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The storage and retrieval of photonic quantum states, quantum memory, is a key resource for a
wide range of quantum applications. Here we investigate the sensitivity of Λ-type quantum memory
to experimental fluctuations and drift. We use a variance-based approach, focusing on the effects of
fluctuations and drift on memory efficiency. We consider shot-to-shot fluctuations of the memory
parameters, and separately we consider longer timescale drift of the control field parameters. We
find the parameters that a quantum memory is most sensitive to depend on the quantum memory
protocol being employed, where the observed sensitivity agrees with physical interpretation of the
protocols. We also present a general framework that is applicable to other figures of merit beyond
memory efficiency. These results have practical ramifications for quantum memory experiments.

I. INTRODUCTION

In the emerging field of quantum technology, photons
play a critical role as carriers of quantum information
[1–3] and as the fundamental qubits for quantum com-
putation and information processing [4, 5]. Photons are,
however, difficult to synchronize [6–8] and are subject to
losses in transmission [2, 9–11]. The ability to store and
retrieve photonic quantum states on demand—quantum
memory—provides a path forward to overcome these
challenges, and is therefore a critical enabling technology
for future quantum applications [12–14]. A considerable
body of work has been dedicated to quantum memories
based on atomic ensembles, where the three-level, reso-
nant, Λ-type atomic system is the most common [12–24].

In the ideal case, an optical quantum memory is capa-
ble of storing single-photon quantum states and retriev-
ing them on demand with high efficiency, high fidelity,
long storage time, and broad bandwidth [12–14]. An-
other critical indicator of quantum memory performance,
however—which has largely been neglected until only re-
cently [25, 26]—is a memory’s sensitivity to experimen-
tal fluctuations and drift. Fluctuations and drift in ex-
perimental parameters are invariably present in physical
quantum memory implementations, and a memory which
is more robust (less sensitive) to experimental noise is
more useful for real-world quantum applications. Here
we quantitatively address this aspect of Λ-type quantum
memory. (For an analysis of other types of memories, we
refer the reader to Refs. [25, 26].) We provide a variance-
based sensitivity analysis [27–34], which sheds light on
not only the sensitivity of an individual quantum mem-
ory implementation with device-specific fluctuations and
drift, but also on the intrinsic sensitivity of different phys-
ical Λ-type quantum memory protocols.

We consider quantum memory implementations with
memory parameters M = (d, τFWHMγ), where the opti-
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cal depth d of the atomic ensemble and the intermediate
state coherence decay rate γ, scaled by the signal photon
duration τFWHM, are considered to be intrinsic and fixed
properties of the memory. We then group the remaining
extrinsic, more readily tunable parameters as G, which
parameterize the optical control field used in the memory
interaction, and which we assume have been optimized in
order to maximize memory efficiency. We further parti-
tion our analysis according to whether the parameters
of the control field define a Gaussian temporal envelope
GG = (θ,∆τ ctrl, τ ctrl

FWHM) or an arbitrary temporal shape
Gs = (ξ1, ..., ξN ), as investigated in Ref. [35] (see Fig-
ure 1), where θ, ∆τ ctrl, and τ ctrl

FWHM correspond to the
Gaussian control field pulse area, delay relative to the
signal field, and duration, respectively, and the points ξi,
i = 1, ..., N correspond to interpolation points along the
temporal envelope of the control field. Details on the nu-
merical calculation of memory efficiency given M and G
can be found in Ref. [35].

In this work we assume a typical scenario for ex-
perimental atomic-ensemble quantum memory, wherein
the memory parameters are fixed with minimal long-
timescale drift at a given setpoint but may undergo non-
negligible shot-to-shot fluctuations. This situation oc-
curs frequently in transient processes for generating dense
atomic ensembles, such as in light-induced atomic desorp-
tion (LIAD) [36, 37] or laser ablation, but applies to equi-
librium systems as well. We assume the optical parame-
ters of the control field possess smaller shot-to-shot fluc-
tuations (e.g., laser fields with locked frequency, power,
timing, etc.), but may either drift over time or may not
be set precisely for optimal memory performance. We
investigate the sensitivity of the memory performance to
the setting of these control parameters, including analysis
of correlations that exist between parameters, which may
allow, for example, for compensating a drop in efficiency
due to non-optimal setting of one parameter by modifi-
cation of the remaining parameters. This latter analysis
may be important in situations where one parameter is
constrained experimentally, for example in the case of
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FIG. 1. Control fields of (a) Gaussian shape, defined by
the three parameters GG = (θ,∆τ ctrl, τ ctrl

FWHM), where Ω0 =

θ/(2
√
πσctrl) and σctrl = 2

√
2 ln 2/τ ctrl

FWHM, and (b) arbitrary
shape, defined by the N interpolation points Gs = (ξ1, ..., ξN ).

limited laser power, which can often limit memory effi-
ciency [38–45]. This type of memory sensitivity can be
interpreted as an indicator of the region of control field
phase space where acceptable memory performance can
be achieved; low sensitivity implies a large acceptable re-
gion of control field phase space, where the control field
does not require careful fine-tuning, and where restric-
tions on one parameter may be compensated for with
changes to the remaining parameters. Equivalently, this
type of memory sensitivity can be interpreted in terms
of the memory’s robustness to experimental drift, where
low sensitivity implies that, given optimal initial con-
trol field settings, the memory will be robust to long-
timescale drift in the phase space surrounding the opti-
mal setpoint.

In the following sections, we restrict our discussion to
resonant Λ-type memory protocols, but the tools devel-
oped in this work are readily applicable to off-resonant
protocols, as well as other level systems and a wide range
of related techniques [46–48]. In Section II, we provide
definitions for several quantitative aspects of memory
sensitivity. In Section III we use these criteria to ana-
lyze the sensitivity of resonant Λ-type quantum memory
to fluctuations in memory parameters, and in Section IV
we address sensitivity to improper setting of control field
parameters or experimental drift.

II. VARIANCE-BASED SENSITIVITY
ANALYSIS

The sensitivity of classical systems is a much-discussed
subject with well-established theoretical and numerical
tools [27–34, 49]. In general, the task is to deter-
mine the sensitivity of a system with performance cri-
terion h(X ,A) to changes in N input parameters X =
(x1, ..., xN ) when internal system parameters A are kept
fixed. This performance criterion may correspond to any
desired single-valued metric of the system; in the case of
quantum memory, this may correspond to memory effi-
ciency, fidelity, storage time, etc. For the sake of brevity,
in Sec. III and Sec. IV we focus on memory efficiency as a
key performance criterion, but importantly other criteria

may be used and may be the subject of future work. In
this section, we provide an outline of the theoretical tools
used for a generic criterion h.

The most common method for determining the sensi-
tivity of h(X ,A) to fluctuations in the input parameters
proceeds as follows [27, 34]. We define center values for
the input parameters X , then draw many N -dimensional
fluctuations ζ stochastically from a known probability
distribution P (ζ), and average over these fluctuations in
order to calculate the mean performance criterion

h(X ) =

∫
dζ h(X + ζ,A)P (ζ) (1)

and the variance in the system performance

V fluc
h

(
X
)

= Vζ [h(X + ζ,A)|A], (2)

where Vx[y(x, z)|z] =
∫
dx y2(x, z)P (x) −

[
∫
dx y(x, z)P (x)]2 is the unconditional variance of

y obtained when x is allowed to vary and z is held
constant. In the absence of a tailored noise model, the
probability distribution for fluctuations is commonly
approximated as an N -dimensional normal distribution

P (ζ) ∼ e−|ζ|
2/(2ε2) with standard deviation ε. In

principle, the complete joint distribution P (ζ) must be
measured experimentally in order to implement this form
of sensitivity analysis. In practice, this is not always pos-
sible or efficient, and instead an estimate of the memory
sensitivity can be calculated given only the measured
expectation values and variances of each fluctuating ex-
perimental parameter. This amounts to approximating
the joint distribution P (ζ) as a factorable distribution
of the form P (ζ) = P1(ζ1) × P2(ζ2) × × PN (ζN ), where

Pi(ζi) ∼ eζ
2
i /(2εi), and each εi is the measured standard

deviation of the ith experimental parameter. The
resulting standard deviation in performance criterion h

can then be calculated, σfluc
h (X ) =

√
V fluc
h (X ).

The simple variance-based method above provides use-
ful information on the response of the system to short-
timescale, shot-to-shot fluctuations in input parameters
around given central values X , which typically corre-
spond to the setpoints of the input parameters. X can
also correspond to control parameters, where the set-
point X is assumed to be at or near the optimum val-
ues for system performance. The method above does
not provide detailed information on the local environ-
ment around the performance optimum, which may be
important for long-timescale drift or for determining
which parameter is most sensitive to experimental error.
The simplest method for determining a system’s sensitiv-
ity to these long-timescale changes in input parameters
X = (x1, ..., xN ) is to vary each parameter one-at-a-time
(OAT), and to measure the resulting variance in the sys-
tem’s performance. This OAT analysis corresponds to
calculating the variances
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V OAT
i = Vxi

[h(X )|xj 6=i] (3)

for each parameter xi, where xi varies over a finite range,
xi ∈ [xmin

i , xmax
i ]. In Eq. (3) and in the following discus-

sion, we have suppressed the internal parameters that
are always held constant from the notation. We note
that Eq. (3) is a special case of Eq. (2), where P (ζ) ∼ 1
and only one parameter xi is subject to variation. Again,

the standard deviation σOAT
i =

√
V OAT
i may be used to

quantify the change in system performance due to param-
eter xi. The parameter xi with the largest σOAT

i has the
largest effect on the performance criterion h and therefore
the largest sensitivity. In practice, this means stabilizing
and optimizing that parameter is the most important for
system performance and should receive the largest dedi-
cation of resources.

The OAT analysis above provides cross-sectional infor-
mation on the local environment around a performance
optimum, and can be used to rapidly determine if one
input parameter is responsible for the majority of ob-
served variance in system performance. As correlations
between input parameters arise and the dimensionality of
X increases, however, OAT analysis rapidly becomes in-
sufficient as it ignores control parameter correlations and
explores only a small fraction of the input phase space
(see Figure 2) [33, 34]. When correlations between pa-
rameters exist or the dimensionality of X is large, global
variance-based sensitivity analysis is required, wherein
the most prevalent sensitivity measure is the first-order
Sobol’ variance [30, 31, 49]

Vi = Vxi{E[h(X )|xi]}, (4)

where the inner expectation value, E[·], corresponds to
the mean of h(X ) when X is varied over all possible values
in a finite range at fixed xi. The outer variance then mea-
sures the variance of this mean with respect to changes
in xi. For a 3-dimensional parameter space, shown in
Fig. 2, the variance V1 in Eq. (4) corresponds to cal-
culating the expectation value E[h(X )|x1] over each red
plane where x1 is fixed and x2 and x3 are allowed to vary,
and taking the variance of these expectation values. Sim-
ilarly, V2 (V3) corresponds to calculating the variance of
expectation values taken over the green (blue) planes.
This method fully explores the parameter phase space
in Fig. 2, whereas OAT analysis only explores the small
region of parameter space connected by the black lines.
The first-order Sobol’ sensitivity index can be calculated
as

Si = Vi/Vtot, (5)

where Vtot is the total variance VX [h(X )] observed over
the range of interest. Importantly, this technique also
allows for the calculation of higher-order variances and
sensitivities:

xm
in
2

xm
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x min3

x max3xmin
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1

x 3

x1
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FIG. 2. Example of 3-dimensional phase space spanned by
parameters X = (x1, x2, x3); the sample points connected by
the black lines correspond to one-at-a-time (OAT) analysis of
the system sensitivity, which explores only a small fraction of
the total phase space.

Vij = Vxi,xj
{E[η(X )|xi, xj ]} − Vi − Vj , (6)

Sij = Vij/Vtot, (7)

which are related with Eqs. (4) and (5) by the conditions

Vtot =
∑
i

Vi +
∑
i

∑
j>i

Vij + ...+ V1...N , (8)

Stot =
∑
i

Si +
∑
i

∑
j>i

Sij + ...+ S1...N = 1, (9)

and which probe correlations between parameters. In 3
dimensions, these higher order variances correspond to
the variance of expectation values evaluated along lines
in the phase space of Fig. 2, instead of planes.

Sobol’ variances and sensitivity indices provide a
complete picture of the system performance landscape
around a central point of input parameters, and allow for
identification of which input parameters are most sen-
sitive globally. This analysis also probes whether cor-
relations exist between parameters, which can be lever-
aged to allow for acceptable system performance at non-
optimal parameter values.

III. FLUCTUATIONS IN RESONANT Λ-TYPE
QUANTUM MEMORY

We now apply the general discussion in Sec. II to
the case of resonant, Λ-type quantum memory, begin-
ning with the effect of fluctuating memory parameters on
memory efficiency. In the resonant case, there exist three
well-known quantum memory protocols: the electromag-
netically induced transparency (EIT) [21, 50–52], Autler-
Townes Splitting (ATS) [22, 53–55], and absorb-then-
transfer (ATT) [23, 24, 35, 52, 56] protocols. A summary
of these protocols is given in Ref. [35]; here we provide
only the physical information necessary to understand
this article: The EIT protocol requires a control field of
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FIG. 3. Sensitivity of Λ-type quantum memory to fluctuations εM in memory parameters around the center points M =
(d, τFWHMγ). (a) Average efficiency η and (b) fluctuations in memory efficiency σfluc

η in the presence of fluctuations εM = 5%.

(c) Average overlap fidelity F of optimal Gaussian control field parameters. (d) Fluctuations in memory efficiency as a function
of increasing magnitude of fluctuations in memory parameters for selected points shown in (b). Regions for ATT, ATS, and
EIT memory protocols are enclosed with dotted lines.

duration longer than the signal field (τ ctrl
FWHM > τFWHM),

which enters the medium ahead of the signal (∆τ ctrl < 0),
opening and slowly closing a transparency window that
the signal propagates through. The signal field is thereby
trapped via the slow-light effect. The ATS protocol re-
quires a control field that propagates along with the sig-
nal field (∆τ ctrl = 0) and possesses pulse area θ = 2π.
This control field creates an Autler-Townes doublet that
matches the signal field bandwidth and transfers it to the
long-lived spin state. The ATT protocol has the opposite
pulse sequence to EIT, where the necessary control field
is shorter than the signal field (τ ctrl

FWHM > τFWHM) and
arrives after it (∆τ ctrl > 0) with θ = π pulse area. This
sequence affects linear absorption of the signal field and
subsequent transfer of the atomic polarization into the
spin-wave state.

Memory efficiency describes the efficiency with which
a quantum memory stores and retrieves single-photon-
level quantum states. Here, we consider the case where
fluctuations in memory efficiency are dominated by fluc-
tuations in the input parameters M, and we assume
the control field parameters G are kept fixed at the op-
timum values for the average memory parameters M
(i.e., the memory parameter setpoints). We assume a
generic noise model where fluctuations ζM = (ζd, ζg)
are drawn stochastically from the probability distribu-

tion P (ζ) ∼ e−(ζ2dg
2+ζ2gd

2)/[2(εMdg)2] using the Mersenne
Twister algorithm with seed 0, where g = τFWHMγ. This
implies that, e.g., for εM = 5%, both memory parameters
vary by 5% of their respective setpoints. We further cor-
relate optical depth and linewidth so as to preserve atom
number. We calculate both η(M) and σfluc

η (M) following
the prescription of Eqs. (1) and (2), assuming the optimal
Gaussian control field values GG(M) found in Ref. [35].
For each center value M we average over 1000 random
fluctuations ζM. Physically, the average memory effi-
ciency η represents the average efficiency of storage and
retrieval from the memory in the presence of fluctuations
in the memory parameters. One expects that in the pres-
ence of fluctuations, the memory efficiency should be, on

average, lesser than without fluctuations. Through the
procedure described in Sec. II, we can calculate this av-
erage memory efficiency. In addition, by keeping track of
the shot-to-shot memory efficiencies, we can also calcu-
late the fluctuations in memory efficiency resulting from
fluctuations in the memory parameters. In general, a
quantum memory with lesser efficiency fluctuations is
preferable to a memory with greater efficiency fluctua-
tions, as is a memory with higher average efficiency to a
memory with lower average efficiency.

The results of this analysis are shown in Fig. 3(a) and
(b) for εM = 5%, where we have labeled the respective re-
gions of memory parameter space for optimal ATT, ATS,
and EIT quantum memory protocols using the same pro-
cedure outlined in Ref. [35]. The regions above and below
the dotted lines in Fig. 3(a)-(c) enclosing each protocol
name represent the regions of memory parameter space
where each protocol has the highest efficiency. Any pro-
tocol may in principle be implemented at any point in
memory parameter space, but high-efficiency operation
is only possible for each protocol within the bounded re-
gion. We find that the largest fluctuations in memory
efficiency occur in the region of memory parameter space
below the ATS regime, in the ATT regime. The ATS
protocol is much less sensitive to memory parameter fluc-
tuations, as σfluc

η is reduced by approximately a factor of
2, but in turn the EIT protocol is approximately a fac-
tor of 2 less sensitive to these fluctuations than the ATS
protocol.

To explain this behavior physically, we consider the
changes in optimized control field parameters GG as a
function of M. As shown in Ref. [35], the gradient of
GG with respect to changes in M is largest in the non-
adiabatic (dτFWHMγ . 1) regime and becomes smaller
as the memory adiabaticity increases. This implies that,
if the memory protocol is non-adiabatic, the optimal pa-
rameters GG change significantly even for small changes
in M and thus these small changes may cause compar-
atively large changes in memory efficiency compared to
the adiabatic regime. This intuition can be evaluated
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quantitatively by considering the average overlap fidelity
of G = GG(M) and G′ = GG(M′) at different memory
parameters M′ =M+m:

F (M) =
1

A

∫ R

0

dm2 F (G,G′), (10)

where m varies over a 2D region with radius R and area
A, and the overlap fidelity between any two points is

F (G,G′) =

∣∣∣∫∞−∞ dτ Ω∗(G)Ω(G′)
∣∣∣2∫∞

−∞ dτ |Ω(G)|2
∫∞
−∞ dτ |Ω(G′)|2

. (11)

The control field Ω(G) is a Gaussian function with area
θ, duration τ ctrl

FWHM, and timing ∆τ ctrl. Physically, this
overlap fidelity defines how similar a given optimal con-
trol field is to the optimal control fields at neighboring
points in M. The average overlap fidelity in Eq. (10) is
shown in Fig. 3(c), and confirms the intuition that the
region of least overlap corresponds to the absorb-then-
transfer protocol, where the memory parameters are most
non-adiabatic. It is therefore this region that is most sen-
sitive to fluctuations in M [as shown in Fig. 3(b)].

In addition to the relative sensitivity of the different
memory protocols, the magnitude of memory efficiency
fluctuations is of practical interest. In Fig. 3(d) we plot
the dependence of efficiency fluctuations on memory pa-
rameter fluctuations for the four points shown in Fig. 3(b)
spanning all three physical protocols. In each case, σfluc

η

is roughly linear in εM, with proportionality constants
p = 0.38, 0.13, and 0.09 in the absorb-then-transfer, ATS,
and EIT regions, respectively. Insofar as fluctuations in
memory parameters are not amplified in the resulting
fluctuations in memory efficiency (p < 1), it can be said
that all three protocols are ‘stable.’ although the EIT
and ATS protocols are significantly more stable than the
absorb-then-transfer protocol.

IV. DRIFT AND IMPROPER CONTROL FIELD
SETTING IN RESONANT Λ-TYPE QUANTUM

MEMORY

In this section we consider the sensitivity of Λ-type
quantum memory to long-timescale drift in control field
parameters G at fixed memory parameters M. The fol-
lowing analysis equivalently provides an indicator of the
region of control field phase space where acceptable mem-
ory performance is achievable. We perform this analysis
on both control fields of Gaussian temporal envelope and
control fields with arbitrarily shaped optimal temporal
envelope. Analysis of Gaussian control fields is signifi-
cantly less computationally expensive, and allows for one-
at-a-time (OAT) and global sensitivity analysis, whereas
it is only computationally feasible to perform OAT sen-
sitivity analysis on arbitrarily shaped control fields.
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FIG. 4. One-at-a-time sensitivity of Λ-type quantum memory
to drift or improper setting of control field variables GG of a
Gaussian control field, as a function of memory parameters
M = (d, τFWHMγ). Regions for ATT, ATS, and EIT memory
protocols are enclosed with dotted lines.

A. One-at-a-time (OAT) Analysis

We first consider OAT variation of the control field
parameters for a Gaussian optimized control field, GG,
following the prescription of Eq. (3) and Sec. II. We
allow for drift or improper setting of the control field
pulse area, delay (relative to the signal field), and pulse
duration within εG = 5% of the optimal setpoints for
any given memory parameters. These calculations are
performed sequentially, which allows us to determine the
sensitivity of a given memory (or memory protocol) to
each control field parameter independently.

The results are shown in Fig. 4(a)-(c). By memory sen-
sitivity, here we mean the standard deviation in memory
efficiency due to OAT variation of each parameter, σOAT

i .
In Fig. 4, we report this sensitivity as a percent, which
represents the standard deviation in memory efficiency
that results when each control field parameter is allowed
to drift by εG . We find that sensitivity to drift or im-
proper setting in pulse area [Fig. 4(a)] is largest in the
region ofM-space below the ATS region. As the memory
protocol in this region relies on exactly π-pulse control
fields to transfer atomic population from the excited to
storage state, this result agrees with physical intuition.
By contrast, memory sensitivity to drift or improper set-
ting of control field delay is largest in the ATS region
[Fig. 4(b)]. The ATS protocol relies on signal and con-
trol fields that overlap in time in order to implement the
requisite dynamically controlled Autler-Townes splitting
[22], whereas the absorb-then-transfer and EIT protocols
are relatively robust to improper control field delay set-
ting. Again the ATS protocol, and the region of mixed
ATS-EIT memory behavior, are most sensitive to varia-
tion in control field pulse duration [Fig. 4(c)], as changes
to control pulse duration affect the dynamical Autler-
Townes splitting and the effective pulse area of the con-
trol field overlapping with the signal field.

We also perform an OAT sensitivity analysis for ar-
bitrarily shaped optimal control fields. For arbitrarily
shaped control fields, given the large number of inde-
pendent variables used to define the control field shape,
computation of the shape sensitivity over a large range of
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FIG. 5. One-at-a-time sensitivity of Λ-type quantum memory
to drift or improper setting of arbitrary optimized control
field shapes Ω(τ) in the temporal (τ) domain, described by
the control field parameters Gs, for optical depth d = 50 in
the (a) adiabatic regime, where τFWHMγ = 1.5, and (b) non-
adiabatic regime, where τFWHMγ = 0.01. The colormap along
each Ω(τ) shows the sensitivity of that region of the control
field to drift. Grey dotted lines show the incident signal field,
Ain(τ).

optical depths and signal pulse durations is computation-
ally intractable. Instead, we pick two pulse durations—
τFWHM = 1.5 and τFWHM = 0.01—at an optical depth
of d = 50, corresponding to adiabatic and non-adiabatic
memory conditions, respectively. We parameterize each
control field shape, Ω(τ), in the temporal (τ) domain
with 51 and 135 independent spline points spaced on a
Chebyshev grid for τFWHM = 1.5 and τFWHM = 0.01, re-
spectively. The set of these points, Gs, is drawn schemat-
ically in Fig. 1(b). Each point along the optimal control
field shape is allowed to vary by 5% of its optimal set-
point, as shown in Fig. 1(b), and the resulting variance
and standard deviation in memory efficiency is recorded.
The results of this OAT analysis are shown as a heat
map in Fig. 5. For τFWHM = 1.5 [Fig. 5(a)], we find the
falling edge of the typical EIT-like control field shape to
be most sensitive to drift or improper setting, in agree-
ment with Ref. [57]. Note that larger τ on the x-axis of
Fig. 5 corresponds to later times in the co-moving frame.
For τFWHM = 0.01, the optimal control field shape shows
characteristic non-adiabatic ringing, and it is the points
on the shape with the largest amplitude that show the
largest sensitivity, likely due to the fact that changes in
these points cause the greatest change in the control field
pulse area, which must remain close to π in this regime.
For both cases in Fig. 5, the input signal field temporal
distribution, Ain(τ), is shown for reference. The stor-
age efficiencies for these two optimized pulse shapes are
95.2% and 58.7%, for τFWHM = 1.5 and τFWHM = 0.01.

B. Sobol’ Analysis

The OAT analysis above provides rapid cross-sectional
information on quantum memory performance around
the optimal control field setpoints and ignores any corre-
lations between control field parameters. Given the phys-
ical descriptions of the three resonant quantum memory
protocols, we expect correlations between control field
parameters in both the ATS and EIT regimes. In the
ATS regime, quantum storage is accomplished with a
2π pulse-area control field which overlaps in time with
the incident signal field; if, for example, the control field
pulse duration is erroneously set to be too long, we ex-
pect that this error can be compensated for—with mini-
mal effect on storage efficiency—with a larger pulse area,
such that the net pulse area over the temporal extent of
the signal field remains 2π. In the EIT regime, quan-
tum storage is implemented with a control field that
opens a transparency window at the signal wavelength
and then slowly closes this transparency window as the
signal field is compressed and propagates through the
medium [see, e.g., Fig. 5(a)]. In the EIT case, we ex-
pect correlations between all three Gaussian control field
parameters, as it is the slope of the falling edge of the
control field which is most important. Errors or drift in
control field delay, for example, may be compensated for
with larger or smaller pulse area and pulse duration, de-
pending on the sign of the change in delay. (If the change
in delay is positive, i.e., the control field shifts closer to
the signal field, a reduced pulse area and pulse duration
will maintain the same slope of the control field as it
closes the transparency window around the signal field.)
We expect no parameter correlations in the absorb-then-
transfer regime, as this protocol relies on π pulse-area
control fields that arrive after the signal field. Errors or
drift in pulse area, for example, cannot be compensated
for with changes to control field pulse duration or delay.
Note that in the definition of control field pulse area, we
account for a given pulse duration; therefore, changes to
pulse duration in our model do not directly affect pulse
area, and vice versa [35].

In order to probe these correlations, to determine the
global sensitivity of each regime, and to determine which
parameters to tune in order to compensate for drift in a
given parameter, we use the first and higher-order Sobol’
analysis described in Sec. II. The results of this anal-
ysis are shown in Fig. 6. Importantly, Sobol’ sensitiv-
ity analysis also allows for computing single-parameter
sensitivities [Eqs. (4)-(5)], which are shown for Gaussian
control field parameters (pulse area, delay, and pulse du-
ration) in Fig. 6(a)-(c). Here, sensitivity is a dimension-
less number as defined in Eq. (5), which physically rep-
resents what fraction of the observed variance in mem-
ory efficiency is due to each parameter. The results of
this single-parameter sensitivity calculation largely agree
with the OAT analysis of Sec. IV A and Fig. 4, but are in
principle more reliable. The true advantage to this anal-
ysis however is in the two- and three-parameter sensi-
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tivities shown in Fig. 6(d)-(f) and Fig. 6(g), respectively,
which physically represents what fraction of the observed
variance in memory efficiency is due to correlations be-
tween parameters [Eq. (7)]. In Fig. 6(d), we calculate the
second-order Sobol’ sensitivity index for varying control
field delay and pulse duration. We observe the largest
sensitivity in the mixed ATS-EIT region, implying that
these parameters are tightly correlated in this region of
memory parameters. Fig. 6(e) shows significant corre-
lations between pulse area and control field delay in the
ATS regime, which we can interpret physically as follows:
any drift or deviation in control field delay away from 0
in the ATS regime can be compensated for with a larger
control field pulse area, such that the effective pulse area
overlapping with the temporal extent of the signal field—
which controls the dynamical Autler-Townes splitting—
is still 2π. Fig. 6(f) shows a similar correlation between
pulse duration and pulse area in the mixed ATT-ATS
region, where presumably it is the effective pulse area
overlapping with the signal field that is most impor-
tant for high efficiency quantum storage. Fig. 6(f) also
shows some correlation between control pulse duration
and pulse area in the EIT regime. A similar behavior
can be seen in the three-parameter sensitivities shown
in Fig. 6(g), although the magnitude of the sensitivity
index is smaller. We explain both of these correlations
along the same lines discussed in Sec. IV A for Fig. 4(b)—
that the physically important part of the control field in
the EIT regime is the trailing edge that closes the trans-
parency window around the signal field, and therefore
any deviations in pulse area, delay, or duration can be
compensated for with the remaining degrees of freedom
to ensure that the slope of the falling edge of the control

field remains close to the same. The comparison between
Fig. 6(f) and (g) show however that EIT control pulse
duration and pulse area are more tightly correlated than
all three parameters together. This means that if there
is drift in control field pulse area in the EIT regime, for
example, most of the corresponding change in memory
efficiency can be compensated for by tuning the the con-
trol pulse duration (and vice versa).

The Sobol’ analysis performed here reveals which pa-
rameters are correlated, and therefore which parameters
to adjust when one is non-optimal and constrained, but
it does not reveal the direction in which to adjust the
remaining parameters. If more detailed, directional in-
formation is required, partial derivatives of the memory
efficiency with respect to each remaining parameter can
be calculated numerically. Nevertheless, the information
revealed by the Sobol’ analysis is sufficient to develop
the physical intuition described above, and, in practice,
knowing which parameter to adjust out of many is often
useful.

V. CONCLUSION

In this work we have presented a general framework
for evaluating the sensitivity of Λ-type optical quantum
memory to fluctuations and drift (or improper setting) of
memory and control field parameters. We have applied
this framework for the case of non-negligible memory pa-
rameter fluctuations, where we have found that the re-
gion of memory parameter space corresponding to the
absorb-then-transfer protocol is most sensitive, yet for
all memory parameters, Λ-type optical quantum mem-
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ory is stable insofar as the resulting fluctuations in mem-
ory efficiency are always smaller than the magnitude of
the fluctuations in memory parameters. Further we have
considered the case of drift or improper setting of con-
trol field parameters in both the case of Gaussian control
fields and arbitrarily shaped control fields. The collapse
of the N -dimensional parameter space in the case of full
arbitrary shape-based optimization to just 3 physically
instructive dimensions in the Gaussian case allows for a
physical interpretation of memory sensitivity, as well as
a more sophisticated Sobol’ analysis of correlations be-
tween control field parameters.

The theoretical predictions of this work serve to in-
struct future and ongoing experiments on optical quan-
tum memory. If average memory efficiency or efficiency
fluctuations are of import to an application of quantum
memory, Sec. III demonstrates that the EIT protocol is
the most robust and provides the smallest efficiency fluc-
tuations out of the three resonant Λ-type memory proto-
cols, and should therefore be used in experiments where
fluctuations are important. If instead drift or improper
setting of control field parameters is a concern for ex-
perimental implementations of Λ-type quantum memory,
Sec. IV provides an example for how to calculate these ef-
fects on experimental quantum memories. Furthermore,
Sec. IV provides information on which parameters are
most important to optimize when one control field pa-
rameter is constrained or drifts, as is frequently the case
in experiment (e.g., constrained or drifting control field
power). This information can serve as a practical guide
for making experimental quantum memory more robust
to both fluctuations and drift.

To determine which analysis is most relevant for a
given quantum memory experiment, the experimental-
ist must measure or estimate the fluctuations in memory
parameters, εM, and drift in control field parameters,
εG , to determine which contribution dominates. If εG is
dominant, the experimentalist must then determine if a
single control field parameter is drifting, in which case
the one-at-a-time (OAT) analysis of Sec. IV A is suffi-
cient, or if all control field parameters are drifting by

close to the same fractional amount, in which case the
Sobol’ analysis of Sec. IV B is necessary. If εM and εG
are of similar magnitude, both analyses may be neces-
sary to accurately estimate the memory sensitivity and
resulting fluctuations and drift of the memory efficiency.

We note that many alternative calculations to those
presented here are also possible. For example, if shot-
to-shot fluctuations exist in the control field parameters
instead of the memory parameters, the same analysis of
Sec. III may be applied, substituting G for M. Varia-
tions in two-photon or single-photon detuning as well as
chirp in the optical fields can also be implemented in a
straightforward fashion using the general framework de-
veloped in Sec. II. Additionally, the present discussion
of sensitivity focuses only on sensitivity with respect to
changes in memory efficiency; in principle, other types
of sensitivity are possible beyond this ‘efficiency sensi-
tivity.’ Caution must be observed when applying the
framework of Sec. II to other parameters, however, as
experimental considerations beyond those discussed here
may come into play. For example, ‘fidelity sensitivity’ is
another possible sensitivity of interest; in this case, how-
ever, our analysis can only calculate an upper bound on
memory fidelity (or a lower bound on fidelity sensitivity)
in the presence of experimental fluctuations and drift.
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