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We consider plane wave modes in ultracold, but not quantum degenerate, dipolar Fermi gases in
the hydrodynamic limit. Longitudinal waves present anisotropies in both the speed of sound and
their damping, and experience a small, undulatory effect in their flow velocity. Two distinct types
of shear waves appear, a “familiar” one, and another that is accompanied by nontrivial density and
temperature modulations. We propose these shear modes as an experimental means to measure the

viscosity coefficients, including their anisotropies.

I. INTRODUCTION

Recent experiments have achieved the trapping and
cooling of magnetic lanthanide atoms [1-7], and het-
eronuclear polar molecules [8-12] to ultracold tempera-
tures, ushering in a new era of dipolar physics. In partic-
ular, the realization of collisional shielding in highly po-
lar molecules with electric fields [12, 13] and microwaves
[14, 15], now permit investigations of collective dynam-
ics influenced by both long-range and collisional interac-
tions. These two effects only become comparable at large
densities and dipole moments, establishing the gas as hy-
drodynamic and therefore more appropriately described
as a fluid.

Classical fluids are known to host a vast variety of dy-
namical phenomena, attributed to the strong nonlinear-
ities in the governing equations of motion [16]. But even
before the onset of nonlinear flows, linear hydrodynamics
can already be fascinating [17], made evermore so with
dipolar interactions. In polar molecular gases, tunability
of the dipole moment [18-20] and its orientation provide
a handle to control the influence of dipolar character on
collective gas behavior [21-23]. For instance, we find that
a thermal gas with comparable dipolar mean-field and ki-
netic energies hosts an anisotropic speed of sound. Unlike
its degenerate counterpart, however, nondegenerate gases
are prone to the incoherent process of dipolar collisions
which impede sound propagation. Of interest here are
gases of fermionic molecules where dipolar scattering is
universal [24]. The thermalizing effect of these collisions
manifests in a continuum theory as thermal conductivity
and viscosity, quantities that require a tensorial formu-
lation by virtue of the scattering anisotropy. From a mi-
croscopic description, we derive these so-called transport
tensors for fermions to first order in the Chapman-Enskog
fashion [25].

Although attributed to equilibration, viscosity can in
fact be utilize to take the gas out of equilibrium by means
of shear flows. When laminar, these flows decay away
from the source with characteristic penetration depths
that are directly related to the viscosity coefficients. We
present these relations explicitly, which could allow for a
measurement of the viscosity coefficients from shear flow
experiments.

The remainder of the paper is organized as follows: In

Sec. II, we present the general fluid equations of motion
for nondegenerate dipolar Fermi gases and linearize it.
Propagating modes of the fluid are studied in Sec. III,
from which a universal anisotropic speed of sound is ob-
tained. A class of mode solutions only present in ther-
moviscous fluids is studied in Sec. IV, following which
concluding remarks are drawn in Sec. V.

II. LINEAR DIPOLAR HYDRODYNAMICS

A gas is said to be hydrodynamic when collisions result
in fast local thermalization, as occurs when the molecu-
lar mean free path is much smaller than a characteris-
tic physical length of the system. This ratio of length
scales is often referred to as the Knudsen number, Kn
[25]. When hydrodynamic, gases are best described in
terms of the continuous field variables of mass density
p, flow velocity U and kinetic temperature T' [26], each
of which are dependent on space and time. These vari-
ables undergo dynamics governed by the continuity [27],
Navier-Stokes [28, 29] and temperature balance equations
[30]
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where P = nkpgT is the thermodynamic pressure with
number density n = p/m, k;; is the rank-2 thermal con-
ductivity tensor and 7;; = p;jre0eUy is the viscous stress
tensor with rank-4 viscosity tensor u;jre. Repeated in-
dices are assumed to be summed over. The external
potential in consideration here is that from the dipolar
mean-field (DMF) V(r,t) = n(r,t) « ®aq(r) [31], where
x denotes a convolution and
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is the dipole-dipole interaction potential between 2 point
electric dipoles of dipole moment d, aligned along the



dipole axis E. In the expression above, ¢g is the electric
constant.

A. Linearization

In this paper, we limit ourselves to linear modes of an
initially uniform gas. To this end the dynamical fields
are written as
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only varying in space and time via the unit-free fluctua-
tion fields x, &;, ¢ < 1, with ¢ = 1/5kpTy/(3m) being the
ideal gas thermal speed of sound. Dynamical quantities
at equilibrium are denoted with a naught subscript. To
linear order in the fluctuation field variables, the equa-
tions of fluid mechanics become
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Acoustic mode solutions for such a linear dynamical sys-
tem can be found by employing a plane wave ansatz
X, &, € ~ exp [i(KTr - wt)], with which we notice that
the DMF potential just becomes a Fourier transform of
(I)dd (’I’):
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where By = (kpTp)~! is the usual inverse temperature,
while @44 reduces to the simple form
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with ¢gqq already computed in Ref. [32]. Computing
dispersion relations for the plane wave modes requires
knowledge of the thermal conductivity and viscosity ten-
sors. Dipolar collisions, however, necessitate that these
objects maintain a construction in their general tensorial
forms since the collisional anisotropy prevents the usual
reduction to isotropic coefficients [30]. As with dipolar
bosons [22, 23], analytic expressions for the these tensors
can be obtained using the first-order Chapman-Enskog
method [25, 33] and utilizing the differential cross sec-
tion for dipolar fermions found in Ref. [24]. Details of
this derivation are provided in appendices A and B, along
with a list of the explicit functional forms for each trans-
port tensor element.
B. Plane Waves

Employing a plane wave ansatz renders derivatives of
fluctuations variables 9; — iK; and % — —iw, so the
differential equations of Eq. (4) reduce to the eigensystem
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having defined the thermal conductivity and viscosity as-
sociated rates
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respectively. With no other processes to break the sym-
metry of the system, the anisotropy that arises in the
mode solutions only depends on the relative angle ©, be-
tween the dipole orientation £ and plane wave propaga-
tion direction K. Thus, all essential physics is captured
by setting K = 2 but allowing © to vary. In these coor-
dinates, which we assert for the remainder of this paper,

the transport associated rate functions have the forms
(See App. A)
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0 3(14sin(20) — 39sin(40))
9(5cos(20) — 9) 0 ,
0 1(84c0s(20) — 117 cos(40) — 415)
(8b)

C. Mode Frequencies

Any fluid dynamics resultant from Eq. (6) is fully de-
scribed by normal mode solutions, comprising of mode



frequencies w,, and their corresponding mode amplitudes
Yo = (Xa,&a, €a) With a = 1 to 5. To obtain these normal
modes analytically, we consider long wavelength excita-
tions such that § = KL < 1, where L = (Gng) ! is the
molecular mean free path and & = 327a?/15 is the an-
gular averaged total cross section [24] with dipole length
aq = d*m/(8megh?). Since the transport coefficients scale
linearly with delta ke, kij ~ 9, long wavelengths then
permit series expansions of the mode solutions in increas-
ing powers of the transport tensors via Taylor expansions
in 6. By diagonalizing Eq. (6) (refer to App. C), we ob-
tain the following mode frequency solutions
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to first order in 0, where &44(©) = nppqaa(©)/m is the
specific DMF energy. The corresponding modes and their
interpretation will be given in the following sections.

III. ANISOTROPIC SOUND
A. Sound Velocity

The first two modes, with frequencies wy, represent
propagating, longitudinal sound waves. Taking the long-
wavelength limit identifies the anisotropic speed of sound

cad(©®) = /4 £34(0). This is usefully written in

terms of the dimensionless parameter
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which is a function of the thermal de Broglie wavelength
Ath = h/V2mmkpTy with h as Planck’s constant. The
speed of sound is given in terms of 7 as

caa(©®) = c/1+n(3cos2© — 1). (12)

In this classical gas, quantum statistics enters only in
the collision cross sections. Hence, the mean-field dom-
inated result in (12) applies equally to both bosons and
fermions. As written, the speed of sound in a normal
dipolar gas has an anisotropy similar to that for a dipo-
lar Bose-Einstein condensate (DBEC) [34-36], but with
temperature replacing the role of quantum fluctuations.
The quantity n compares the magnitude of the DMF with
thermal energies, which at a fixed temperature Ty, varies
by means of the background density pg and dipole mo-
ment d [13-15, 20].

For propagation of sound waves along the direction
of dipole polarization, © ~ 0, this propagation is sta-
ble, that is, the value of cqq remains real-valued. How-
ever, for sufficiently large 7, the speed of sound devel-
ops a significant anisotropy due to the growing contri-
bution from the DMF. Going past the critical value of
ne(0) = —(3cos?© — 1)1, DMF interactions may over-
come the thermal kinetic energy, causing cqq(©) to be-
come imaginary [37]. An imaginary speed of sound in-
dicates a dipolar instability, also predicted and observed
in DBEC [34, 38-42]. Notably, 7. is only well defined
within the interval bounded by the dipolar magic angles
Omagic ~ 54.7° and 125.3°, at which pq4(Omagic) = 0
[43]. Within the range of dipolar magic angles, 7. has a
minima of 1 at © = 90°.

B. Undulating Sound Waves

The physics of sound gets more interesting at finite K,
where transport tensors now enter the dynamical arena.
To ground our discussions, we envision an experiment
with a box-trapped [44] uniform density sample of mi-
crowave shielded ?>Na?’K molecules cooled to Ty = 250
nK [15]. When n < 1, say at ng = 102 em~2 and
d = 0.75 D (n =~ 0.04), the DMF effects and therefore
&4q, becomes negligible compared to kinetic processes.
In this regime, we see that the speed of sound reverts to
that of an ideal gas cqq =~ ¢, while the imaginary part
of w4 is strictly negative, leading to sound attenuation.
Resulting directly from dipolar collisions, the observed
attenuation for a long wavelength excitation of 6 = 0.1 is
anisotropic, varying by a factor of ~ 2 with © as shown
in Fig. 1.

The w+ modes have associated eigenvectors of the form
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defined up to an overall scale factor. The first term of the
sum in the expression above has nonzero and compara-
ble amplitudes in the fractional density shift y, fractional
z-velocity &, and fractional temperature shift €, as ex-
pected for a longitudinal wave propagating in the z direc-
tion. The second term in 1+ shows the additional effects
introduced by viscous and thermal damping. Specifically,
terms in the density and z-velocity are explicitly damped,
while the temperature is not yet damped at this level of
approximation. Along with these effects, a new one ap-
pears, namely, a damped motion in the x-velocity &,.
These eigenvectors therefore indicate that, despite ini-
tiating sound along K = 2, the fluctuations in flow veloc-
ity could occur in a slightly different direction depend-
ing on the dipole orientation. That is, in these plane
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FIG. 1. Imaginary part of the propagating mode frequency
solutions Im[w+ (©)] in Hertz (Hz), as a function of the dipole
tilt angle © in degrees (deg) at n &~ 0.04. The figure inset plots
the absolute relative angle between K and &, |cos™ (K - ),
also as a function of ©.

wave solutions, the fluid flow along z alternately com-
presses and rarefies the gas, while the fluid velocity si-
multaneously alternates between flow along the +x and
—x directions. The general fluid motion is therefore of
a slightly undulatory nature. This effect, albeit small,
is one unique to anisotropic transport which we illus-
trate with a plot of the absolute relative angle between
K and €, |cos’1(K-é)|, against © in the inset of Fig. 1.
These weak transverse motions are potentially observable
in Doppler spectroscopy of the undulating molecules.

IV. THERMOVISCOUS MODES

Even in the absence of sound, a silent hydrodynamic
gas of dipoles still has a story to tell. This narrative
is populated by the latter 3 modes of Eq. (10), all of
which have purely imaginary frequencies for any value of
n and ©. Once again with n =~ 0.04 and § = 0.1, which
suppresses effects from the DMF, anisotropic damping
is accentuated in these silent modes with plots of the
imaginary parts of their mode frequencies in Fig. 2.

One of these modes, with frequency w,, 2, has a partic-
ularly simple form:

Yu2 = (14)

SO = OO

This mode consists exclusively of flow velocity in the
+y directions, the velocity being sinusoidally modulated
along z with wavelength 27 /K. If one were to “grab” the
z = 0 layer of the fluid and shake it with frequency |w, 2],

—TIm[w,(©)]
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FIG. 2. The imaginary parts of the mode frequency solu-

tions, Im[w,] (solid black curve), Im[w,,1] (dashed blue curve)
and Imw, 2] (dotted red curve), as a function of © in a gas
of Na*®K molecules with no = 10'? cm™ and d = 0.75 D
(n =~ 0.04).

a shear wave would thus develop. This is an overdamped
mode, hence its amplitude reaches only to approximately
a certain penetration depth, defined as the inverse abso-
lute imaginary part of the wave-number [23, 26]:

(9 — 5 cos( 4@))
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The expression above is obtained from Eq. (10), by in-
stead solving for K in terms of a fixed driving frequency
w. Such waves are, of course, already familiar in ordinary,
isotropic fluids.

A shear mode with fluid flow in the +z direction is,
however, affected by the anisotropy of the scattering (re-
call that the dipolar orientation lies in the z, z plane).
The x-shear mode is given by

0 D Ay
1 I\ 5¢iq r cK i A1
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:5A
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Here again, the first term accounts for the dominant mo-
tion, namely, oscillations in the +x directions induced
by shear. The penetration depth for this z-shear mode
under an oscillatory shear drive is, not surprisingly, also
dipole angle dependent, and given by the relation

H1313
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The second term in 1,1 denotes additional, accom-
panying effects associated with this shear mode, in this
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case damped modulations in the density and tempera-
ture fields. In this circumstance, where the dipoles are
oriented somewhere in the x, z plane, and the shear flow
in the z direction, the anisotropy of the collision cross
section is capable of shoveling both matter and kinetic
energy preferentially into the +z directions, the same as
it ordinarily does for momentum.

Because shear modes are a direct consequence of vis-
cosity in the gas, they present themselves as an ex-
perimental means to measure the viscosity coefficients
[45]. We propose an oscillatory shear layer of constant
frequency w, realizable in ultracold experiments with a
time-dependent box trap boundary condition. This os-
cillation would induce a shear excitation that travels or-
thogonal to the shear layer with the ©-dependent pene-
tration depths provided above. Seeing that the penetra-
tion depths scale as ~ | /ftjjke ~ V'L, ensuring r, < Lso
as to remain hydrodynamic, can be enforced by tuning
the dipole moment appropriately. We therefore consider
d = 2.5D at ng = 102cm~3 (n ~ 0.46), with an oscilla-
tion frequency of w = 27100 Hz. These parameters result
in r,/L ~ 18 to 35, with values depending on the dipole
orientation ©.

To demonstrate this anomalous shear excitation, we
plot the time evolution of relative mode amplitudes ()
in Fig. 3, after an impulse shear flow perturbation along
& with © = 7/4. We find that along with y and €, £, is
also subsequently excited from this perturbation. In the
plot, the relative amplitudes for x(t),e(t) and &,(t) are
rescaled by a factor of 10® for ease of visualization, but
indicate that this effect is indeed a small one. Temper-
ature field variations via the introduction of heat into a
fluid are commonly referred to as entropy waves [46, 47],
which if initiated by laminar shear flow, motivates the
title “shear-entropy waves”. This phenomena is, to our
knowledge, not present in existing shear flow literature.

Not forgetting the fifth and final mode ),;, we find that
in the range of © with &yq < 0, w, can vanish identically
at suitably large values of ng and ag such that &g =
—3c?/5 (i.e. n = 3n./5). Satisfying this condition would
lead to a mode where e = &, =&, =&, = 0 but x # 0,
as made evident by its functional form

0
3 I 3c245&, 56,
5 (1 T A 5t dd) (1 + 3Cde)
b = b
0
0
0
+ 0 . (18)
0
i 1+ 1)

Such a mode implies the existence of long-lived density
modulations due to a balance between thermal and dipo-
lar mean-field energies. We leave further analysis of this
phenomenon to a future work.
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FIG. 3. Relative fluid variable fluctuation amplitudes &, (t)
(dashed-dotted black curve), x(t) (solid blue curve), &.(t)
(dashed green curve), €(t) (dotted red curve) as a function
of time ¢ at z/L = 10, after an impulse shear flow perturba-
tion along &. The dipoles are oriented with © = 7/4. The
relative amplitudes for x(t),e(t) and &.(t) are rescaled by a
factor of 102 for clarity of presentation.

V. CONCLUSIONS

We have formulated a comprehensive theory of normal
dipolar Fermi gases in the hydrodynamic regime, includ-
ing effects from both the DMF and collisions. When com-
parable to the thermal energy, the DMF introduces a sig-
nificant anisotropy to the speed of sound. That is, sound
travels faster when parallel to the dipole orientation but
slower when orthogonal. If too large, the DMF can com-
pletely overpower thermal molecular motion, triggering
dynamical instability (i.e. the speed of sound becomes
imaginary). As a consequence of the sound speed dipole
angle dependence, these instabilities only occur in waves
that propagate at angles within © =~ 54.7° and 125.3°,
relative to the dipole orientation. Outside this angular
range, linear wave excitations remain completely robust
against dipolar collapse.

Collisions on the other hand, serve to return the gas
to hydrodynamic equilibrium, the route of which is also
anisotropic. As in the case of bosons [22, 23], thermal
conductivity and viscosity encompass these local ther-
malization effects and result in the anisotropic damping
of sounds waves. Additionally, we find that these trans-
port tensors lead to a minute undulatory dlvergence be-
tween the wave propagation K and fluid flow 5 direc-
tions, an effect not possible in dipolar superfluids. Not
surprisingly, anisotropy is also present in shear excita-
tions that are directly consequent of viscous stresses. We
therefore suggest that experimental realizations of shear
waves could permit measurements of the viscosity coef-



ficients. A curiosity of laminar shearing a dipolar gas,
is that the viscid flow could incite an anomalous density
and temperature excitation we identify as shear-entropy
waves. This effect was one we found no analogy to in the
literature.

With dense long-lived samples of polar molecules now
accessible to the ultracold community, we expect the
phenomena presented in this work and more yet to be
explored with our theory, are experimentally achievable
with current technologies. A direction for future work
could therefore be to solve the full nonlinear fluid equa-
tions, where we expect to find a rich tapestry of hydro-
dynamic phenomena. Additionally, recent experiments of
electric field shielded KRb molecules have suggested sup-
pression of both two and three-body losses [13, 48, 49].
This opens opportunities for hydrodynamic studies af-
ter the onset of dipolar collapse [40], where sustaining a
large fraction of molecules past the instability could per-
mit turbulent cascades from strong nonlinear flows [17].
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Appendix A: Evaluation of the Transport Tensors

In a nondegenerate gas, local equilibrium occurs by
means of dipolar collisions parameterized by the dipole
length ag4. Close to local thermal equilibrium, re-
equilibration processes are encapsulated by the transport
tensors of viscosity and thermal conductivity, derivable
from a microscopic picture with methods established by
Chapman and Enskog [25]. Within length scales on the
order of the molecular mean-free path, molecular inter-
actions are dominated by collisional processes. The lo-
cal distribution of molecules thus has dynamics well de-
scribed by the Boltzmann transport equation

(57 + ) flr.0) = CLrtr o), (A1a)

i) = [l [ @ulo—wl (5~ 1), (A1)

where f(r,v) is the phase space distribution function and
C[f] is the two-body collision integral. All repeated in-
dices are summed over and primes denote post-collision
velocities for pairs of colliding molecules with incoming
velocities v and v,. We also adopt the compact notation
fi=f(r,vy) and f' = f(r,v"). The gas number density
is given by n(r,t) = [d3vf(r,v,t), which is only depen-
dent on temperature at thermal equilibrium, ng = ng(3).

Thermal equilibrium also imposes a Boltzmann velocity
distribution

fo(u, B) = no(B)eo(u, B)
= no(8) (“;ﬂ)/ e (<), (42

where 8 = (kgT)~ !, u?> = wupup, and u(r) = v —
U(r) is the peculiar velocity, defined as the molecu-
lar velocity v relative to the flow velocity U(r,t) =
n(r,t)~! [ dBof(r, v, t)v

Close to thermal equilibrium, the molecular distribu-
tion fluctuates as

FruB) = folu, AL+ 0(ru B, (A3)
with a perturbation function ®, that must satisfy
[ #unatru gm0 (Ada)
[ s, u.sma o, (A4b)
[ et umgme o, (A1)

as a result of mass, momentum and energy conservation
respectively. Enskog’s prescription of successive approxi-
mations then renders the Boltzmann equation, to leading
non-trivial order, as

(8815 + Uial) fo = Clfo®]. (A5)

The left-hand side of Eq. (A5) above evaluates to

(8815 + ﬂk3k> fo= fo[Ve0(InT) + mBWi,Dye], (A6)

as detailed in App. B, where

. mpBu? 5
Vi(u) = < 5 2) U, (ATa)
1
Wij(u) = uuj — g(SiJUZ, (A7Db)
1 1
Dij(U) = ) (ajUi + ain) - géijakUk. (A?c)

The collision integral on the right-hand side of Eq. (A5)
is then

do
asy

el [ duntu— wilfo(u)olu) [ 0 55 A0, (a8)
where A® = &' 4+ &) — & — P;. Since Eq. (A8) is linear
in ® and Eq. (A6) is linear in the quantities 9; InT and
D;;, one can infer an ansatz for the scalar function ®, of
the form

O(u, 8) = Bpok(InT) + mBAge Dy, (A9)



where B (vector) and A (2-rank tensor) are functions of
u and 3. Upon comparing terms, B and .A must have
the forms

Aij(u,no, B) = Wie(w)ageij (u, no, 8), (A10a)
Bi(u7n075) = ‘/j(u)bj’b(u7n07ﬂ)’ (AlOb)
where u = |ul, and the coefficients aggpmn(u, ng, 5) and

bre(u, ng, 8) are introduced as variational ansatz. The
Gkemn and bgy ansatze can only depend on the magni-
tude of u, which follows from a comparison of terms be-
tween Eq. (A5) and Eq. (A6) after plugging the ansatz
of Eq. (A9). At our level of approximation, the wu-
dependence of these variational parameters is completely
ignored [25]. We are thus left with

<I>(u, ﬁ) = Vg(u)bgk(no, ﬂ)(‘)k(ln T)

+ 2mBWij(u)ajre(no, B)Dre.  (All)

Referring back to Eq. (A1l), an average is taken over
the molecular distribution by multiplying Eq. (A5) by
Vi(u) and W;;(u), then integrating over u to give

([ @ stwtwriw) o) (A12)
(/ d3u Vi(u fOVk}> by;0;(InT),
(/ dPufo( )Wkae> Dy (A13)

~ (2/d3U szc[fOWmn]) AmnkeDye,

respectively. The integrals above can be evaluated with
the methods in Refs. [50, 51] and the aid of Mathematica
[53]. Then using the relations [22, 23]

57’L0]€B
ij = Al4
g 2mpBy (Alda)
2n
Hijke = _Bioozijmnamnkb (Al4b)

where Z;jmy is the traceless symmetric isotropic rank-
4 tensor, and comparing them to the linear constitutive
relations

Ji = —HijajT,

Tij = 2pijkeDye,

(Alba)
(A15Db)

we obtain the transport tensor of thermal conductivity

5+4cos(20) 0 —sin(20)
_ 1uoks 0 6 0 . (A16)
8m —sin(20) 0 5— cos(20)
and the 13 unique viscosity coefficients
L = %(117005(4@) +84c0s(20) +415), (Al7a)

H1113 = 73%(39 sin(40) + 14sin(20)), (A17D)
Hi122 = —7—/;0(3 cos(20) + 11), (A17¢)
f13s = —%(117@5(4@) +107), (A17d)
Hi212 = 9%(5 cos(20) 4+ 9), (Al7e)
1223 = —42—5;10 sin(20), (A171)
11313 = —9%(13 cos(40) — 29), (A17g)
1322 = %,uo sin(20), (A17h)
1333 = %(39 sin(40) — 14sin(20)), (A171)
t2222 = TTHo, (A17))
2233 = %(3 cos(20) — 11), (A17k)
12323 = —9%(5 cos(20) — 9), (A171)
H3333 = %(117 cos(40) — 84 cos(20) + 415), (Al7m)
where py = ﬁ ﬂ'lﬁo Other non-trivial viscosity

terms are specified by the tensor symmetry identities

(A18a)
(A18Db)

Hijmn = Hjimn = Hjinm = Hmnij,

Nijmn(sij = /Ufijmnamn = ,Ufijm,n(sijmn = 07
where 0;jmn is 1 if i+ = j = m = n and 0 otherwise. All
other unspecified p;;5¢ elements are zero.

Appendix B: Equilibrium Boltzmann Equation

In this appendix section, we extend the derivation of
the equilibrium Boltzmann Equation found in [52], to
include arbitrary external potentials.

At thermal equilibrium, the left-hand side of the Boltz-
mann equation is given as

D B oV (r) 0
Ditfo (8t+ i% — m 8ui>f0 (B1)
oV 0
5o (g uo- 20 D g m2)

where fj is of the form in Eq. (A2) and ng is determined
by the form of V(r), so that

2

_ 2, (M 3/2)) _ gmu
In fo =5 ln (%) —|—ln(no,6 ) BT (BY)
The material derivative is defined as
D 0
— = — B4
i = g T Vid (B4)



so that the D/Dt operator can be rewritten as

=z = I T A B
Dt Dt + U0 m  Ou; (B5)
We now treat the derivatives term by term.
First considering u;0; In fy, we have
3 mu?
u;0; In fo = u;0; [111(”0) 3 In(B) - 8 5 ]
23

= u;0; In(ng) + <Bm; — 2> u;0; InT

+ Bmuinain. (BG)

As for D1n fy/Dt, we first consider the equations of con-
servation at thermal equilibrium which read

D

Elnno = —(9]'Uj,
D 2
EIHT = —gajUj,
D kT

U= —
Dt
The material derivative of In fy then becomes

D D 3 mu?

Htlnfo =D In(no) + §ln(ﬁ) -p 5

(B7a)
(B7b)

81' IH(TL()T) - %81‘/(7') (B?C)

m

= —gmuzajUj — Pu;0;V(r)

— u;0; In(ng) — u;0; InT. (B8)
Finally, the term explicit in the potential is

~O0iV(r)0lnfo _ BOV(r) ou?

m ou; 2 ou;

Putting all these terms together, we get

D - D 81‘/(7“) 0
ﬁlnfo = Elﬂfo +u;0;In fo — T ou

= |:— émuzc'“)jUj — ul@ 1HT

= pu;0;V(r). (B9)

In fo

3
— Bu;0;V(r) — u;0; 111(”0)]

+ ﬂmuiujﬁin + u;0; h’l(no)

- mu? 3

(B10)

+ ﬂuiaiv("“)] )
which gives the final result

D mu? 5
—1 = - = 0; InT
Dy o ('6 2 2) uids In

3

This shows that the external potential does not affect the
Chapman-Enskog derivation of transport tensors.

Appendix C: Normal Mode Solutions

The normal mode solutions of the fluid are obtained
by diagonalizing the matrix in Eq. (6), for which the
eigenvectors will be the mode amplitudes, and eigenval-
ues the associated mode frequencies. To obtain these
modes analytically, we first notice that the structure of
A in Eq. (8) implies that §, is uncoupled from all other
variables, leaving us to diagonalize the matrix

0 0 c¢cK 0
B 0 i1 iAiz O
0 0 2cK il

The frequency solution for &, is then immediately read
off as w, 2 = iA22. The remaining solutions are obtained
by solving the characteristic polynomial of €2,

w* —w3i(T + Apg + Asz)
—w? [(A11A33 — AZ) + (A1 + Asz) + C?idKQ]

+ wi |: (A11A33 — Aio’) r
2 2 2 2

+ T A (cgd — 202) K?=0. (C2)
Solutions to the fourth order polynomial above can be
obtained, to first order in §, by using the ansatz w =
+cqa K + dw for propagating solutions, and w = dw for
damped (purely imaginary) solutions, with dw oc A;;,T.
Then plugging these ansatze into Eq. (C2) and expanding
to first order in A;;, I, leads to the mode frequencies in
Egs. (10). The associated mode vectors of Egs. (13), (14),
(16) and (18) are subsequently obtained by Cramer’s
rule.
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