press, New York, 1994).

[42] S. Ye, X. Zhang, F. B. Dunning, S. Yoshida, M. Hiller, and J. Burgdörfer, Phys. Rev. A 90,

013401 (2014).

[43] G. Wentzel, Z. Phys. 43, 524 (1927), ISSN 0044-3328, URL https://doi.org/10.1007/

BF01397631.

[44] E. Fermi, Nuclear physics: a course given by Enrico Fermi at the University of Chicago

(University of Chicago Press, 1950).

[45] R. R. Freeman and D. Kleppner, Phys. Rev. A 14, 1614 (1976).

[46] M. Aymar, R. Guérout, and O. Dulieu, J. Chem. Phys. 135, 064305 (2011),

https://doi.org/10.1063/1.3611399, URL https://doi.org/10.1063/1.3611399.

[47] J. Mitroy, J. Y. Zhang, and M. W. J. Bromley, Phys. Rev. A 77, 032512 (2008), URL https:

//link.aps.org/doi/10.1103/PhysRevA.77.032512.

[48] R. D. Cowan, The Theory of Atomic Structure and Spectra (Univ. of Cal. press, 1981).

[49] S. A. Bhatti, C. L. Cromer, and W. E. Cooke, Phys. Rev. A 24, 161 (1981).

[50] G. Fields, R. Brienza, F. B. Dunning, S. Yoshida, and J. Burgdörfer, Phys. Rev. A 104,

032817 (2021).

[51] J. Nunkaew, E. S. Shuman, and T. F. Gallagher, Phys. Rev. A 79, 054501 (2009), URL

https://link.aps.org/doi/10.1103/PhysRevA.79.054501.

[52] P. Esherick, Phys. Rev. A 15, 1920 (1977).

31



[53] R. Ding, J. D. Whalen, S. K. Kanungo, T. C. Killian, F. B. Dunning, S. Yoshida, and

J. Burgdörfer, Phys. Rev. A 98, 042505 (2018).

32


