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The 1+1D O(3) non-linear σ-model is a model system for future quantum lattice simulations of other
asymptotically-free theories, such as non-Abelian gauge theories. We find that utilizing dimensional reduction
can make efficient use of two-dimensional layouts presently available on cold atom quantum simulators. A
new definition of the renormalized coupling is introduced, which is applicable to systems with open boundary
conditions and can be measured using analog quantum simulators. Monte Carlo and tensor network calculations
are performed to determine the quantum resources required to reproduce perturbative short-distance observables.
In particular, we show that a rectangular array of 48 Rydberg atoms with existing quantum hardware capabilities
should be able to adiabatically prepare low-energy states of the perturbatively-matched theory. These states can
then be used to simulate non-perturbative observables in the continuum limit that lie beyond the reach of classical
computers.

I. INTRODUCTION

Future quantum simulations of Abelian and non-Abelian
quantum field theories (QFTs), such as quantum chromody-
namics (QCD), and descendant effective field theories, will be
important in developing robust predictive capabilities of the
dynamics in a variety of physical systems of importance in
high-energy and nuclear physics, ranging from the early uni-
verse, to highly-inelastic processes in particle colliders, to the
evolution of extreme astrophysical environments. Beyond the
capabilities of classical computation, these challenges can only
be addressed using yet-to-be-engineered quantum computers
of sufficient capability [1, 2]. During the last decade, rapid
advances in the control of coherence and entanglement in the
laboratory has led to the deployment of the first generation of
quantum computing platforms, built around superconducting
qubits [3–7], trapped ions [8], and neutral atoms [9–12]. These
can be operated in a digital manner, where a universal gate-set
is used to emulate a specific Hamiltonian, or an analog man-
ner where the system is tuned to natively implement a target
Hamiltonian, or as quantum annealers [13–15]. While digital
quantum simulation platforms are universal in the sense that
they can simulate an arbitrary Hamiltonian, the difficulties of
implementing quantum gates has so far limited digital quan-
tum simulations to relatively small systems. In contrast, analog
quantum simulations have been performed with larger systems,
but are limited by the native Hamiltonian of the experimental
platform. Recent work has indicated that error rates on some
analog simulation platforms are low enough for potential quan-
tum advantages in physically interesting systems to be within
reach [16]. In particular, cold atom systems have been used to
simulate the dynamics of quantum systems in regimes that are
difficult for classical computers to simulate [17, 18].

With the emerging potential of quantum computers, and
the known limitation of classical computing, a growing ef-
fort is underway to develop efficient mappings of QFTs onto
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quantum computers, and the time-evolution of an array of ini-
tial conditions. The asymptotic freedom of SU(2) and SU(3)
gauge theories enables spatial lattice calculations to be per-
turbatively close to the continuum, and systematically cor-
rectable, as has long be used for lattice QCD classical simula-
tions. Traditional lattice mappings of gauge theories, such as
Kogut-Susskind [19], have led to first calculations of modest
systems in low-dimensions in U(1) [20–27], SU(2) [28–31]
and SU(3) [32–36], and estimates of resource requirements,
along with improved understandings about how to move for-
ward. These advances have also driven the development of new
and different encodings of QFTs onto finite discrete degrees of
freedom [20, 21, 23, 25–27, 29–31, 33–152].

Interestingly, the O(3) nonlinear sigma model (NLσM) in
1+1 dimensions is a theory of interacting scalar particles that is
asymptotically free, and can support a topologically non-trivial
ground state (vacuum). Because of these qualitative similarities
with QCD, it serves as a useful test-bed for the development of
computational methods for QCD. A number of mappings of the
O(3) NLσM suitable for quantum simulation have been intro-
duced, including the Heisenberg comb, fuzzy sphere, angular
momentum truncations and D-theory [136, 153–157]. Previ-
ous work has shown that at lowest truncation, the fuzzy sphere
regularization reproduces the O(3) NLσM [158], while the
angular momentum truncation requires a larger local Hilbert
space to do so [159]. The D-theory mapping with periodic
boundary conditions (PBC) has been shown in a number of
works to reproduce the O(3) NLσM, both with and without a θ-
term [136, 156, 157]. However, present-day analog simulators,
including arrays of cold atoms, only support open boundary
conditions (OBC).

A central ingredient in lattice simulations of asymptotically-
free QFTs is the perturbative matching between the continuum
and the lattice at short-distances (compared to the scale at the
theory becomes non-perturbative). In this work, it is shown
that it is possible to perform this matching for the O(3) NLσM
on existing analog quantum simulators. A definition of the
renormalized coupling in the O(3) NLσM that is suitable to be
used with OBC is introduced, and implemented using tensor
network simulations to compute the step-scaling function in the
D-theory mapping. The step-scaling function is then matched
to perturbative results at short distances (ultraviolet), and the
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results of Monte Carlo calculations at long-distances (infrared),
allowing for the minimum number of qubits required to repro-
duce continuum physics of the O(3) NLσM (to a given level
of precision) to be determined. Tensor-network simulations
indicate that asymptotic freedom and non-perturbative dynam-
ics beyond the capabilities of classical computers in the O(3)
NLσM can be potentially simulated with current cold-atom
experimental configurations.

II. MAPPING D-THEORY TO QUBIT REGISTERS

The 1 + 1D O(3) NLσM is defined by the action

S =
1

2g

∫
dt dx ∂µ~φ(x, t) · ∂µ~φ(x, t) , (1)

where ~φ(x, t) is a vector of three scalar fields subject to the
constraint ~φ(x, t) · ~φ(x, t) = 1. This constraint is responsi-
ble for transforming the free-boson action in Eq. (1) into an
interacting asymptotically-free QFT.

This theory has been extensively studied using classical
Monte Carlo (MC) methods using a straightforward discretiza-
tion of the above continuum action,

Slat = −1

g

∑
〈ij〉

~φi · ~φj . (2)

where the sum is over all nearest-neighbor sites i, j on a square
Euclidean spacetime lattice.

Simulating this theory on a quantum computer requires a
truncation of the field, and the D-theory formulation provides a
natural mapping onto qubit degrees of freedom, and an intrinsic
truncation, utilizing dimensional reduction. In this mapping,
spin- 12 degrees of freedom are placed on a 2D rectangular
lattice of length Lx sites in the x direction and Ly sites in the y
direction and coupled through an antiferromagnetic Heisenberg
interaction, i.e.,

ĤD = Jx
∑
x,y

~Sx,y · ~Sx+1,y + Jy
∑
x,y

~Sx,y · ~Sx,y+1 . (3)

To obtain the 1+1D O(3) NLσM, we choose Jx, Jy such that
the 2D model is in a massless (symmetry broken) phase when
Lx, Ly →∞. With these choice of parameters, the continuum
limit of the NLσM is obtained in the limit Lx � Ly � 1, as
has been demonstrated in several previous works for Jx = Jy
[136, 156, 157, 160, 161]. This has enabled classical Monte
Carlo studies of the O(3) NLσM at finite density [160] and with
a θ term [136] without a sign problem. In the isotropic (Jx =
Jy) D-theory approach, each even Ly corresponds to a fixed
coupling, and as the correlation length grows exponentially
in Ly, this corresponds to a coarse set of lattice spacings. A
more refined set of lattice spacings can be explored by varying
Jx/Jy. In the regime Jx/Jy . 1, dimensional reduction
should still occur, while the correlation length is reduced.

Determining the lattice spacing (in physical units) in any
simulation of a QFT requires matching one or more dimension-
ful quantities calculated in lattice units to the corresponding

experimentally or theoretically determined quantity. Such de-
terminations have associated systematic errors due to the finite
volume, imprecise input parameters, and other effects, see for
example Ref. [162]. For the O(3) NLσM, the renormalized
coupling can be used to set the length scale. Typically, Monte
Carlo studies of the O(3) NLσM have been performed in a
Euclidean spacetime with PBC, and the renormalized coupling,
ḡ(L), is defined in terms of two-point spacetime correlation
functions projected onto momentum modes [163]. This defini-
tion is somewhat problematic for our present purposes because
quantum simulation platforms do not have direct access to
Euclidean spacetime correlation functions, and, further, it is
more natural to implement OBC (for which momentum modes
are no longer non-interacting eigenstates) on current platforms.
Previous work has explored renormalized couplings defined
in terms of energy gaps with OBC [158]. However, this is
resource intensive to extract in practice on hardware, as it re-
quires accurate preparation of both the ground state and first
excited state and measurements of their energies. In this work,
we introduce a new definition of ḡ(L), given in terms of spatial
correlations, that recovers the traditional definition in the per-
turbative regime, and which can be practically implemented in
quantum simulations. Explicitly, ḡ(L) is defined by

ḡ(L) =
1

2

√
1

L sin
(
π
2L

) (G0

G1
− 1

)
, (4)

whereG0 andG1 are the largest and second largest eigenvalues
of the vacuum correlation matrix, Gx1,x2

, defined by

Gx1,x2
=
∑
y1,y2

(−1)x1+y1+x2+y2 〈ψ| Ŝzx1,y1 Ŝ
z
x2,y2 |ψ〉 , (5)

where |ψ〉 is the vacuum state of the Hamiltonian in Eq. (3),
and Ŝzx,y is the z-component of the spin operator at site (x, y).
Recently, another method to extract the running coupling on
quantum platforms for 2+1D quantum electrodynamics was
proposed in Ref. [152], albeit with PBC.

To show that the continuum physics of the O(3) NLσM can
be recovered on a quantum device, we compute a universal
step-scaling function, Fs(z), defined as

Fs(z) = s
ḡ(sL, gbare)

ḡ(L, gbare)
, (6)

where z = ḡ(L, gbare). Here, we emphasize that the bare
coupling gbare is kept fixed on the right hand side. In the limit
z → 0, Fs(z) probes infrared (IR) physics and in the z →∞
limit, Fs(z) probes ultraviolet (UV) physics. Therefore, if a
lattice regularization reproduces the entire step scaling function
it can be said to reproduce the continuum physics of the O(3)
NLσM. Any lattice regularization should be able to bridge the
gap between perturbative UV physics and the non-perturbative
IR physics. For simulations of asymptotically-free theories, it
is essential to match the lattice theory to the continuum theory
(UV) with as few computational resources as possible, as the
resulting non-perturbative IR physics emerges at parametrically
larger length scales.



3

●
●

●
●

●
●
●
●
●
●
●●

▲

▲

▲

▲

▲
▲

▲
▲
▲
▲▲
▲▲

+

+

+

+
+

+ ++
+++
++

NN Coupling Trad. MC

Perturbative

● Ly=2 Sites

▲ Ly=4 Sites

Ly=6 Sites

+ Ly=8 Sites

0.0 0.2 0.4 0.6 0.8 1.0
1.00

1.05

1.10

1.15

1.20

1.25

1.30

z

F
4/
3
(z
)

FIG. 1. The step scaling function F 4
3
(z) for the coupling in Eq. (4)

computed by varying Jx
Jy

for the nearest neighbor (NN) D-theory
Hamiltonian for going from a lattice of size 6 × Ly sites to 8 × Ly

sites. The black line is a fit to results of Monte Carlo calculations
using the traditional lattice regularization. The dashed blue line is the
perturbative result [163].

To determine the size of lattices required to reproduce the
O(3) NLσM, density matrix renormalization group (DMRG)
calculations were performed using the C++ ITensor library
[164, 165] to obtain the vacuum state of the Hamiltonian in
Eq. (3) for lattices of size 6× Ly and 8× Ly with OBC [165–
168]. The renormalized couplings defined by Eq. (4) were
used to compute Fs(z) with s = 4

3 . Note that while tradi-
tionally Fs(z) is computed for s = 2, any value of s may
be used in principle, and we have used s = 4

3 to reduce the
classical computing overhead. Different points on the F 4

3
(z)

curve, shown in Fig. 1, were computed by varying Jx
Jy

in the

range 0.1 ≤ Jx
Jy
≤ 1.3. At the lower end of the perturbative

regime, z . 0.55, Fs(z) is reproduced sufficiently well with
Lx = 6, 8 lattice sites, provided a large transverse direction
Ly = 8 is used. This indicates that perturbative matching
between the continuum and lattice O(3) NLσM theories can be
accomplished with as few as 64 qubits on a quantum device.

While the D-theory Hamiltonian with nearest-neighbor cou-
plings is natural to consider, some quantum simulation plat-
forms, such as cold atoms, have long range couplings. For
example, arrays of Rydberg atoms with an s-wave coupling are
described by a Hamiltonian with the form,

ĤRyd. =
∑
i

Ωi(t)

2
X̂i+

∑
i

∆i(t)n̂i+
∑
i<j

C6 n̂in̂j

|~xi − ~xj |6
, (7)

where n̂i is the Rydberg-state occupation of atom i, ~xi is the
position of atom i, and X̂i couples the ground state of atom i to
its excited Rydberg state [9, 10]. Ωi(t) specifies the strength of
the driving field at atom i, and ∆i(t) specifies a local detuning.
By identifying the excited-state occupation number with the z-
component of a spin, it can be seen that this system is described
by an Ising Hamiltonian with long-range interactions and time-
dependent external fields. Due to this native encoding of the
Ising model, Rydberg atoms have been used in a number of

●
●

●
●

●
●
●
●●

●●
●●

▲

▲
▲

▲

▲
▲

▲
▲▲▲

▲▲▲

+

+

+
+ + ++++

++++1

r6
Coupling Trad. MC

Perturbative

● Ly=2 Sites

▲ Ly=4 Sites

Ly=6 Sites

+ Ly=8 Sites

0.0 0.2 0.4 0.6 0.8 1.0
1.00

1.05

1.10

1.15

1.20

1.25

1.30

z

F
4/
3
(z
)

FIG. 2. The step-scaling function computed by varying ax
ay

for the 1
r6

D-theory Hamiltonian for going from a lattice of size 6 × Ly sites to
8 × Ly sites.

studies to perform analog quantum simulations of the Ising
model [17, 18, 169, 170]. As we have shown in previous works,
the Ising model with a strong transverse and longitudinal field
can reproduce the dynamics of the Heisenberg model, and
time dependent external fields can be used to adiabatically
prepare ground states of the Heisenberg model with long range
interactions [171, 172]. In particular, by arranging atoms in
a rectangular lattice and identifying the number operator of
the atom at site (x, y), n̂x,y with a staggered z-component of a
spin operator, i.e., n̂x,y = 1

2 + (−1)x+yŜzx,y, it is possible to
engineer a Heisenberg Hamiltonian,

ĤD6 =
∑

x1,y1,x2,y2

(−1)1+x1+y1+x2+y2(
a2x(x1 − x2)2 + a2y(y1 − y2)2

)3
~Sx1,y1 · ~Sx2,y2 , (8)

where ax,y are the lattice spacings in the x, y directions. The
staggered identification of the number operator with the spin
operator is necessary to ensure that the state with all atoms in
their ground state, in which the system will begin in a quantum
simulation, corresponds to a state with staggered spins that
is adiabatically connected to the ground state of Eq. 8. The
staggering identification also makes the long range interactions
frustration-free. Note that the Hamiltonian implemented on
hardware will differ from that of Eq. 8 by a sign, but due to
time reversal symmetry this does not present an issue. This
Hamiltonian is equivalent to the Hamiltonian in Eq. (3) with
the addition of long-range frustration-free Heisenberg interac-
tions. Therefore, it is expected that ax,y can be tuned so that
dimensional reduction occurs and the low energy degrees of
freedom are described by the 1+1D O(3) NLσM. To verify this,
the step-scaling function for the vacuum state of this Hamil-
tonian was computed using DMRG, with the results shown in

Fig. 2, where ay
ax

was varied in the range 0.1 ≤
(
ay
ax

)6
≤ 1.3.

The step-scaling function computed with Ly = 6 reproduces
the perturbative function over a range of parameters well into
the perturbative regime, demonstrating that, for this range of
couplings, the UV physics of the O(3) NLσM is correctly re-
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FIG. 3. The step-scaling function computed for Lx = 6, 12, 18 and
24 sites with the 1

r6
D-theory Hamiltonian with Ly = 6 sites.
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FIG. 4. F4/3(z) computed by varying ax
ay

for the 1
r6

D-theory
Hamiltonian for going from a lattice of size 12 × 8 sites to 16 × 8
sites.

produced. It is interesting to note that Ly = 6 with nearest
neighbor couplings only is not able to reproduce the step-
scaling function as precisely in this region, and in this sense,
the 1

r6 coupling effectively implements an “improved” Hamil-
tonian that enables more precise matching with fewer qubits.
However, Ly = 6 appears to be an optimum in this case, since
Ly = 8 has again larger systematic errors for this Lx.

With controlled matching to the continuum theory, non-
perturbative IR physics of the O(3) NLσM is expected to be
able to be simulated by keeping the Hamiltonian parameters
Jx, Jy, Ly fixed while increasing the lattice sizeLx. To demon-
strate that this procedure reproduces the IR correctly, Fs(z) was
computed with DMRG for lattices with larger Lx and Ly = 6,
as shown in Fig. 3. F 4

3
(z) is correctly recovered in the nonper-

turbative regime as the lattice size is increased (when compared
with the results of classical Monte Carlo calculations), over a
wide range of anisotropy 0.45 ≤ (ay/ax)6 ≤ 0.95.

To match at scales further into the UV, lattices with larger
Ly must be used. However, when Ly > Lx it is possible
for dimensional reduction to fail and the 1 + 1D O(3) NLσM
may not be reproduced, as is found for Ly = 8 where the
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FIG. 5. Results for F4/3(z) computed in a TDVP simulation of a
rectangular array of 87Rb atoms assuming 5000 shots are used.

results overshoot the Monte Carlo and perturbative step-scaling
functions, as shown in Fig. 2. This can be remedied by using
lattices with larger Lx. In Fig. 4, F4/3(z) from 12×8 to 16×8

lattices with the 1
r6 D-theory Hamiltonian is shown, which

correctly reproduces the known result over a larger range than
with the Ly = 6, 1

r6 D-theory Hamiltonian. This demonstrates
how larger correlation lengths may be accessed, and hence the
approach to the continuum limit.

III. QUANTUM SIMULATIONS OF O(3) NLσM USING
RYDBERG ATOMS

Arrays of cold atoms are a promising platform for quantum
simulation and as shown above, modest lattice sizes of 6× 6
and 8×6 are sufficient to reproduce the UV physics of the O(3)
NLσM, and demonstrate asymptotic freedom. This provides an
opportunity for a first attempt at performing quantum simula-
tions of non-perturbative (IR) dynamics of the O(3) NLσM. To
do so will require the preparation of a low energy state with re-
spect to the Hamiltonian in Eq. (8). The adiabatic spiral [172]
can be used to adiabatically prepare the ground state of this
Hamiltonian on an array of cold atoms. To understand the
quantum resources required to adiabatically prepare states with
energy that is sufficiently low to reproduce low-lying physics
of the O(3) NLσM, we performed Time-Dependent Variational
Principle (TDVP) simulations of the adiabatic spiral using the
C++ ITensor library [164, 165, 173–175]. Details of these
calculations can be found in Appendix A. The classical sim-
ulations we performed assumed a rectangular array of 87Rb
atoms, with C6 = 5.42× 106 MHz µm6, with a vertical lattice
spacing of 11 µm, and a selection of horizontal lattice spacings
to probe different couplings. We assumed a maximum Rabi
frequency of Ω = 25 MHz, and a maximum coherence time
of 4µs. The initial state of the system with all atoms in their
ground state corresponds to a Nèel state that is degenerate due
to a symmetry under reflection of the spins. This degeneracy
can be split by evolving with a global detuning term that is
turned off during the course of the adiabatic evolution to apply
an energy penalty. The initial size of the energy penalty was
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variationally optimized so that the renormalized coupling of
the prepared state matched the vacuum state. The specific en-
ergy penalties and horizontal lattice spacings that we used are
shown in Tables I and II. Results for the step scaling obtained
from these simulations are shown in Fig. 5, where the uncer-
tainties are derived from a sample of 5000 shots in computing
the renormalized coupling for each lattice configuration.

aX (µm) Energy Penalty (MHz) Final Energy (∆)
12.5 0.44 2.81
12.1 0.52 2.90
11.8 0.56 3.43
11.1 0.49 4.64

TABLE I. Energy of the ground states prepared using the adiabatic
spiral. The left column shows the lattice spacing used for the tensor
network simulations of a 6 × 6 lattice. The center column shows the
energy penalty used to match the vacuum renormalized coupling. The
right column shows the energy of the state prepared by the adiabatic
spiral in units of the Hamiltonian’s energy gap.

aX (µm) Energy Penalty (MHz) Final Energy (∆)
12.5 0.3 4.52
12.1 0.4 4.56
11.8 0.46 5.43
11.1 0.45 7.52

TABLE II. Energy of the ground states prepared using the adiabatic
spiral. The left column shows the lattice spacing used for the tensor
network simulations of a 8 × 6 lattice. The center column shows the
energy penalty used to match the vacuum renormalized coupling. The
right column shows the energy of the state prepared by the adiabatic
spiral in units of the Hamiltonian’s energy gap.

These simulations show that an ideal cold-atom quantum
simulator with only 48 atoms can correctly recover the UV
physics of the O(3) NLσM with sufficient precision. To per-
form this quantum simulation in reality would require a rect-
angular array of 87Rb atoms with a global driving field and a
staggered detuning term. The parameters used in these simula-
tions are close to those that have been implemented in previous
cold-atom experiments [17, 18, 169, 170, 176]. Therefore, it is
anticipated that analog quantum simulations of the O(3) NLσM
should soon be within reach. Due to the similarity to previous
cold atom experiments, it is expected that these simulations
can be performed with a high degree of fidelity. Scaling to
larger systems will require the same pulse sequences applied
to larger arrays of atoms. This is not expected to present an
issue as larger arrays of Rydberg atoms have been utilized in
experiment [17, 18, 169] and the techniques used to simulate
Heisenberg evolution have been shown to scale to large sys-
tems [171]. Note that while the simulations performed here
are for arrays of 87Rb atoms, similar calculations could be per-
formed using different atomic species, such as Cs [177, 178].

Reproducing the step scaling curve shows that O(3) NLσM
physics is actually being reproduced on the quantum simulator
and is the first step towards achieving a quantum advantage
in the simulation of the O(3) NLσM. Once an approximate
vacuum state has been prepared on quantum hardware, parti-

cle wavepackets can be excited by varying a local detuning
or driving term. By exciting multiple particles in this manner,
scattering in the O(3) NLσM can be directly simulated. Alterna-
tively, all of this can be also be done at a nonzero θ, by moving
the atoms from a rectangular array into a staggered array [136].
Using dynamical reconfiguration of atoms, this could even be
done dynamically, simulating a quench of the θ term. Rapidly
turning on θ would correspond to a rapidly changing axion
field [179, 180] and has been shown to generate a dynamical
quantum phase transition in the context of lattice gauge the-
ories [27, 181]. Both of these calculations involve real-time
dynamics that have exponentially scaling computational costs
on classical computers, and their successful simulation on a
quantum computer could represent a true quantum advantage
of scientific relevance to high energy physics.

Note that these problems on the lattice sizes simulated in
this section are within the reach of classical computers. Also,
a true quantum advantage in simulations of the 1+1D O(3)
NLσM will need to be performed with a choice of parameters
that are outside the reach of perturbation theory. Based on
Fig. 3, performing these simulations on a lattice of size 18× 6

with (ay/ax)
6

= 0.45 is a potential candidate for quantum
advantage. A lattice of this size is outside the reach of statevec-
tor simulation and lies in the non-perturbative region of the
step scaling curve. The DMRG calculations to produce Fig. 3
required a bond dimension of 2000 to converge and simulating
scattering dynamics or a θ quench will involve an exponen-
tially growing bond dimension beyond this. Note however, that
some tensor networks more suited to 2D such as PEPS may be
able to perform this calculation with a lower bond dimension.
Regardless, a simulation on this lattice size will be in a regime
that is difficult for classical computers and would represent a
first chance at seeing a quantum advantage.

IV. DISCUSSION

A challenging path lies ahead for the quantum simulation
of physical systems of importance in high-energy and nuclear
physics. Both Abelian and non-Abelian gauge theories must
be mapped efficiently onto quantum computers, and it remains
to be determined which of the known frameworks, if any, will
evolve toward providing robust predictive capabilities. For
strong interactions, asymptotic freedom has been key in en-
abling non-perturbative classical calculations with lattice QCD
of near-static quantities, and much of the associated technology
will translate across to quantum simulations. In this work, we
have studied a different asymptotically-free field theory. By
developing new methods and performing classical simulations,
we have shown that present-day analog quantum simulators
have the potential to perform quantum simulations of non-
perturbative dynamics within this QFT with fully-quantifiable
uncertainties. A definition of the renormalized coupling for
the 1+1D O(3) NLσM with OBC was developed to enable the
first perturbative matching of lattice calculations on quantum
simulators to the continuum. It is expected that this will enable
the use of quantum simulators to compute quantities of interest
in the continuum limit of the 1+1D O(3) NLσM. Additionally,



6

this definition was used to determine the minimal number of
qubits required for a quantum computer to reproduce contin-
uum physics. Remarkably, a cold atom quantum simulator
only needs a rectangular array of 48 atoms to begin to quanti-
tatively reproduce non-perturbative dynamics within the O(3)
NLσM. Cold atoms have been previously used to simulate
larger systems and tensor network simulations suggest that
existing cold-atom experiments should be capable of demon-
strating the asymptotic freedom of the O(3) NLσM. We have
also shown that the long-range coupling present in cold-atom
quantum simulators enables them to make contact with the
continuum physics of the O(3) NLσM with fewer qubits than
mappings that are restricted to nearest neighbor couplings. This
is the first concrete example of an “improved” Hamiltonian that
reduces the qubit count required for a quantum simulation of a
lattice field theory to rigorously simulate continuum physics
with controlled uncertainties.

While the 1+1D O(3) NLσM does not describe any of the
fundamental forces in nature, it does share a number of qual-
itative aspects with QCD so these simulations will provide
valuable insights into how to perform quantum simulations of
Standard Model physics. Our calculations correctly recover
the classically-computed step-scaling function, and demon-
strate that the continuum O(3) NLσM is being matched, within
tolerances, to lattices, and provides new and valuable further
steps toward rigorously extracting information about a contin-
uum QFT from quantum computers. Once matching has been
performed, a quantum computer can be used to simulate non-
perturbative quantities in the theory that are beyond the reach
of classical computers, including scattering and fragmentation,
and θ-quenches. Further, the D-theory mapping studied in this
work has the potential to be used to simulate the O(3) NLσM in
2 + 1 dimensions by making use of 3D cold-atom arrays which
have recently been experimentally demonstrated [11].
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Appendix A: Rydberg Atom Simulation

The Hamiltonian describing the evolution of a rectangular
array of Rydberg atoms is

ĤRyd.(t) = ∑
x1,y1,x2,y2

C6 n̂x1,y1 n̂x2,y2(
a2x(x1 − x2)2 + a2y(y1 − y2)2

)3
+
∑
x,y

∆x,y(t)n̂x,y +
∑
x,y

Ωx,y(t)

2
X̂x,y , (A1)

where n̂x,y is the Rydberg occupation number, ∆x,y(t) is a
position dependent detuning term, Ωx,y(t) is a position depen-
dent driving term, ax is the horizontal lattice spacing and ay is
the vertical lattice spacing. As presented in the main text, the
Rydberg number operator can be identified with a staggered
spin operator, i.e., n̂x,y = 1

2 + (−1)x+yŜzx,y, such that the
state with all atoms in their ground state corresponds to a Néel
state. With this identification, the adiabatic spiral introduced
in Ref. [172] can be used to prepare a low energy state of the

Hamiltonian in Eq. (8), by using

∆x,y(t) = (−1)x+yΩD + hP

(
1− t

T

)
+

1

2

∑
(x2,y2)6=(x,y)

C6(
a2x(x− x2)2 + a2y(y − y2)2

)3 ,
Ωx,y(t) =

√
2 ΩD

(
t

T
+

1

π
sin

(
π
t

T

))
, (A2)

where hP is an initial energy penalty, ΩD specifies the final
strength of the driving field, and T is the total time used for
the adiabatic state preparation. For our calculations, we have
used ΩD = 1√

2
25 MHz, T = 3.83µs, and hP is presented in

Tables I and II. Performing a measurement on a Rydberg atom
simulator requires the drive field to be turned off, which we
simulated by quenching Ωx,y(t) to zero over a time interval
of 0.1 µs. We assumed that a combined time of 0.07 µs was
required to turn the detuning on and off.

The adiabatic spiral described here was simulated with ten-
sor networks. This was done with the C++ iTensor library
with OpenBLAS as the backend to parallelize the linear algebra
operations [165]. The state of the system was represented with
a MPS tensor that wound through the 2D lattice. Time evo-
lution was performed by discretizing ĤRyd.(t) into 200 time
independent steps and evolving with 1-site TDVP [173, 174].
Before each step, the bond dimension was increased using the
global Krylov method [175], with a maximum allowed bond
dimension of 550.
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P. Stornati, and X. Wang, Towards quantum simulations in par-
ticle physics and beyond on noisy intermediate-scale quantum
devices, Phil. Trans. A. Math. Phys. Eng. Sci. 380, 20210062
(2021), arXiv:2110.03809 [quant-ph].

[119] E. Gustafson, B. Holzman, J. Kowalkowski, H. Lamm, A. C. Y.
Li, G. Perdue, S. Boixo, S. Isakov, O. Martin, R. Thomson,
C. V. Heidweiller, J. Beall, M. Ganahl, G. Vidal, and E. Pe-
ters, Large scale multi-node simulations of Z2 gauge theory
quantum circuits using Google Cloud Platform, in IEEE/ACM
Second International Workshop on Quantum Computing Soft-
ware (2021) arXiv:2110.07482 [quant-ph].

[120] M. Van Damme, J. Mildenberger, F. Grusdt, P. Hauke, and
J. C. Halimeh, Suppressing nonperturbative gauge errors in
the thermodynamic limit using local pseudogenerators (2021),
arXiv:2110.08041 [quant-ph].
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