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The ionization of atoms with sequences of attosecond pulses gives rise to excited ionic states that
are entangled with the emitted photoelectron. Still, the ionic ensemble preserves some coherence
that can be controlled through the laser parameters. In helium, control of the 2s/2p He+ coherence
is mediated by the autoionizing states below the N = 2 threshold [Phys. Rev. Res. 3, 023233
(2021)]. In the present work we study the role of the resonances both below and above the N = 3
threshold on the coherence of the N = 3 He+ ion, in the attosecond pump-probe ionization of
the helium atom, which we simulate using the newstock ab initio code. Due to the fine-structure
splitting of the N=3 He+ level, the ionic dipole beats on a picosecond timescale. We show how,
from the dipole beating, it is possible to reconstruct the polarization of the ion at its inception.

PACS numbers: 32.80.Qk,32.80.Fb,32.80.Rm,32.80.Zb

I. INTRODUCTION

The typical spectrum of a poly-electronic atom com-
prises several excited bound and metastable states. In
the vicinity of an ionization threshold, many of these
states can be coherently populated by short light pulses,
giving rise to electronic motion that unfolds on a sub-
femtosecond timescale [1–3]. The advent of table-top
sources of attosecond light pulses has unlocked the door
to the observation and control of such electronic motion
at its natural time scale [1, 4–10]. Once the production
of attosecond pulses became routine, attosecond XUV-
pump IR-probe photoelectron spectroscopies emerged as
a powerful tool to explore attosecond dynamics at the
nano [11, 12] and the molecular scale [13–17]. The gener-
ation of coherent superposition of electronic states above
the ionization threshold bears the promise of quantum
control in the electronic continuum. However, since ions
and photoelectrons normally form entangled pairs, either
of the photofragments is only partially coherent, with
their coherence depending on the parameters of the ion-
ization process [18, 19].

In a recent work, we examined how the autoionizing
states below the N = 2 threshold of the helium atom
could be leveraged to control the relative coherence be-
tween the 2s and 2p states of the He+ ion [20]. In this
work, we explore the entangled character of the wave-
function for a system comprised of the He+ parent ion in
the N = 3 manifold and the photoelectron that emerge
from the ionization of a helium atom. We also describe
a protocol to reconstruct the density matrix of the He+

ensemble from the measurement of the picosecond time-
scale beatings of its dipole moment, which are caused by
the fine splitting of the N = 3 level.

On a femtosecond timescale, the effects of spin-orbit
interactions do not manifest themselves, and hence the
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coherence between He+ ionic states with the same prin-
cipal quantum number appears as a permanent polar-
ization of the ion. The ion can be produced in such a
polarized state by triggering ionization in the presence of
a strong infrared dressing pulse with a pulse of extreme
ultraviolet radiation with duration shorter than half the
period of the IR pulse [21, 22]. Alternatively, it is possi-
ble to exploit the interference between different resonant
ionization paths [20, 23, 24].

Resonant states play a crucial role in multiphoton ion-
ization since, in contrast to photofragments, they are
fully coherent states and they have long lifetimes com-
pared with direct-ionization photoelectron wavepackets,
which leave the interaction region in a matter of few tens
of attoseconds [25–30]. Such long-lived metastable states
provide resonant multi-photon pathways for ionization in
atoms [31, 32], ultrafast decay of electrons [33] and dis-
sociative photoionization in molecules [34, 35].

A variety of experiments have studied autoionizing res-
onances in an attempt to resolve the electron-correlation
driven dynamics that underpins Auger decay [26, 30, 36–
38]. In the present study, we examine the interplay be-
tween the autoionizing states below and above the N = 3
threshold in multiphoton ionization paths that are reso-
nant both in the intermediate and in the final states. We
do so by comparing the relative coherences of the He+ 3s,
3pm, and 3dm states computed either in the absence or in
the presence of the resonances above the N=3 threshold.

As in the case of the N = 2 manifold [20], in the non-
relativistic limit, N = 3 He+ parent-ion states are de-
generate, and hence their coherence results in a perma-
nent dipole moment. On a timescale of few picosecond,
the dipole moment fluctuates even in absence of exter-
nal fields, due to fine-structure terms, and in particular
to spin-orbit interaction [39]. In contrast to the N = 2
case, however, the reconstruction of the He+ density ma-
trix from the sole observation of the system’s dipole fluc-
tuations cannot be complete. Indeed, the coherence be-
tween the 3s and 3dm states does not result in any dipole
emission. Here we describe an algorithm to maximally
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reconstruct the initial ionic coherences from the optical
observations alone.

The paper is organized as follows. Section II offers an
overview of the ab initio theoretical and numerical meth-
ods used to compute, at the end of a pulse sequence, the
photoelectron distribution entangled with each ion. Sec-
tion III describes the pump-probe scheme used for the
simulations. Section IV discusses the partial photoelec-
tron distributions as well as the corresponding reduced
density matrix for the ion. Section V describes the re-
construction of the ionic coherence from the picosecond
beating of the ion dipole. Section VI summarizes the
conclusions and perspectives of this work. Finally, Ap-
pendix A describes in detail the algorithm used to recon-
struct, from the observation of the electric dipole beat-
ings, the off-diagonal elements of the ion density matrix.

II. THEORETICAL METHODS

This section describes the calculation of bound and
single-ionization states of the helium atom using the
close-coupling approach [25, 40, 41]. The theory and
implementation of a time-dependent close-coupling code
dedicated to helium, and of the newstock code, for gen-
eral polyelectronic atoms, is described elsewhere [20, 42,
43]. Here we offer a brief summary of the protocols im-
plemented in newstock, adapted to the helium atom.

A. Structural calculations

The close-coupling (CC) representation of a single ion-
ization function Ψ(x1, x2; t) for the helium atom is,

Ψ(x1, x2; t) =
1− P̂12√

2

∑
Γα

ΦΓ
α(x1; r̂2, ζ2)ϕΓ

α(r2; t) +

+
∑
Γi

χΓ
i (x1, x2)cΓi (t). (1)

where xi = (~ri, ζi) is the spatial-spin component of the i-

th electron, P̂ swaps the coordinates of the two electrons,
ΦΓ
α(x1; r̂2, ζ2) is a channel function in which the orbital

and spin angular momentum of the ion are coupled to
the photoelectron’s,

ΦΓ
α(x1; r̂2, ζ2) = RNαLα(r1)YLMLα`α(r̂1, r̂2)ΘSΣ(ζ1, ζ2),

(2)
and ϕΓ

α(r2; t) is the radial component of the photoelec-
tron wave function in channel (Γ, α) [28, 30, 44].

In (2), Rn`(r) is an hydrogenic radial wavefunction
with principal quantum number n, orbital angular mo-
mentum `, for a system with nuclear charge Z = 2. The
functions Ycγab (r̂1, r̂2) and ΘSΣ(ζ1, ζ2) are bipolar spher-
ical harmonics and two-electron spin functions [45], re-

spectively,

YLM`1`2 (r̂1, r̂2) =
∑
m1m2

CLM`1m1,`2m2
Y`1m1

(r̂1)Y`2m2
(r̂2),

ΘSΣ(ζ1, ζ2) =
∑
σ1σ2

CSΣ
1
2σ1,

1
2σ2

2χσ1(ζ1)2χσ2(ζ2),
(3)

where Y`m(r̂) are spherical harmonics, 2χσ(ζ) = 〈ζ|σ〉 =
δζσ are spin- 1

2 functions, and Ccγaα,bβ are Clebsch-Gordan

coefficients [45].
The collective symmetry label Γ stands for the quan-

tum numbers of the two-electron system, i.e., the total
parity Π and the total orbital and spin angular momenta
and projections L, S, Σ, and M , whereas α identifies the
parent-ion shell, NαLα, and the photoelectron orbital an-
gular momentum `α. Finally, the functions χi(x1, x2) are
symmetry-adapted 2-electron configurations state func-
tions (CSF) 2S+1(n1`1, n2`2)LM with principal quantum
numbers ni and angular quantum numbers `i restricted
to ni ≤ Nmax, `1 ≤ Lmax.

The CC wave functions (1) and the time evolution
of helium from an initial bound state as a result of
the interaction with external fields are computed with
newstock [41, 42]. In this work, the time dependent
Hamiltonian H(t) comprises the electrostatic Hamilto-
nian H0 and the velocity-gauge interaction Hamiltonian
HI ,

H(t) = H0 +HI(t)

H0 =
p2

1 + p2
2

2
− 2

r1
− 2

r2
+

1

r12

HI(t) = α ~A(t) · (~p1 + ~p2),

(4)

where ~A(t) is the vector potential and α is the fine-
structure constant, α = e2/h̄c ≈ 1/137 [46]. Unless
stated otherwise, atomic units and the Gauss System are
used. The reduced radial function of all one-electron or-
bitals, rϕ(r), is expanded in B-splines [40, 47, 48].

In this work, two CSF basis are used. A first smaller
set, referred to as case 1, comprises all the configurations
of the form n`i`′ with n ≤ 3, ` ≤ 2, `′ ≤ 5, and the index
i runs over all the radial functions in the quantization
box (several hundred), which do not necessarily resemble
hydrogenic bound orbitals. This first basis is unable to
represent any resonance above the N = 3 threshold, as
these are known to originate from configurations of the
form n`n′`′, with n ≥ 4 [49]. A second larger basis,
referred to as case 2, comprises all the configurations of
the form n`i`′ with n ≤ 4, ` ≤ 3, `′ ≤ 5, and the index i
has the same meaning as above. This second basis does
give rise to resonances between the N = 3 and N = 4
thresholds, most of which have dominant configuration
4`n′`′.

This energy interval includes also a couple of so-called
intruder states of the form 5`5`′ [40, 49, 50]. These in-
truder states, however, fall close to the N = 4 threshold,
which is not reached by our pump-probe scheme, and
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hence are not expected to play any major role here. Since
the He+ ion has only one electron, within the electrostatic
approximation, its eigenstates, numerically computed us-
ing the ATSP2K package [51], are virtually exact.

In the present work we will focus our attention on the
effects of the probe pulse to the lowest perturbative or-
der. For this reason, for both cases, we will consider only
the total symmetries 1Se, 1Po, and 1De, using 1Fo only
to check the convergence of our simulations. Notice that
we are not including any 1Pe, 1Do, or 1Fe state in the
basis because non-natural symmetries (i.e., whose parity
differs from the total angular momentum parity) cannot
be populated by collinearly polarized light pulses start-
ing from an initial state with magnetic quantum number
M = 0.

Each symmetric space comprises a localized channel
constructed by adding, in all possible ways, an electron
to a CSF configuration in any of the 3s, 3p, 3d, 4s, and 4p
active orbitals. There are 20 (10), 20 (8), 21 (7) and 12(2)
such states for the 1Se, 1Po, 1De and 1Fo symmetries for
the case-2 (case-1) basis, respectively. To represent the
radial part of both bound and continuum atomic orbitals,
we use B-splines of order 7 with asymptotic separation
between consecutive nodes of 0.4 a.u., up to a maximum
radius of 300 a.u. With this choice, each partial-wave
channel comprises approximately 1285 states.

The newstock package builds the field-free Hamilto-
nian matrix HΓ

ij = 〈ΨΓ
i |Ĥ0|ΨΓ

j 〉 for each of the four main

symmetries Γ =1Se, 1Po, 1De, 1Fo where ΨΓ
j is any of

the functions in the generalized close-coupling space with
symmetry Γ, as well as the reduced dipole matrix ele-
ments 〈ΨΓ

i ‖P1‖ΨΓ′

j 〉 between S and P, P and D and be-
tween D and F states. For case 1 (no N = 4 channels)
the electronic configuration basis comprises, beyond the
minimal set of close-coupling channels N`ε`′ with N ≤ 3,
also the full-CI set of configuration n`n′`′ constructed
from all the localized orbitals with orbital angular mo-
mentum `, `′ ≤ 5, and total angular momentum L up to
3. The overall size of the 1Lπ spaces, with L = 0, 1,
2 and 3, are 4766, 7147, 7946, and 7948, respectively,
for a total size of 27807. The energy of the ground
state is Eg = −2.8866 308 a.u. For case 2, the basis
includes also the N = 4 close-coupling channels, which
brings the size of the 1Lπ spaces with L = 0, 1, 2 and
3, to 7940, 12700, 15090, 15093, respectively (total size
50823). The energy of the ground state changes only
marginally, Eg = −2.8873 340 a.u. This value is to be
compared, on the one side, with the Hartree-Fock limit,
Eg,HF = −2.861 680 a.u. [52], and on the other side with
the accurate limit for `max = 3, which is the maximum
orbital angular momentum represented in 1Se configu-
rations, in our calculations, Eg,`≤3 = 2.903 321 a.u. [52].
This means that our ground state energy includes about
62% of the theoretical maximum for `max = 3. This dis-
crepancy is to be mostly attributed to the convergence
in the radial basis which, for the localized configurations
n`n′`′, is restricted to n, n′ ≤ 3, for case 1 and n, n′ ≤ 4,
for case 2.

B. Temporal Evolution

The initial ground state is obtained by diagonaliz-
ing the Hamiltonian in the 1Se sector of the full close-
coupling space. The time evolution of the atomic wave
function, from the initial ground state, under the in-
fluence of the external pulses is governed by the time-
dependent Schrödinger equation (TDSE),

i∂t|Ψ(t)〉 = H(t)|Ψ(t)〉, (5)

which is integrated numerically in time steps of the du-
ration of approximately dt = 0.033 a.u., using a unitary
second-order exponential split operator. The propagator
includes also the effect of a complex absorption potential
(CAP), confined to the last 50 Bohr Radii of the spher-
ical quantization box, which prevents unphysical reflec-
tions from the box walls,

|Ψ(t+ dt)〉 = UCAP(dt)U(t+ dt, t)|Ψ(t0)〉
U(t+ dt, t) = e−iH0 dt/2e−iHI(t+dt/2) dte−iH0 dt/2

UCAP(dt) = e−iVCAPdt

VCAP = −ic
2∑
i=1

θ(ri −RCAP)(ri −RCAP)2,

(6)

where θ(x) is the Heaviside step function [θ(x) = 0 if x <
0, θ(x) = 1 if x > 0], c is a positive real parameter, c =
5 ·10−4, and RCAP = 250 a.u.. The reflection by the CAP
itself and by the box boundary are both negligible. The
unitary evolution under the action of the dipole operator
is evaluated with an iterative Krylov method [25].

C. Partitioning of the Time-Dependent
Wavefunction

The photoelectron component of the wavefunction
grows rapidly in size. Indeed, in 100 fs, the typical size of
an attosecond pump-probe time-delay scan, a photoelec-
tron with asymptotic energy of about 1 a.u. (' 27 eV)
covers a distance of more than 4000 Bohr radii. In or-
der to recover the spectrum of the photoelectron, the
whole wavefunction must be preserved. On the other
hand, once the photoelectron has reached a distance of
few hundred atomic units, the coupling between different
channels is negligible and hence the electron propagates
in what is essentially a pure monopolar electrostatic po-
tential plus the potential due to the external radiation
field. In these conditions, an explicit numerical represen-
tation of the whole photoelectron wavepacket is highly
impractical. Luckily, at large distances, we can exploit
a useful approximation, which we describe below. The
propagator from an initial time t0 to a final time t, reads

U(t, t0) = T̂ exp

[
−i
∫ t

t0

dt1H(t1)

]
, (7)
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where T̂ exp is the time-ordered exponential [53]. This
propagator can be factorized using Magnus expan-
sion [54],

U(t, t0) = exp [−iΩ(t, t0)] , (8)

where

Ω(t, t0) =

∞∑
n=1

Ωn(t, t0),

Ω1(t, t0) =

∫ t

t0

H(t1)dt1

Ω2(t, t0) =
1

2i

∫ t

t0

dt1

∫ t1

t0

dt2 [H(t1), H(t2)]

· · ·

(9)

When the photoelectron is sufficiently far from the as-
sociated ion, the time evolution of the electron and that
of the ion become independent. The Hamiltonian of the
photoelectron, in particular, becomes

H(t) =
p2

2
− 1

r
+ α ~A(t) · ~p. (10)

The commutator between the field-free component of
the photoelectron Hamiltonian and the interaction term
scales as 1/r2, and hence, for a photoelectron sufficiently
far from the ion, all higher-order terms in the Magnus
expansion become negligible,

U(t, t0) ≈ exp

[
−i
∫ t

t0

H(t)dt

]
=

= exp

[
−i
(
p2

2
− 1

r

)
(t− t0)− i~p ·

∫ t

t0

~A(t)dt

]
.

(11)

Whenever the integral of the vector potential between
an initial and a final time vanishes, therefore, the inter-
action term itself vanishes, and hence the photoelectron
propagator can be accurately approximated by the field-
free propagator alone. We take advantage of this cir-
cumstance in our simulations because, about every half
period of the MIR field, ti, the integral

∫∞
ti
A(t′)dt′ does

vanish. At these times, we split the wavefunction into
a mid/short-range (r . 150 a.u.) and a mid/long-range
component (r & 150 a.u.),

|Ψ0,SR(t0)〉 = |Ψ(t0)〉
|Ψi(ti)〉 = |Ψi,SR(ti)〉+ |Ψi,LR(ti)〉,
|Ψi,LR(ti) = P |Ψi−1,SR(ti)〉,
|Ψi,SR(ti) = (1− P )|Ψi−1,LR(ti)〉

(12)

where P extracts the long-range distance of the wave-
function. In coordinate representation, in particular

〈x1, x2|P =
∑
i=1,2

Φ

(
ri −RMASK

σMASK

)
〈x1, x2|, (13)

where Φ(x) is the normal cumulative distribution func-

tion, Φ(x) = (2π)−1/2
∫ x
−∞ e−t

2/2dt. By choosing

RMASK = RBOX/2, and 1 � σMASK � RMASK, we en-
sure that ΨLR(ti) is non negligible only at large distances
from the ion, that it does not acquire unphysical incom-
ing components (and hence, that under the subsequent
evolution it remains at large distance from the ion), and
that |ΨSR(ti)〉 is negligible in the last third or so of the
quantization box.

As explained above, as far as the wavefunction long-
range components extracted at the times ti are con-
cerned, to all practical purposes, the field-free and the
interaction Hamiltonians commute, and hence the effect
of the interaction Hamiltonian itself vanishes. Each of
these long-range components, therefore, can be propa-
gated analytically to the end of the pulse, t, by means of
the field-free evolution operator,

|Ψi,LR(t)〉 = e−iH0(t−ti)|Ψi,LR(ti)〉. (14)

Furthermore, once the external pulses are over, the last
residual short-range component ΨN,SR(tN ) can also be
propagated in the same way,

|ΨN,SR(t)〉 = e−iH0(t−tN )|ΨN,SR(tN )〉. (15)

This procedure allows us to carry out simulations for long
pulses in comparatively small quantization boxes. These
propagation can be carried out exactly, since in our ap-
proach we operate in a spectral basis.

D. Asymptotic Observables

To determine the probability amplitude, in interaction
representation, AA;~kσ for the coincidence detection of the

parent ion in the (MA, ΣA) state A and of the photo-

electron with asymptotic momentum ~k, and with spin
projection σ, we project the full wavepacket |Ψ(t)〉 on a
complete set of scattering states,

AA;~kσ = ei(EA+ε)t〈Ψ−
A;~kσ
|Ψ(t)〉, (16)

where |Ψ−
A;~kσ
〉, normalized as 〈Ψ−

A;~kσ
|Ψ−
B;~k′σ′〉 =

δABδ
(3)(~k − ~k′)δσσ′ , is a scattering state in which the

parent ion and the photoelectron are not angularly or
spin coupled, which fulfills incoming boundary condi-
tions [25, 55, 56]. We can now use the partitioning of
the wavefunction in a last short-range component and
many long-range components,

|Ψ(t)〉 = |ΨN,SR(t)〉+

N∑
i=1

|Ψi,LR(t)〉, (17)

to compute the amplitude as

AA;~kσ = ei(EA+k2/2)tN 〈Ψ−
A;~kσ
|ΨN,SR(tN )〉+

+

N∑
i=1

ei(EA+k2/2)ti〈Ψ−
A;~kσ
|Ψi,LR(ti)〉.

(18)
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In the simulation of a pump-probe experiment, the
wave function depends parametrically on the pump-
probe delay τ , |Ψ(t; τ)〉, and so do the ionization am-
plitudes, AA;~kσ(τ). The reduced density matrix for the

parent-ion ensemble, ρAB(τ), is obtained tracing out the
photoelectron states [57],

ρAB(τ) =
∑
σ

∫
d3kAA~kσ(τ)A∗

B~kσ
(τ), (19)

In practice, we never evaluate the three-dimensional in-
tegral in Eq. (20). Instead, we directly use the ionization

amplitudes AΓ
αε(τ) = 〈ΨΓ(−)

αε |Ψ(t; τ)〉 to scattering states
with well defined total symmetry and asymptotic photo-
electron angular momentum `α and energy ε,

ρAB(τ) =
∑

ΓΓ′αβ

∫
dεAΓ

αε(τ)AΓ′∗
βε (τ), (20)

where the sum over α and β are restricted to the channels
generated by coupling the ionic states A and B to the
same orbital angular momentum ` = `α = `β .

The coherence between ionic states [57, 58] is

gAB(τ) =
|ρAB(τ)|√

ρAA(τ)ρBB(τ)
. (21)

When considering ionic states with the same principal
quantum number, within the electrostatic approxima-
tion, the density matrix ρAB(τ) is independent of time
even in the Schrödinger representation. Due to the fine-
structure terms in the Hamiltonian, Hfs, however, even
the block of the density matrix with a same principal
quantum number undergoes slow periodic oscillations, on
a picosecond timescale, reproduced by the unitary trans-
formation

ρ(t; τ) = e−iHfstρ(τ)eiHfst. (22)

By the same token, the ion dipole moment is not sta-
tionary either, exhibiting fluctuations at the Bohr fine
frequencies of the ion, 〈µz(t; τ)〉 = Tr[µzρ(t; τ)]. In this
work, we make a semi-empirical approximation to the
fine-splitting Hamiltonian by assuming that the split lev-
els originating from a given principal quantum number
n are expressed in terms of the corresponding subspace
{|n`mσ〉}, with ` < n, |m|≤ `, σ = ± 1

2 . With this ap-
proximation, we can write, for the He+ ion,

Hfs '
∑

n`mm′σσ′jµ

|n`mσ〉 〈n`m′σ′| ×

× Cjµ
`m, 12σ

(
Eπnj +

2

n2

)
Cjµ
`m′, 12σ

′

(23)

where Eπnj is the energy of the sublevel with principal
quantum number n, total angular momentum j and par-
ity π = (−1)`. The time evolution of the He+ state in the
N = 3 manifold is discussed more in detail in App. A.

III. SIMULATION SCHEME

Figure 1 illustrates the energy scheme of the system,
in relation to the transitions above the N = 3 threshold
promoted by the XUV-pump and the IR-probe pulses,
for the two cases examined in this work, either excluding
(case 1) or including (case 2) the N = 4 close-coupling
channels. The comparison between these two cases allows

FIG. 1. Energy Scheme for the two cases examined in this
work. In case 1, only resonances leading up to N = 3 ion-
ization threshold are included, whereas case 2 comprises also
the resonance series above the N = 3 and converging to the
N = 4 threshold. In either case, an XUV pump pulse, cen-
tered just above the [011]+3 DES, coherently populates several
resonances below N = 3, as well as directly ionize the atom to

the N
′
Lε

′
` channels. An IR probe pulse subsequently induces

transitions from the DES to the N = 3 channels, whose in-
terference with the above-threshold amplitudes promoted by
the XUV pulse results in the ion polarization. Due to the
presence of DES above N = 3, case 2 features differs from
case 1 in three main respects. First, the one-photon ioniza-
tion above N = 3 is itself altered by the resonances. Second,
it supports radiative transitions between DES below and DES
above the threshold. Third, it accounts for radiative transi-
tions from the DES above N = 3 to the N = 3 ionization
channels themselves. The effect of these additional interfer-
ences depend on the lifetime of and the Bohr frequencies with
the N = 4 resonances, and hence they can be revealed in the
optical response of the ion as a function of the time delay
between the pump and the probe pulses.

us to highlight the role of the Feshbach resonances above
threshold in influencing the polarization of theN = 3 ion.
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A weak single attosecond XUV pulse excites the neutral
helium atom from the ground state to the 1Po contin-
uum in the energy interval between the first autoionizing
states in the series converging to the N = 3 threshold
up to the N = 4 threshold. In case 1, the configuration
basis does not give rise to any autoionizing state above
N = 3, whereas case 2 features several resonances from
the series converging to N = 4, starting from ∼0.5 eV
above the N = 3 threshold.

The autoionizing states in helium exhibit a large static
correlation, i.e., most of them are given by a combina-
tion of multiple configurations with comparable coeffi-
cients. For this reason, they cannot normally be identi-
fied by any single dominant configuration. Still, approx-
imate quantum numbers alternative to the hydrogenic
ones can often be used to meaningfully label them. Sev-
eral such schemes have been proposed. Beyond the orig-
inal Fano’s classification [59], it is worth mentioning the

N (K,T )An scheme [60], the hyperspherical scheme [61],
the Stark scheme [N1N2m]An [49], and the molecular
scheme (nλnµ)A [62, 63]. Here we will use the Stark
scheme, whose quantum numbers have an intuitive inter-
pretation: in the doubly excited states (DES) formed by
two electrons with principal quantum numbers n1 and
n2 � n1, the outer electron acts as the source of an adi-
abatic uniform electric field on the inner electron. Due
to the anomalous Stark effect, the n1` states split into
terms with higher or lower energy, depending on how
the inner electron is polarized towards or away from the
satellite electron. The Stark states of the inner electron
are classified with the parabolic quantum numbers N1,
N2, and m [64]. Finally, the DES is uniquely identified
by its total symmetry (multiplicity, total orbital angu-
lar momentum, and parity), by the principal quantum
number n of the satellite electron, and by an additional
quantum number A = ±, borrowed from the molecular
scheme, which specifies whether the DES wavefunction
at r1 = r2 has an antinode or a node, respectively.

As discussed in [20], where ionization in the proximity
of the N = 2 threshold was considered, a single-photon
transition cannot give rise to an asymmetrically polar-
ized ion. Instead, multiphoton transitions are necessary
to induce and control any coherence in the N = 2 He+

ion. The case of the ionization above the N = 3 thresh-
old, examined here, is different in that the 3s and the 3d
states have the same parity. Hence, also one-photo tran-
sitions can result in the formation of a partly coherent
state. Even in this case, however, the parent ion is not
electrically polarized.

To polarize the parent ion, it is still necessary to asso-
ciate the XUV pulse with additional control fields. In our
simulation, we include an 800 nm IR-probe pulse with a
controllable delay with respect to the XUV pulse. The
IR pulse promotes non-sequential transition paths to the
N = 3 ionization channels, when the pump and probe
pulses overlap, as well as sequential transition paths that
have intermediate DESs in that energy region. Thanks
to several interfering multi-photon ionization-excitation

paths, a coherence between degenerate opposite-parity
ionic states now does emerge.

The XUV pump pulse employed in the simulation
has a Gaussian temporal profile, with central frequency
h̄ωXUV = 72.0 eV (2.646 a.u.), a duration of 970 as (full
width at half maximum of the envelope of the intensity,
fwhmXUV) with the bandwidth of 1.88 eV, and a peak
intensity IXUV=0.1 TW/cm2. The IR probe pulse has
a cosine-squared temporal profile, with central frequency
h̄ωIR = 1.55 eV (0.057 a.u.), an entire duration of 10.66 fs
(fwhmIR ≈3.77 fs), and peak intensity IIR =1 GW/cm2.

In this calculation, the photoionization cross sections
from the ground state to the resonant region below the
N = 3 threshold is virtually the same for case 1 and
case 2, as shown in Fig. 2 in Sec. IV below. We assume,
therefore, that despite the missing correlation energy and
orbital-relaxation energy in case 1 (we expand the wave-
function in hydrogenic orbitals for the ion, rather than
self-consistent-field orbitals for the neutral), our pho-
toionization results are qualitatively accurate.

IV. RESULTS

In this section, we analyze the effect of above-threshold
resonances on the loss of ionic coherence between oppo-
site parity states. We compare the two cases, with and
without the inclusion of (N+1)Ln` resonances, with a fo-

cus on the ionization channels N
′

Lε
′

` above N ′ = 3. The
XUV is broad enough to coherently populate multiple
resonances below and above the N = 3 ionization thresh-
old. The central energy of the XUV pulse is chosen not
to populate any state below the N = 2 threshold, where
resonances have a large cross-section. The one-photon
photoionization amplitudes for the two basis are com-
pared in Figure 2; resonances above N = 3 are present in
one case (red dashed line) and absent in the other (blue
line). The parameters of the resonances below the N = 3
case change only slightly between the two cases.

FIG. 2. Comparison of the energy-resolved total photoion-
ization cross-section of the helium atom between the N = 2
and N = 4 threshold, computed with (dashed red line) and
without (solid blue line) the N = 4 close-coupling channels.
1Po Doubly excited states, which manifest themselves as Fano
profiles in the photoionization cross section, are identified here
by their Stark quantum numbers [N1N2m]An .
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In both cases, the XUV pulse populates the DESs be-
low the N=3 threshold, which the IR probe pulse can
probe before their Auger decay. The combined absorp-
tion of an XUV photon and the additional exchange of
IR photons creates a metastable wavepacket that evolves
in time with the beating frequencies ωij = Ei − Ej be-
tween the multiple autoionizing states coherently popu-
lated by the pulse sequence. When the atom is ionized,
these beatings can be found imprinted in the time de-
lay scan of the photoelectron distribution. In case 2,
where we populate resonances above as well as below
the N = 3 threshold, we observe additional beating fre-
quencies among N = 4 resonances as well as between
resonances below and above the N = 3 threshold.

A combination of attosecond XUV-pump and an IR-
probe pulses cause the shake-up ionization of helium
through several multiphoton paths, some of which in-
volve intermediate resonances. The interference between
direct and multi-photon ionization paths gives rise to new
partial coherences between ionic states, compared with
those elicited by the XUV pulse alone. The ensemble
of He+ ions emerging from the ionization with principal
quantum number N = 3, in particular, exhibits coher-
ence between the 3s and 3p (m = 0) states, the 3p and
3d (m = 0, 1) states, and the 3s and 3d states. Of these
coherences, however, only those between states with op-
posite parity contribute to the expectation value of the
ionic dipole. From a measurement of the optical response
of the system alone, therefore, it is not possible to re-
construct the density matrix of the ion ensemble to the
full. The framed panels in Figure 3 show the coherence
terms g3p1,3d1(τ, t) (panels a, d), g3p0,3d0 (panels b, e),
g3s,3p0(τ, t) (panels c, f), plotted as a function of both
the pump-probe delay τ (on a femtosecond timescale)
and the real-time t (on a picosecond time scale), com-
puted in case 1 (N = 4 channels excluded, panels a, b, c)
and in case 2 (N = 4 channels included, panels d, e, f).

At the low intensity of the IR considered here (IIR =
109 W/cm2), the dominant cause for the coherence be-
tween even and odd states is the overlap of the di-
rect one-photon (XUV) amplitude and the two-photon
(XUV+IR) ATI amplitudes above the N = 3 threshold.
It is natural, therefore, that all the coherences are mod-
ulated, as a function of the pump-probe delay, at twice
the frequency of the IR, throughout the time delay scan.
When the two pulses overlap, the non-sequential path can
contribute to the two-photon transitions, which justifies
the stronger amplitude of the modulation. When the two
pulses do not overlap, on the other hand, the absorption
of an IR photon can only take place from one of the
autoionizing states either above or below the threshold,
and hence the coherence exhibits weaker modulations. In
fact, the quite stronger contrast of the coherence in the
sequential regime in case 2 compared to case 1 suggests
either that the two-photon amplitude mediated by the
[021]+4 state is stronger than the one mediated by [011]+4 ,
or that the ATI transitions mediated by the [011]+n DESs
are much stronger in the presence, in the final states, of

the N = 4 S and D resonances [50]. The second most
prominent change observed when the N = 4 channels are
included is the appearance of a prominent bump in the
coherence for time delays between 10 fs and 20 fs, and a
clear dip in the coherence around τ = 9 fs. We attribute
this effect to the multiphoton transitions mediated by the
[021]+4 and [021]+5

1Po DESs. Indeed, these states have
lifetimes of 6.7 fs and 11.2 fs, respectively [49], which
compare well with the duration of the sequential signal
in Fig. 3d-f. The minimum at 9 fs is arguably due to de-
structive interference between the polarization effect of
the ion-induced by the tail of the IR and the resonant
multiphoton transition.

The top row in Fig. 3 shows the asymmetry of the
ionic charge density ρ(x, 0, z; τ)− ρ(x, 0,−z; τ), immedi-
ately after the end of the pulses, as a function of the time
delay, where ρ(x, y, z; τ) is the charge density, and the ex-
ternal fields are polarized along z. In the figure, the x
and z axes point up and right, respectively. This quantity
illustrates other two aspects of the control of ion coher-
ence. When the two pulses overlap, the inclusion of the
N = 4 resonances does not have any major effect. This
circumstance confirms that, up to ∼5 fs, the polarizing
effect of the IR probe pulse dominates. At higher val-
ues of the delay, in absence of the N = 4 resonances the
density asymmetry experiences only minor changes. On
the other hand, when the N = 4 resonances are included,
the density asymmetry at the peak of the coherence re-
vival changes drastically, inverting its polarization twice
between τ =14, 15, and 16 fs.

As discussed in Sec. II, when the fine structure is taken
into account, the N = 3 states of the He+ ion are partly
resolved in energy, and hence the charge distribution of
the subset of the ions with N = 3 is no longer stationary
[cmp Eq. (22)]. Figure 4 illustrates the relative position
of the N = 3 sublevels, and the characteristic picosecond
duration of the beatings they induce. Samples of the
charge density computed in case 2, in the case of non-
overlapping pulses, show how the polarization can change
substantially as a result of the angular momentum pre-
cession. The 2Se1

2

−2 P o3
2

and 2P o1
2

−2 De
3
2

splittings are

responsible for a periodicity of about 20 ps in the dipole
signal, whereas the 2P o3

2

−2 De
5
2

splitting causes a longer

beating, with a period of about 60 ps.
While coherence is not directly measurable, the dipole

moment, closely related to coherence between states of
opposite parity, is. Figure 5 shows the ionic dipole as
a function of pump-probe delay and real-time, in both
case 1 (panel a) and case 2 (panel b). As commented
above, the dipole fluctuates as a function of real-time
with two dominant frequency components, with a pe-
riod of ' 20 ps and ' 60 ps. When the pump and
probe pulses overlap, the ' 60 ps period dominates. A
similar phenomenon was observed in the dipole of He+

in the N = 2 level, in pump-probe simulations with a
much more intense IR pulse, where a clear checkerboard
structure appeared in the dipole spectrum, with indepen-
dent time and time-delay beatings [20]. Here, this simple
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FIG. 3. Partial coherence between states of the He+ ion with opposite parity and contiguous orbital angular momentum,
g3p1,3d1(τ, t) (panels a, d), g3p0,3d0 (panels b, e), g3s,3p0(τ, t) (panels c, f), which contribute to the ionic dipole. Left panels (a,
b, c) correspond simulations that exclude the 4`ε′` close-coupling channels, and hence that does not account for the contribution
from the resonances above the N = 3 threshold (case 1). Right panels, on the other hand, show the same quantities computed
by including the contribution of the 4`ε′` close-coupling channels, and of the associated above-threshold resonances (case 2). The
images on top illustrate the asymmetry of the ionic charge distribution, with respect to the inversion of the laser polarization
axis, ρ(x, y, z) − ρ(x, y,−z), at the same selected time delays (2 fs, 4 fs, 14 fs, 15 fs, and 16 fs), in the two cases. The first two
snapshots, at 2 and 4 fs, belong to the region where pulses overlap. In this case, the ionic polarization is mostly driven by the
dressing field, and it virtually coincides in the two cases. When the probe pulse follows the pump pulse, on the other hand,
such as is the case at 14, 15, and 16 fs, the charge asymmetry is visibly different, as a result of the significant contribution of
the intermediate 4`n`′ resonances to the multiphoton transition amplitudes that populate the 3` ionic states. The color scale is
linear, with green/yellow/red representing increasingly positive, and purple/blue/black increasingly negative excess of charge.

FIG. 4. Left: Energy diagram of the five levels of the He+

states with principal quantum number N = 3. The energies,
in µeV, are computed from those tabulated in CODATA [46].
Due to this splitting, the charge distribution of the He+ ions
that emerge with N = 3 from an attosecond photoionization
event fluctuates in real time t on a picosecond timescale, as
shown on the right for a section of the density in the xy plane
at two different values of the pump-probe delay, τ = 14 fs
and τ = 15 fs. The densities are computed by including the
N = 4 channels in the calculations (case 2).

checkerboard structure is much less pronounced, due to
the comparative weakness of the IR field.

The dipole oscillates also as a function of real-time, on
a picosecond timescale. When the pulses do not over-
lap, in case 1 (panel a), when the N = 4 channels are
not included, we observe an interesting phenomenon:
in certain regions of the time/time-delay domain, e.g.,
τ ∈ [15, 22] fs, t ∈ [60, 90] ps, the phase of the femtosec-
ond beating maps linearly to that of the picosecond beat-
ing, with the period being amplified by a factor of about
6000. Such magnification, if observable, would allow one
to determine the polarization of the ionic ensemble at
its inception, with sub-femtosecond precision, from a mi-
crowave spectroscopy measurement conducted with pi-
cosecond resolution. As Fig. 5b shows, the more realistic
case in which the N = 4 channels are included is quite
less regular. While the phase of the femtosecond and
picosecond beating are not independent, the regions in
which they exhibit an approximately linear dependence
are much smaller.

Figure 6 shows the window Fourier transform of the
dipole moment with respect to the time delay,

µ̃(τw, ωτ ) =
1√

8π3σw

∫
dτ eiωττ−(τ−τw)2/2σ2

wµ(τ), (24)

where σw = 1.8 fs. The 1P o DESs below the N=3 are
common to the two cases, giving rise to beatings with fre-
quencies between 1 and 2 eV. The inclusion of the N = 4
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FIG. 5. The expectation value of the electric dipole moment
is plotted as a function of time delay and real-time for case
1(top panel) and case 2 (bottom panel). The effect of the
IR is more pronounced in case 2, since the N = 4 channels
enhance the polarization of the N = 3 ionic states. The color
scale is linear.

channel results in a much stronger signal between 15 and
30 fs, at the central IR energy (' 1.55 eV), which sup-
ports the interpretation that, at large delays, the dipo-
lar coherence comes predominantly from sequential two-
photon transitions (one XUV plus one IR) mediated by
the N = 4 resonances, and only to a smaller extent by
those mediated by the N = 3 resonances. In both cases,
we observe a loss of both structure and contrast in the
coherence at large times. The reason is that, when the
pump and probe pulses do not overlap, the coherence
between N = 3 ionic states with opposite parity is en-
tirely due to the indirect multiphoton ionization ampli-
tudes through intermediate DESs. As the delay between
the pump and the probe pulse increases, the intermediate
DESs decay, thus reducing the contrast, with the popu-
lation of the shortest-lived resonances decaying faster,
hence the reduction in the complexity of the signal. In
the case in which the N = 4 channels are included, the
coherences are stronger and last longer. The reason is
that the multiphoton shake-up ionization is amplified by
radiative transitions between resonant states below and
above the threshold, and by the additional long-lived res-
onances above N=3. Indeed, when the resonances that
lie above the N = 3 threshold are included, we observe

FIG. 6. Window Fourier Transform (FWHM=4.2 fs) of the
ion-dipole moment, with respect to the pump-probe time de-
lay, as a function of the window center. (a) N = 4 channels
excluded. (b) N = 4 channels included. The color scale is
linear.

an additional peak at the energy of 2eV which corre-
sponds to a beating between a resonance from below and
above the threshold.

V. RECONSTRUCTION OF IONIC
COHERENCE

As described in the previous section, the spin-orbit
interaction induces slow fluctuations in the stationary
dipole. There are five distinct frequencies ωab between
pairs of states a and b with opposite parity, which ap-
pear in the beating of the dipole of the N = 3 ionic
ensemble. The dipole, therefore, can be expressed as a
real function of these frequencies as follows

µ(τ, t) ∝
∑
ab

zab(τ)eiωabt. (25)

The time-delay-dependent matrix of coefficients zab(τ)
is Hermitean, zab = z∗ba. These parameters can be ex-
tracted from the beating measured in any sufficiently
long finite interval, such as the signal recorded in a
time-resolved microwave-spectroscopy measurement of
the dipole fluctuation. App. A shows in detail how, from
the coefficients zab(τ), it is possible to maximally recon-
struct the density matrix of the ionic ensemble at the
time of the ion inception. The result is

ρ(α) = UR[U†RMUR]−1U†Rz + UKα, (26)

where α = (α1, α2, . . . , αNK)t is a vector of arbitrary
complex numbers, with the same dimension as the null
space of the dipole expectation value, µ = tr(µρ), as
a functional of the vector space defined by the matrix
elements of ρ. The eigenvectors over which the particular
solution is expressed represent the linear combination of



10

FIG. 7. Polar representation of the trajectory of eiφ ρ3α3β(τ), as a function of the time delay τ . The two axes are in units
of 10−3 a.u. In the (α, β) = (3s, 3p0) case, φ = 37◦, and for (α, β) = (3p1, 3d1)φ = 40◦, whereas for the (α, β) = (3p0, 3d0)
case,φ = 0◦. Notice that the vertical and horizontal axes are on different scales. When the two pulses overlap, ρ3s3p0 has
opposite helicity in the N = 3 and N = 4 cases.

density-matrix elements that can be reconstructed from
an all-optical measurement.

The excitation scheme described in Sec. III has a du-
ration of a few tens of femtoseconds, i.e., three orders
of magnitude smaller than the period of the spin preces-
sion caused by the fine-structure splitting. As long as
the electron spin does not affect the excitation process
itself, therefore, the dipole expectation value at the end
of the pulses is dictated only by the coherence between
ionic states with the same spin projection, such as the
3s, 3p0 and 3pm, 3dm states, whereas any coherence be-
tween states with opposite spin projection, such 3s and
3p̄1, 3pm and 3d̄m+1, or 3dm and 3p̄m+1 states, are sup-
posed to be zero. At larger times, the non-stationary
character of the 3pm and 3dm configurations emerges,
and the dipole moment is observed to oscillate.

The combinations of density-matrix elements that can
be determined using the procedure detailed in App. A,
for the N = 3 He+ states, are

ρ3s0,3p0 , ρ3s0,3p̄1 (27)

A = ρ3p0,3d0 −
√

3/2 ρ3p0,3d̄1 (28)

B = ρ3p̄1,3d̄1 −
√

2/3 ρ3p̄1,3d0 (29)

C =
√

3ρ3p0,3d̄1 + ρ3p̄1,3d0 , (30)

where, for the suffixes, we use the notation 3`m for spin-
up states, and 3¯̀

m for spin-down states. As said above,
our calculations neglect spin-orbit effects during the ini-
tial ionization event, and hence all the density-matrix el-
ements between states with opposite spin reconstructed
immediately after ionization must vanish. In particular,
in our calculation, the C coefficient in (30) should and
does vanish. Besides ρ3s0,3p̄1 , therefore, C is a second
independent observable measurable with optical meth-
ods that is sensitive to fine-structure effects during the
attosecond-ionization event. Furthermore, even if the
fine-structure of the ion did have a role during ionization,

it would appreciably affect only the matrix elements that
would otherwise vanish, whereas its effect on the other
ones would arguably be negligible. For all practical pur-
poses, therefore, the quantities A and B, from Eqns. (28)
and (29), coincide with the matrix elements ρ3p0,3d0 and
ρ3p̄1,3d̄1(= ρ3p1,3d1), respectively. The only missing non-
diagonal matrix element of ρ that this method cannot
reconstruct is ρ3s0,3d0 , since it does not manifest itself in
the dipolar response of the ion. To check the consistency
of this method, we compared the five reconstructed quan-
tities in Eqns. (27)-(30) with the same exact quantities
computed in our ab initio simulations, finding a perfect
agreement.

Figure 7 compares the complex value of the non-
vanishing off-diagonal density-matrix elements that can
be reconstructed with this procedure, ρ3s0,3p0 , ρ3p0,3d0 ,
and ρ3p1,3d1 , as functions of the pump-probe delay, high-
lighted by open circles, computed either excluding or
including the N = 4 channels in the calculation. In
this representation, it is possible to appreciate a qual-
itative difference between the two cases when the two
pulses overlapping pulses: in the case of N = 3, ρ3s3p0

winds clockwise around the origin, whereas, in the case
of N = 4, it goes around the origin counterclockwise.
It would be tempting to attribute this result to an hy-
pothetical propensity of the doubly excited states either
below or above the N = 3 threshold to be preferentially
photoionized to the 2p channel, as it is observed for the
N = 2 case [42]. Indeed, when only resonances below
N = 3 are present, since their photoionization would en-
tail the absorption of IR photons, they would contribute
to the 3p state with an amplitude with argument that
increases with the time delay, and in turn so would the
phase of ρ3s,3p0 . Conversely, when the N = 4 resonances
are present, they would introduce a photoionization am-
plitude associated to the emission of IR photons, with
decreasing phase as the time delay increases, resulting in
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a counterclockwise contribution to ρ3s,3p0 . Regardless of
whether this interpretation bears any merit for the left-
most panel of Fig. 7, however, it certainly isn’t sufficient
to explain the other two plots. Indeed, while ρ3p0,3d0

goes around the origin counterclockwise for both case 1
and case 2, ρ3p1,3d1 , which differs from the former only
by the m quantum number, exhibits the exact opposite
behavior. A definitive interpretation of this phenomenon
is beyond the scope of the present work, and will be the
subject of future investigations.

VI. CONCLUSION

In this work, we have extended to the N = 3 excited
state our study on the control of the He+ ion generated in
attosecond pump-probe spectroscopy. We have assessed
the role of the resonances above the N = 3 threshold,
which converge to the subsequent N = 4 threshold, and
ascertain that they significantly extend the range of time
delays beyond which the ionic coherence is enhanced.
This phenomenon is understood to be due to the sequen-
tial XUV + IR two-photon amplitudes to the N = 3
channels with even parity, mediated by N = 4 interme-
diate autoionizing states. We also describe a generaliza-
tion of the reconstruction protocol of the density-matrix
off-diagonal elements from the picosecond fluctuation of
the ionic dipole, which can in principle be measured with
microwave spectroscopy. While the reconstruction can-
not be complete, owing to the presence of coherences
that do not contribute to the expectation value of the
dipole, it does allow to reconstruct all the coherences
between opposite-parity same-spin states. Furthermore,
it is possible to use this reconstruction procedure to
measure two independent ratios between opposite-spin
and same-spin coherences, namely, ρ3s,3p̄1/ρ3s,3p0 and

(
√

3ρ3p0,3d̄1 + ρ3p̄1,3d̄0)/ρ3p0,3d0 . A non-zero result for
these measurements would quantify the role of relativistic
effects during the attosecond ionization event itself.
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Appendix A: Reconstruction model

This appendix describes the algorithm used to recon-
struct the off-diagonal elements of the N = 3 transi-
tion density matrix from the measurement of the asymp-
totic beating of the ionic electric dipole moment due to
the fine-structure splitting of the N = 3 levels. To il-
lustrate the procedure, let’s consider a positive square-
integrable window function, W (t), that is vanishingly

small at any time prior to the end of the pump-probe se-
quence, such as W (t) = φ[(t−tW1)/σW ]φ[(tW2−t)/σW ],

where φ(x) = 1√
2π

∫ x
−∞ e−t

2/2dt is the normal cumulative

distribution function. The associated Window Fourier
Transform (WFT) is f̄(ω) =

∫
dtf(t)W (t)e−iωt. The

WFT of Eq. (25), therefore, becomes

(A1)µ̄(τ, ω) ∝
5∑
i=1

[ci(τ)W̃ (Ωj −ω) + c∗i (τ)W̃ (Ωj +ω)],

where f̄(ω) =
∫
dtf(t)e−iωt is the ordinary FT, and the

first and the second term corresponds to positive and
negative frequency respectively. If the duration of the
window step, σW , and plateau, tW2 − tW1, are much
larger than the beating period of any two frequencies Ωi
and Ωj , then Eq. (A1) exhibits an isolated peak for each
frequency ω = Ωj . Indeed, the FT of the W (t) itself is
strongly localized at ω = 0. In these conditions,

µ̄(τ,Ωi) ∝ ci(τ)W̃ (0), ci(τ) =
µ̄(τ,Ωi)

µ̄(τ,Ωj)
cj(τ), (A2)

which means that we can reconstruct the amplitude and
phase of each oscillation frequency, relative to one of
them, used as a reference. In the case of the He+ N = 2
states, these conditions can be easily met, since all the
fundamental fine-structure frequencies that are visible in
the dipole beatings are well separated from each other.

If the aforementioned conditions are not met, such as
in the case of the N = 3 He+ states, in which at least
two pairs of frequencies are very close to each other, a

different algorithm is needed. Let’s define Mij = W̃ (Ωi−
Ωj), Nij = W̃ (Ωi + Ωj), and bi = µ̄(τ,Ωi), with which
Eq. (A1) can be cast in matrix form,

b = Mc + Nc?, (A3)

which can be readily solved by considering separately the
real and imaginary part of each vector and matrix, A< =
<eA, A= = =eA,[

c<

c=

]
= 2

[
(M + N)< (N− M)=

(M + N)= (M− N)<

]−1 [
b<

b=

]
. (A4)

This latter equation gives the correct solution even if the
different peaks of µ̃(τ, ω) overlap.

Once the amplitude |ci(τ)| and phase arg ci(τ) are
known, we must determine the set of density matrices
that are compatible with these observations. For ex-
tremely simple systems, such as He+ N = 2 states, the
beating coefficients are enough to reconstruct the phase
of the density matrix off-diagonal elements. In a more
complex system, such as the one at hand here, the re-
construction cannot be complete because there are more
off-diagonal elements than dipole-beating modes.

The slow fluctuations caused by the relativistic interac-
tions can be accurately modeled taking into account that,
in the fine-structure basis for the one-electron He+ sys-
tem, the energy is diagonal. We call LS the one-electron
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basis |L, S,M,Σ〉, in which the orbital and intrinsic an-
gular momenta are uncoupled, and fs the basis of the
fine-structure states, |Φ〉 = |LS〉U, H|Φ〉 = |Φ〉E, where
Eij = Eiδij is a diagonal matrix with the energy of the
fine-structure states on the diagonal, and U is a unitary
matrix whose elements are Clebsh-Gordan coefficients.
The density matrix, in the LS basis, then, has the sim-
ple time dependence

ρLS(τ, t) = Ue−iEtρfs(τ, 0)eiEtU†, (A5)

where ρfs(τ, 0) is the representation of the density matrix
in the fine-structure basis. As a consequence, the dipole
moment can be written as

µ(τ, t) = tr
[
Ue−iEtρfs(τ, 0)eiEtU†µLS

]
, (A6)

or, using the cyclic property of the trace, as

µ(τ, t) = tr[ρLS(τ, 0)UeiEtU†µLSUe−iEtU†] (A7)

Let’s call Pa the projector on the fine-structure state
a in the LS basis, [Pa]ij = UiaU

∗
ja, and let’s introduce

the matrix Ωab = Paµ
LSPb, where a and b are indices

of spin-coupled states. Equation (A7) can be expressed
as,

µ(τ, t) =
∑
ab

tr[ρLS(τ, 0) Ωab] eiωabt, (A8)

where ωab = Ea − Eb. Following the procedure describe
above from Equation (25) through (A4), we can extract
the complex coefficients zab of terms in (A8),

tr[ρLS(τ, 0) Ωab] = zab(τ). (A9)

We can regard (A9) as a system of linear equations for
the unknowns ρLS(τ, 0), where Ωab is known analytically
and zab is measured experimentally. Since the dipole mo-
ment is sensitive only to coherences between states with
opposite parity, it is clear that some of the matrix ele-
ments of ρ are not constrained by (A9). In particular,
none of the diagonal terms are. To solve (A9) systemat-
ically, let’s express the density matrix as

ρ =
∑
i

Iiiρii +
∑
i<j

[
(Iij + Iji)ρ<ij + i(Iij − Iji)ρ=ij

]
(A10)

where (Iij)kl = δikδjl, ρ
<
ij = <e(ρij), and ρ=ij = =m(ρij),

and the indices i and j correspond the LS states, in which
spin and orbital angular momenta are not coupled. By
replacing (A10) into (A8), we obtain

zab =
∑
i<j

′
tr[(Iij + Iji)Ωab] ρ<ij+

+ i
∑
i<j

′
tr[(Iij − Iji)Ωab]ρ=ij ,

(A11)

where we used the fact that tr[IiiΩab] = 0, and the prime
in the summation indicates that we skip over pairs of
states i and j that have the same parity. To avoid re-
dundancy, we can assume that a is an even state and b
is odd (only states with opposite parity beat with each
other). It is also convenient to order the LS basis such
that the even states precede the odd ones. If i and j
have even and odd parity, respectively, then the trace
tr[IjiΩab] = 0. Therefore, we can rewrite (A11) as

zab =

e∑
i

o∑
j

tr[IijΩab] ρij (A12)

The relation has now been cast in the form of a linear sys-
tem for the complex upper-diagonal components of the
density matrix between opposite-parity states. Let’s de-
fine the superindexes I = (i, j) and A = (a, b), and intro-
duce the notation MAI = tr[IijΩab] and ρI = ρij(τ, t =
0) and zA = zab. The system (A12), then, becomes

Mρ = z (A13)

The matrix M is rectangular with 5 rows and 6 columns.
Since M has more columns than rows, the general solu-
tion ρ can only be written up to an arbitrary solution of
the associated homogeneous system, Aρh = 0,

ρ = ρp + ρh, (A14)

where ρp is a particular solution. To determine the par-
ticular solution and the linear space of homogeneous so-
lutions, we can solve the problem

M†Mρ = M†z, (A15)

where S = M†M is a positive definite, symmetric real
matrix with a rank smaller than its dimension. S and
M have the same null space, which is spanned by the
NK eigenvectors of S, UK, with eigenvalue zero. We can
search for a particular solution of (A13) in the range of

S, UR, orthogonal to the null space, U†RUK = 0, which
has size NR = N −NK,

ρp = URc. (A16)

This expression leads to the following equation for the
set of coefficients c,

U†RMURc = U†Rz, (A17)

which is readily solved,

c = [U†RMUR]−1U†Rz. (A18)

To summarize, the general solution to (A13) is

ρ(α) = UR[U†RMUR]−1U†Rz + UKα, (A19)

where α = (α1, α2, . . . , αNK)t is a vector of arbitrary
complex numbers, with the same dimension as the null
space.
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[4] F. Lépine, G. Sansone, and M. J. J. Vrakking, Molecular
applications of attosecond laser pulses, Chem. Phys. Lett.
578, 1 (2013).
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