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I. INTRODUCTION

Detection of gravitational waves using laser interferometers is by now a mature field with

observed binary black hole signals, black hole-neutron star signals and binary neutron star

signals [1–4]. In a historical context, however, this is an extremely recent development, given

that gravitational waves were predicted by Einstein in 1916 [5], and that there were many

unsuccessful attempts to detect gravitational waves for a century after the prediction was

made.

Now that we have observational proof that gravitational waves do exist, it may be time

to study their effects on physical systems in a more detailed manner, even though these

effects will invariably be extremely weak.

The focus of this work is one such effect, the coupling of gravitational waves to matter.

Similar to electromagnetic fields leading to effects in matter such as polarization, gravita-

tional fields produce local stresses in an otherwise isotropic medium. Historically, this effect

was first identified as a mathematical consequence of requiring consistent field equations for

fluid dynamics [6, 7], requiring a contribution to the stress-tensor

T ij = κ
[

R〈ij〉 − 2Rt〈ij〉t] , (1)

where the R’s denote the Ricci and Riemann curvature tensors, respectively, 〈〉 denotes

symmetric traceless projection, i = {x, y, z} and t denotes the time-component1. Because

the curvature tensors are sensitive to the passing of a gravitational wave, (1) unequivocally

implies that a medium will respond with a local non-vanishing stress T ij as long as κ 6= 0.

For this reason, we refer to κ as the (material-dependent) gravitational-wave to matter

coupling.

Besides controlling the coupling of gravitational waves to matter, κ possesses a dual role

as a second-order transport coefficient. In general, transport coefficients control the real-time

response of a system subject to a perturbation, with familiar examples being conductivities,

diffusion coefficients and viscosities. However, these familiar examples encode only the linear

(first-order) response of the system to a perturbation, whereas for real systems non-linear

contributions (second-order, third-order, etc.) will also be present, and can be important

1 While (1) is required for consistency, this does not preclude the possibility of κ = 0 for certain material

conditions.
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when gradients are large. The gravitational-wave to matter coupling κ is an example of a

second-order transport coefficient, controlling the strength of the system’s response to second

order in a perturbation in flat space. At first glance, such a dual role of a transport coefficient

for seemingly unrelated phenomena (coupling to gravitational waves and second-order flat-

space perturbation) may seem strange, but we remind the reader of the more well-known

example of the Einstein relation which also serves such a dual purpose (controlling both the

diffusion coefficient and the conductivity). For the purpose of this work, the dual role of κ

can be exploited to easily obtain κ by calculating flat-space correlation functions to second

order in gradients.

A non-vanishing value for κ was calculated for N = 4 Super-Yang-Mills at large ’t

Hooft coupling [6, 8–10], and more recently κ = −13Nm2
B

2520π2 with mB the in-medium boson

mass was found analytically for the large-N limit of the interacting O(N) model [11]. As

for theories that actually occur in nature, results for κ have been reported for Yang-Mills

theory [12, 13], free bosons, and free Dirac fermions both at zero chemical potential [14, 15]

and zero temperature [16].

Curiously, κ is not known for non-relativistic two-component fermions near unitarity.

Given the tremendous success of Fermi gas experiments in obtaining transport properties

[17–27], and the potential application to using said experiments as a gravitational-wave

detector, this provides motivation for calculating κ for Fermi gases near unitarity.

Since no information about κ is currently available for Fermi gases near unitarity, this

study is exploratory in nature. For this reason, we find it acceptable to perform calculations

for κ in the R0 approximation2 that was used to determine this quantity for the O(N)

model [11, 30]. The approximation scheme is systematically improvable in principle should

one desire more accurate results for κ in the future3. As an alternative to the analytic

approach pursued in this work, we note that it would also be possible to extract κ numerically

by employing techniques suitable to obtain non-perturbative four-point correlation functions,

similar to what has been done in lattice QCD [13] and for shear viscosity in the unitary Fermi

gas [32], see the discussion in section IV.

Throughout this work we will be using natural units where ~ = c = kB = 1, and convert to

S.I. units only when discussing applications of the results that have overlap with measurable

2 Also known as leading large N or mean-field approximation [28, 29].
3 In particular, the R4 resummation scheme employed [31] will resum all contributions to κ of order N−1.
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quantities.

II. CALCULATION

Let us consider a Fermi gas in three spatial dimensions with the Hamiltonian density

H =
∑

s=↑,↓
ψ†
s(x)

(

−∇2

2m

)

ψs(x) +
4πas
m

ψ†
↑(x)ψ

†
↓(x)ψ↓(x)ψ↑(x) , (2)

where ψ†
s, ψs are the fermionic creation and annihilation operators for spin (or hyperfine

state) s = ↑, ↓, respectively, m is the fermion mass, and as < 0 is the s-wave scattering

length. Being field theorists, we much prefer discussing the properties of this system in

terms of the grand-canonical partition function, which in the path-integral formulation is

given by

Z =

∫

Dψ†
sDψs e−SE , (3)

SE =

∫ β

0

dτ

∫

d3x

[

ψ†
s(x)

(

∂τ −
∇2

2m
− µ

)

ψs(x) +
4πas
m

ψ†
↑(x)ψ

†
↓(x)ψ↓(x)ψ↑(x)

]

,

where β, µ are the inverse temperature and chemical potential of the system, respectively,

and where we employ Einstein’s sum convention for the spin index s. The ψ†
s and ψs now

refer to Grassmann numbers, and will be used as such from here on out. The 4-fermi

interaction may be resolved by introducing a complex auxiliary field by inserting

1 =

∫

ζ:R4→C

Dζ e
∫

τ,x
m

4πas
ζζ∗ (4)

inside the path integral, disregarding the irrelevant normalization. Note that the integral

here is taken over all complex field configurations ζ(τ, x); it may alternately be viewed as two

independent integrations over the real and imaginary (or holomorphic and antiholomorphic)

parts. This converges for negative scattering length as. We subsequently shift the field by

ζ → ζ − i4πas
m
ψ↓ψ↑ and ζ∗ → ζ∗ + i4πas

m
ψ†
↑ψ

†
↓ to find

Z =

∫

Dψ†
s DψsDζ e

−
∫

τ,x

[

ψ
†
s

(

∂τ−∇2

2m
−µ

)

ψs+iζ∗ψ↓ψ↑−iζψ†
↑ψ

†
↓−m

ζζ∗

4πas

]

. (5)
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A. Thermodynamics

All the fermionic bilinears may be collected in matrix form upon employing the Nambu-

Gor’kov spinor Ψs =

(

ψ↑

ψ†
↓

)

, such that the effective Euclidean action becomes

SE,eff =

∫

τ,x

[

Ψ†
(

∂τ − σz
∇2

2m
− σzµ+ iζ∗σ− − iζσ+

)

Ψ− mζζ∗

4πas

]

, (6)

where σ± = 1
2
(σx ± iσy) and σi denote the Pauli matrices. Since the fermions are now

quadratic, they may be integrated out, finding

Z =

∫

Dζe
∫

τ,x
m

ζζ∗

4πas
+lndet[−G−1(ζ,ζ∗)] , (7)

where G−1(ζ, ζ∗) = ∂τ − σz
∇2

2m
− σzµ+ iζ∗σ− − iζσ+.

So far, no approximations have been made. In order to perform the functional integral

over ζ , one can expand these fields around the global zero mode, e.g. ζ(τ,x) = i∆ +

ζ ′(τ,x). Neglecting the contribution from the field fluctuations ζ ′ corresponds to the R0

approximation [30] (or equivalently the leading large N approximation in [28]). Assuming

∆ to be real, one finds

ZR0 =

∫ ∞

−∞
d∆ e

βV
[

m∆2

4πas
+β−1

∑

ωn

∫

k
ln det(−G−1(ωn,k,∆))

]

, (8)

where the sum is over the fermionic Matsubara frequencies ωn = (1+ 2n)πT with n ∈ Z, V

is the volume of the system, and the inverse propagator in Fourier space is given by

G−1(ωn,k,∆) = iωn + σz(ǫk − µ) + ∆σx , (9)

where ǫk ≡ k2

2m
.

In the large volume limit, the integral over ∆ in ZR0 is given exactly by the saddle point

of the integral. The saddle point condition is

m∆

4πas
+ β−1

∑

ωn

∫

d3k

(2π)3
∆

(ǫk − µ)2 + ω2
n +∆2

= 0 . (10)

Besides the trivial solution ∆ = 0, one can look for non-trivial solutions of this gap equation.

In particular, we will consider the zero temperature case.

For the case of zero temperature, the Matsubara sum turns into an integral, and the

pressure becomes

p =
m∆2

4πas
+

∫

dωd3k

(2π)4
ln
[

(ǫk − µ)2 + ω2 +∆2
]

. (11)
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The frequency integral is divergent, but being field-theorists, we can employ dimen-

sional regularization, which effectively means we are replacing ln [(ǫk − µ)2 + ω2 +∆2] by

ln
[(ǫk−µ)2+ω2+∆2]

ω2 , because
∫

dω lnω2 = 0 in dimensional regularization. In dimensional

regularization, one thus finds

p =
m∆2

4πas
+

∫

d3k

(2π)3

√

(ǫk − µ)2 +∆2 . (12)

The integral over momenta is still divergent, but we will again employ dimensional regular-

ization to extract the physically meaningful piece. Writing

√

(ǫk − µ)2 +∆2 =

∞
∑

n=0





1
2

n





(−2µǫk)
n

(ǫ2k + µ2 +∆2)
n− 1

2

, (13)

all momentum integrals can be done in dimensional regularization, finding [33]

∫

dDk

(2π)D
ǫαk

(ǫ2k + A2)
β
2

=
Γ
(

D+2α
4

)

Γ
(

2β−2α−D
4

)

2Γ
(

D
2

)

Γ
(

β

2

)

(

mA

2π

)D
2

Aα−β . (14)

Taking the limit D → 3, it is curious to find that the resulting sum (13) can be evaluated

in closed form, so that

∫

d3k

(2π)3

√

(ǫk − µ)2 +∆2 =
2

5

µ(2mµ)
3
2

3π2
g

(

µ
√

µ2 +∆2

)

, (15)

where the function g(y) = y−
5

2

[

(4y2 − 3)E
(

1+y
2

)

+ 3+y−4y2

2
K
(

1+y
2

)

]

, and E,K are the com-

plete elliptic integral of the first and second kind, respectively. For the zero temperature

case, in terms of y = µ√
µ2+∆2

, the non-trivial solution to the gap equation thus has to fulfill

y3g′(y) =
15π

8
√
2mµas

. (16)

It is straightforward to check that the non-trivial solution to (16) has lower free energy than

the trivial solution ∆ = 0 for all as < 0. For the unitary Fermi gas, as → −∞, and the

solution to the gap equation requires g′(y) = 0 orK
(

1+y
2

)

= 2E
(

1+y
2

)

, for which a numerical

solution gives y ≃ 0.652 or ∆ ≃ 1.1622µ. For small scattering lengths, the solution is close

to y ≃ 1, and we can expand the left-hand-side of (16) near this point to find an analytic

solution for the gap

∆ = e
− π√

8mµa2s

−2+3 ln 2

× µ , |as| ≪ 1 , (17)
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which is within ten percent of the numerical solution of (16) for all as < 0, and which gives

∆/µ = e−2+3 ln 2 ≃ 1.083 for the cold unitary Fermi gas limit as → −∞. The presence of a

non-vanishing gap indicates superfluidity, and the R0 approximation for ∆ gives the right

order of magnitude for the gap (see [34] for a review on resonantly paired superfluids). To get

an estimate of the accuracy of the approximation, we evaluate the pressure near unitarity,

p =
2

5

µ(2mµ)
3

2

3π2

E
(

1+y
2

)

y
3
2

∣

∣

∣

∣

∣

y=(1+∆2

µ2
)−

1
2

≃ 2.2× pfree , (18)

where pfree = 2
5
µ(2mµ)

3
2

3π2 is the pressure of a non-interacting cold Fermi gas. Since it is

known that the pressure at unitarity must be equal to p = pfreeξ
− 3

2 with constant Bertsch

parameter ξ [35], we find ξR0 = yE− 2

3

(

1+y
2

)

≃ 0.59 for the R0 approximation, which should

be compared to the established value ξ ≃ 0.38 [21, 36].

From the pressure, one can define the number density of the Fermi gas near unitarity,

lim
as→−∞

n(µ) =
∂p

∂µ
=

(2mµ)
3
2

3π2
ξ−

3
2 , (19)

which in turn is used to define the so-called Fermi momentum

kF ≡
(

3π2n(µ)
)

1
3 . (20)

B. Transport Coefficient from Stress Tensor Correlators

As stated above, Eq. (1) implies that a gravitational wave passing through matter will

create a local non-vanishing expectation value for the stress tensor, 〈T ij〉. In order to

calculate κ, however, it is not necessary to expose a system to an actual gravitational

wave. The reason for this is that the coefficient of terms such as Eq. (1) in the stress-

tensor expectation value also appear in the stress-tensor correlation function in flat space.

So in order to calculate κ, we are considering the flat-space two-point correlation function

〈T xyT xy〉, which has been calculated before in a hydrodynamic gradient expansion. Note

that the corresponding calculation is similar to the spectral function calculated in the large

N approximation in [37].

From [38, Eq. (2.124)] one finds the real-time retarded correlator

CR(ω, k) ≡ 〈T xyT xy〉R(ω, kez) = p− iηω + κ
2
k2 +

(

κ
2
− κ∗

)

ω2

1− iτπω
+O(ω4, k4) , (21)
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where p is the pressure, η is the shear viscosity coefficient, κ is the gravitational-wave to

matter coupling sought in this work, and κ∗ is a second gravitational-wave to matter coupling

coefficient relevant for bulk rather than shear stress. We leave determination of κ∗ to future

work.

Stress-tensor correlators are notoriously difficult to calculate from first principle in gen-

eral, but the determination of κ allows for a tremendous simplification. Namely, one notes

that κ (unlike say the viscosity coefficient η) couples to the wave-number k in (21), so that

it is sufficient to only calculate the zero-frequency correlator CR(ω = 0, k). This, in turn,

means that it is not even necessary to perform an analytic continuation to real time, but

instead it is sufficient to obtain κ directly from the Euclidean correlation function evaluated

at vanishing external Matsubara frequency,

κ =
∂2

∂k2
CE(ωn = 0, k)

∣

∣

∣

∣

k=0

, (22)

cf. [11, 15]4.

Having thus defined how to obtain κ from flat-space correlation functions, we proceed in

the next section to calculate CE(ωn,k) for the cold superfluid Fermi gas.

C. Stress Tensor Correlators in the Cold Superfluid Fermi Gas

The Euclidean stress-tensor two-point correlator for the Hamiltonian (2) is given in the

path integral formulation as

CE(x− y) = Z−1

∫

Dψ†
sDψs e−SET 12(x)T 12(y) , (23)

where we have switched notation from T xy to T 12 and from {t,x} to four-coordinate x, and

dropped the spin index for better readability. To obtain T 12, one can either start with the

energy-momentum tensor for relativistic (4-component Dirac, see e.g. [15]) fermions and

perform the non-relativistic limit, or use the non-relativistic form derived in e.g. [39]. In any

case, one finds

T 12(x) =
1

4m

[

∂1ψ
†
s∂2ψs + ∂2ψ

†
s∂1ψs − ∂1∂2ψ

†
sψs − ψ†

s∂1∂2ψs
]

− is

4m
∂kΣk , (24)

4 Note that unlike for the case of bosonic theories, there is no additional term in (22) because fermions do

not allow for conformal coupling terms in the action. Also note that the Euclidean correlator CE(ωn) is

minus the retarded real-time correlator CR(ω).
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where Σk = ψ†σlǫkl1∂2ψ − ∂2ψ
†σlǫkl1ψ + ψ†σlǫkl2∂1ψ − ∂1ψ

†σlǫkl2ψ is a spin-current contri-

bution. Here ǫijk denotes the 3-dimensional totally anti-symmetric Levi-Civita symbol and

s = 1
2
for a spin 1

2
fermion. Disregarding the explicit spin-current contribution for now,

the stress-tensor component may be rewritten in terms of the Nambu-Gor’kov spinors (cf.

Eq. (6)) as

T 12(x) =
1

4m

[

∂1Ψ
†σz∂2Ψ+ ∂2Ψ

†σz∂1Ψ− ∂1∂2Ψ
†σzΨ−Ψ†σz∂1∂2Ψ

]

− is

4m
∂kΣk . (25)

Using the same auxiliary fields as in (6), the fermionic part of the effective action is quadratic,

so that the two-point stress-tensor correlator may be re-written in terms of two-point func-

tions of the fundamental fermion field Ψ because of Wick’s theorem:

CE(x− y) =
−1

2m2Z

∫

DΨ†DΨDζe−SE,efftr [∂x1∂
y
2G(y − x)σz∂

y
1∂

x
2G(x− y)σz

+∂x1∂
y
1G(y − x)σz∂

y
2∂

x
2G(x− y)σz] + spin current , (26)

where tr refers to the trace over spinor indices and

〈Ψ(x)Ψ†(y)〉 = G(x− y) . (27)

In the R0 approximation, the path integral over auxiliaries ζ, ζ∗ simplifies again because

only the global zero mode is kept. As a consequence, the R0-propagator from Eq. (9)

becomes

G(ωn,k) =
1

(ǫk − µ)2 + ω2
n +∆2





ǫk − µ− iωn ∆

∆ −ǫk + µ− iωn



 , (28)

and the Fourier-transformed stress-tensor correlator CE(kE ,k) at zero temperature becomes

CE(kE,k = ke3) = −
∫ ∞

−∞
d∆

eβV p

m2Z

∫

d4p

(2π)4
p2
1p

2
2tr [G(ω,p)σzG(kE + ω,p+ k)σz] + s. c. ,

(29)

where the ordinary integral over ∆ will once again restrict the value of ∆ to the solution of

the saddle point condition, approximately given by (17). Evaluating the spinor trace and

restricting to vanishing external Matsubara frequency kE = 0, one finds

CE(0, k) = − 2

m2

∫

d4p

(2π)4
p2
1p

2
2 [(ǫp − µ)(ǫk+p − µ)− ω2 −∆2]

[(ǫp − µ)2 + ω2 +∆2] [(ǫp+k − µ)2 + ω2 +∆2]
+ s. c. , (30)

where the R0-partition function in the numerator and denominator has canceled.
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The spin-current contribution can be obtained as follows: first note that given T 12(x) ∝
∂kΣk, and because ∂1,2e

ik·x = 0 for k = ke3, only T
12(x) = − is

4m
∂3Σ3 contributes to κ. Using

Nambu Gor’kov spinors, Σ3 may be written as

Σ3 = Ψσx(∂1 − i∂2)Ψ + Ψ†σx(∂1 + i∂2)Ψ
† . (31)

Since Σ3 is linear in either ∂1 or ∂2, linear contributions of Σ3 to CE vanish after angular

integration. Hence, the only non-vanishing contribution to κ from the spin-current is s. c. =

−
(

s
4m

)2
∂x3∂

y
3 〈Σ3(x)Σ3(y)〉, or in Fourier space

s. c. =
s2k2

2m2

∫

d4p

(2π)4
p2
1tr [σxG(ω,p)σxG(−ω,−p)] . (32)

Taking two derivatives with respect to k and performing the angular averages gives an

integral expression for κ from (22). Performing the integral over frequencies as well then

leads to

κ =
2∆2

105m

∫

d3p

(2π)3
ǫ2p
(ǫp − µ)2 (21µ− 5ǫp) + ∆2 (21µ− 25ǫp)

[(ǫp − µ)2 +∆2]
7
2

+
2s2∆2

3m

∫

d3p

(2π)3
ǫp

[(ǫp − µ)2 +∆2]
3
2

,

(33)

and the remaining integral over momenta is convergent. Expanding the numerator in powers

of ǫp, the momentum integral can be solved using (14), and one finds

κ =
(2mµ)

3
2

3π2m
× 2yE

(

1+y
2

)

+ (1− y)K
(

1+y
2

)

8y
3
2

∣

∣

∣

∣

∣

y= µ√
µ2+∆2

(

−2

3
+ 4s2

)

, (34)

and where again E,K are the complete elliptic integral of the first and second kind, respec-

tively. Close to unitarity, where the gap equation (16) implies K
(

1+y
2

)

= 2E
(

1+y
2

)

, this

simplifies to

lim
as→−∞

κ =
(2mµ)

3

2

3π2m

1

ξ
3
2

R0

(

s2 − 1

6

)

, (35)

with ξR0 ≃ 0.59 the Bertsch parameter in the R0 approximation. Since the only non-trivial

dependence of κ on as is through the Bertsch parameter, we predict that the correct value

of the gravitational-wave matter coupling coefficient for the cold Fermi gas near unitarity is

lim
as→−∞

κ =
(2mµ)

3
2

3π2m

1

ξ
3

2

(

s2 − 1

6

)

. (36)

Yet another way is to employ the number density (19) to find the surprisingly simple result

limas→−∞ κ = n
m

(

s2 − 1
6

)

. For a spin s = 1
2
fermion we thus have

lim
as→−∞

κ =
n

12m
, (37)
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for the gravitational-wave matter coupling coefficient of the cold Fermi gas near unitarity.

Eq. (37) is our main result.

III. GRAVITATIONAL WAVE STRAIN RATE

Since a potential application of the result (37) is to detect gravitational waves, let us

quickly review the form of a gravitational strain for an astrophysical system of interest,

namely that of a binary black hole system.

To get started, one writes the Einstein equations in matter

Rµν −
1

2
gµνR = 8πGT source

µν , (38)

where again Rµν , R are Ricci tensor and Ricci scalar, respectively, gµν is the metric field,

and T source
µν is the stress tensor sourcing the gravitational wave, G is Newton’s gravitational

constant and µ = {0, 1, 2, 3}. For small deviations from flat space, one linearizes the Einstein

equations in the metric field gµν around the Minkowski metric. Since we will be particularly

interested in the g12 channel where the Minkowski metric is zero, we find

[

−∂20 +∇2
]

g12(t,x) = −16πT source
12 (t,x) . (39)

Now let’s consider an astrophysical system that generates a non-trivial T source
12 (t,x) (we will

give more details below). In this case, the strain rate g12 can be calculated from the retarded

Greens function of the operator −∂20 +∇2, and we find

g12(t,x) = 4G

∫

d3y
T source
12 (t− |x− y|,y)

|x− y| . (40)

In Fourier space, this becomes

g12(ω,k) = 4G

∫

d3y e−ik·yT source
12 (ω,y)

∫

d3x
eiω|x|−ik·x

|x| , (41)

where one can recognize the Fourier-transform of a spherical wave,
∫

x
eiω|x|−ik·x

|x| = 4π
k2−ω2 . One

thus has

g12(ω,k) =
16πG

k2 − ω2
T source
12 (ω,k) . (42)

For a model astrophysical system, consider two equal mass black holes orbiting each other

on a circle with radius R. We will ignore GR effects for the motion of the black holes, which
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is a decent approximation for the inspiral phase. Without loss of generality, the locations of

black hole one and two are then given by

~x(1) = R











cosΩt

sinΩt

0











and ~x(2) = −~x(1). (43)

Newton’s equation of motion for the two-body system relate the orbital frequency Ω to the

mass M and radius R through

Ω =

√

GM

4R3
. (44)

The stress-tensor component for this system is simply given by

T source
12 (t,x) =Mẋ(1)ẏ(1)δ

(

~x− ~x(1)
)

+Mẋ(2)ẏ(2)δ
(

~x− ~x(2)
)

, (45)

where the dot indicates a time-derivative. If we consider the direction of the gravitational

wave along the k = ke3 direction as in the rest of this work, the Fourier transform of T12

becomes particularly simple, and one finds

g12(ω, ke3) = −2π2r2s
R

[δ(ω − 2Ω) + δ(ω + 2Ω)]

k2 − ω2
, (46)

where (44) has been used and we have recognized the Schwarzschild radius of an individual

black hole as rs = 2GM . Note that (46) does not depend on Newton’s gravitational constant

(it is hidden in the Schwarzschild radius rs of the black hole), and that the decreasing

strength of a spherical wave with distance from its center is encoded in the factor 1
k2−ω2 .

Of particular interest then is a potential experimental measurement of

〈T 12(ω,k)〉 = −2CR(ω,k)g12(ω,k) +O
(

(g12)
2
)

, (47)

where g12 is the gravitational wave strain component, CR is defined in (21), and (47) is

nothing but the linear-response formula connecting the one-point and two-point correlation

function of the energy-stress tensor, cf. [38, Eq. (2.95)]. For equilibrium configurations,

〈T 12〉 = 0 as can be quickly verified from kinetic theory. Therefore, a non-vanishing exper-

imental determination of 〈T 12〉 in an equilibrium system provides a potential experimental

handle on the gravitational wave strain g12.

However, thermodynamic fluctuations (aka “noise”) will also lead to fluctuations in 〈T 12〉.
Directly computing the thermal variance of the stress tensor 〈(T 12)2〉− 〈T 12〉2 is technically
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difficult. The thermal fluctuations may also be estimated via the fluctuation-dissipation

theorem from the shear viscosity, bulk visocsity, and heat conductivity; unfortunately these

are not well known in this regime. Instead, to obtain a simple upper bound on the signal-to-

noise ratio sufficient for detecting a gravitational wave using an experimental measurement

of 〈T 12〉, we consider the ratio of gravitational wave stress (1) to thermodynamic pressure

p = pfreeξ
− 3

2 ,

σ ≡ κ
[

R〈12〉 − 2Rt〈12〉t]

p
= κ

k2 + ω2

2p
=

5

12ξ

k2 + ω2

2k2F
. (48)

To give some example numbers, for two solar-mass black holes orbiting each other at

R = 10rs with rs = 2GM the Schwarzschild radius of a single black hole, one has rs ≃ 3

km and Ω
2π

≃ 175 Hz. The gravitational wave strain (46) will be peaked around ω = 2Ω and

k = ω, with a wavelength of 2π
k
≃ 1000 km. For a unitary Fermi gas with 2π

kF
∼ 1 µm [40],

we therefore estimate

σ ≃ 10−24 , (49)

which is comparable to the required accuracy for detecting gravitational waves with inter-

ferometers, but unrealistic with current ultracold atom experiments.

IV. DISCUSSION

The result (37) implies a spin-dependent value for the gravitational-wave to matter cou-

pling κ for superfluid Fermi gases near unitarity. For a spin 1
2
fermion, it is useful to compare

our finding with that of Shukla for a free Dirac fermion [16]:

κ =
1

24π2

[

µR

√

µ2
R −m2 −m2 ln

µR +
√

µ2
R −m2

m

]

, (50)

where µR = m+µ is the relativistic chemical potential. In the non-relativistic limit, µ ≪ m,

and (50) becomes κ = n
12m

in agreement with our result (37) for a non-relativistic fermion

near unitarity. As a consequence, for spin 1
2
non-relativistic fermions, the result κ = n

12m
is

universal both in the free and unitarity limit (but likely not in between, cf. 34).

The analytic result (37) is amenable to independent verification by other theoretical

methods. For instance, Monte Carlo and density functional theory methods that have

proven successful in other applications such as those reported in [41–43] may be used to

test (37), as well as extend it to the case of finite temperature and/or extend it to the case
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of positive scattering length. Another interesting extension would be to consider calculating

κ for polarized Fermi gases [44], which can be treated in complete analogy to the method

discussed here [28].

Moreover, the result (37) provides a testing ground for novel methods aiming at beating

or ameliorating the so-called sign problem in fermionic systems, see e.g. [45, 46].

Last but not least, there is the prospect of using the information provided by (37) as

a means towards designing novel gravitational-wave detectors using Fermi gases near uni-

tarity. A crude estimate of the required signal-to-noise ratio in (49) for using experimental

measurements of 〈T 12〉 to detect gravitational waves from a solar mass binary black hole

merger is discouraging, but does not preclude the possibility of detection using more cleverly

designed experimental techniques in the future.
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