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A full six-dimensional Born-Oppenheimer singlet potential energy surface is constructed for the reaction CaF
+ CaF→ CaF2 + Ca using a multireference configuration interaction (MRCI) electronic structure calculation.
The ab initio data thus calculated are interpolated by Gaussian process (GP) regression. The four-body potential
energy surface features one D2h global minimum and one Cs local minimum, connected by a barrierless transi-
tion state that lends insight to the reaction mechanism. This surface is intended to be of use in understanding
ultracold chemistry of CaF molecules.

I. INTRODUCTION

A recurring goal in the science of ultracold molecules is the possibility to control their chemical reactions, by exploiting
control over both internal and motional degrees of freedom. The alkali dimer KRb was an early workhorse in this effort. Its
reaction rates have been controlled by temperature [1, 2], quantum statistics [3], electric fields [4–8] and optical lattices [9, 10].
Moreover, a complete survey of the reaction products K2 and Rb2, including their branching ratios, has been performed [11–13].
The lifetimes of the collision complex that separates reactants and products in the KRb system have also been measured [14].

Beyond this, a host of experiments involving ultracold alkali dimers have observed anomalously long lifetime of the collision
complex, whose origins remain elusive [15–17]. Including these experiments under the general umbrella of ultracold chemistry,
this chemistry can be controlled by means of electric field [18, 19] or microwave [20] shielding, preventing the molecules from
ever getting close enough to react. Such methods have been demonstrated in several labs [8, 21–23].

The arsenal of molecules that will be available for control of this type is growing rapidly, owing to new advances in laser
cooling that allow one to cool and trap even large polyatomic species [24–32]. Among these laser-cooled species, we focus
here on the CaF molecule, which has been cooled and trapped in optical tweezers [33–35], raising yet another possibility, that of
merging the tweezers and instigating chemical reactions on demand [36]. These molecules are subject to the exothermic reaction

CaF+CaF→ CaF2 +Ca, (1)

releasing approximately 4300 cm−1 of energy. The product CaF2 is widely used in optical applications such as window glass
and lenses, although this is of no consequence to the present discussion.

Significantly, this reaction is only possible in the singlet electronic state of the Ca2F2 tetramer; the excited triplet state is
immune to the reaction. This raises the possibility of controlling the reaction by careful state preparation of the initial spin states
of the reactants, a possibility that has been considered in various contexts [12, 37–39]. This kind of control could present refined
opportunities to, for example, alter branching ratios to the various ro-vibrational states of the product.

Conceptually, evaluating ultracold chemical reactions splits into considerations of long-range and short-range physics. In the
long range, typified by reactants further apart than their van der Waals length, the molecules move slowly and their interactions
are given by comparatively weak and well-characterized long-range forces. In this limit, scattering wave functions are compara-
tively easily calculated. It may be said that propagation from infinity, through this long-range region, can be exploited to prepare
the molecules for their entrance into the short-range, chemical cauldron where the reaction takes place.

In this short-range region, forces among the atoms are too strong to be under experimental control, and the native dynamics
takes over. This dynamics can be described classically, and therefore ensembles of classical trajectory simulations would illumi-
nate which initial conditions at some transition radius R0 lead to a desired result - say, emphasizing vibrational excitation of the
CaF2 product over rotations, or vice versa. Control then becomes an issue of solving the long-range quantum mechanical part of
the problem, subject to boundary conditions at R0 that emphasize flux incident in the desired locations in phase space.

This article takes the first step in this program by computing a complete ab initio short-range singlet potential energy surface
for the CaF-CaF reaction, to help us better understand the energetics and reaction pathways we may attempt to exploit in the
name of control. We note that in the similar context of SrF-SrF cold collisions, a reduced surface was proposed some years ago
[40]. This reference identified a “handoff” mechanism, whereby one of the F atoms could find itself in a double well potential
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in the no-man’s-land between the alkaline earth atoms; from here the F could go either way, either completing the reaction or
remaining with its initial partner. The calculation of Ref. [40] was limited to a one-dimensional investigation, however.

We construct a full six-dimensional singlet potential energy surface (PES) for the Ca2F2 dimer. We identify global and local
minima in this PES, as well as a reaction path that takes the system between them via a submerged barrier. Based on the
minimum-energy pathway, we propose a plausible reaction path through which the reaction proceeds by a torsional movement,
presenting a richer dynamics than the handoff mechanism of Ref. [40]. A key feature that makes the characterization of this
complicated surface possible is that the ab inito points, obtained from a MOLPRO calculation, can be readily interpolated using
Gaussian Process (GP) interpolation, a technique pioneered in this context by Krems and his co-workers [41–43].

The presentation of the paper is as follows. In the section II, we describe the ab initio calculation on the diatomic, triatomic
and tetratomic molecular systems. In section III, we discuss some fundamental features of the GP interpolation including the
symmetrization criteria of the Ca2F2 surface. The construction of the minimum-energy path and a plausible reaction mechanism
of the Ca2F2 surface are discussed in the section IV. Finally, we make some conclusions in section V.

II. AB INITIO CALCULATIONS

In this section, we will describe the ab initio calculations of CaF-CaF from the reactant side and CaF2-Ca from the product
side for the concerned reaction: CaF + CaF→ CaF2 + Ca.

For each arrangement of nuclei in a grid to be described below, an electronic structure calculation is performed using the
MOLPRO 2012.1 software package [44] . The electronic configuration of ground-state Ca and F atoms are expressed as [Ar]4s2

and [He]2s22p5, respectively. Thus for the ab initio calculations we perform a complete active space self-consistent field
calculation (CASSCF) comprising the atomic orbitals 4s of Ca and 2p of F in the active space. The 3s and 3p of Ca, as well
as the 1s and 2s of F, were frozen at the Hartree-Fock (HF) level of theory. Thereafter, we carry out an internally contracted
multireference configuration interaction (MRCI) step where single and double excitations are taken relative to this CASSCF
reference function where only the 1s electrons of F were not correlated. The MRCI calculation incorporates an additional
Davidson correction that approximately accounts for the size consistency and higher excitations.

The basis set for Ca is Peterson’s pseudopotential-based correlation consistent polarized weighted core valence triple-ζ ba-
sis set (cc-pwCVTZ-PP) [45], where the inner core electrons are described by the Stuttgart / Koeln effective core potential
([ECP10MDF]) [46]. For the F atom, we consider correlation consistent polarized valence triple basis set (aug-cc-PVTZ) [47]
with diffuse augmenting functions. While the method just described is used in constructing the final potential energy surface,
nevertheless at various stages we vary the approach to test its adequacy, as we will see in the following subsections.

A. Diatomic and triatomic molecules

To assess the adequacy of the basis set and method, we first apply them to the three possible diatomic molecules, as well as the
product CaF2. In table.I we make a comparative study of the CaF, Ca2, and F2 molecules in terms of the equilibrium bond length
(re) and depth of the well (De), comparing these with previous theoretical and experimental values. In our current method of
calculation, the bond length for each of the diatomic molecules agree with that of literature reported theoretical and experimental
value with an error less than 1% which, following common practice in the field, we accept as adequate. With regard to the well
depth De, our calculations differ from other results by amounts less than ∼ 1000 cm−1, We therefore take this as an estimate of
the uncertainty of the calculations. Note that the largest uncertainty belongs to the F2 molecule.

TABLE I: The comparison of optimized diatom bond lengths re in Bohr and depth of the wells De in cm−1 with previous
theoretical and experimental data.

CaF Ca2 F2

re De re, De re, De

this work 3.704, 43672 8.101, 1134 2.671, 12464
theory 3.691 [48], 44203 [48] 8.085 [49], 1102 [49] 2.665 [40], 12880 [40]
expt 3.717 [50], ——- 8.090 [51], 1075 [51] ±150 2.677 [52], 13410 [53]

Similarly, we investigate the global minimum of the potential energy surface of the CaF2 product, as summarized in Table II.
This table compares the equilibrium bond lengths and bond angle for the ground singlet state of CaF2 to various values found
in the literature. As for the diatomic molecules, we find agreement of the bond lengths below the percent level. The bond angle
in CaF2 remains a matter of some controversy. In various theoretical studies on calcium difluoride [54–59], the ground state
is found to be either linear or slightly bent, depending on the quality and size of the basis sets used. The difference in energy
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FIG. 1: In the panel-(a), the Jacobi coordinates of the complex in one of the CaF-CaF arrangements are shown. The spherical
polar coordinates are represented in the panel-(b) for one of the arrangements of CaF2-Ca

between its linear and bent geometry is typically of order tens of cm−1, making the ultimate determination uncertain at present.
In our own calculation, the minimum at 168°is separated from the linear geometry by a barrier of only 6 cm−1, meaning our
calculation is unlikely to resolve this controversy.

TABLE II: Optimized molecular parameters of calcium difluoride where bond lengths (r1 and r2) are in Bohr and bond angle
(β ) is in degree.

Symmetry r1 r2 β

this work 1A1 3.804 3.804 168.10
theory[58] „ 3.799 3.799 157.50
theory[59] „ 3.790 3.790 154.86

B. Four-body surface

Since CaF is an open shell molecule having electronic spin 1/2, its dimer either can be a spin singlet (S = 0) or a spin triplet
state (S = 1). In the present calculation, we focus exclusively on the singlet surface as it is the reactive one.

The electronic structure calculations are performed on a grid of relative atoms coordinates. For later interpolation it will be
useful if these are roughly equidistant in the parameter space. For this purpose it is useful to consider the coordinate systems
which describe well the two asymptotic arrangements of the reactant and product. We choose two suitable coordinate systems
to describe the arrangement of atoms for the reactant and product side. We use Jacobi coordinates for the CaF-CaF arrangement
as shown in Fig.1a, where RJ is the distance between two centers of mass (CM) of two monomer CaF molecules having bond
lengths r13 and r24, respectively. The molecules are tilted with respect to the intermolecular axis by polar angles θ1, θ2, while
φ1 is the torsion angle. For the product side (CaF2-Ca) we use spherical polar coodinates, as depicted in Fig.1b. Here, Rc is the
distance between two Ca atoms. The bond lengths r13 and r14 represent the distance between the atoms Ca1-F3 and Ca1-F4.
The parameter α is the angle between the atoms F3-Ca1-F4, θ and φ2 are the azimuthal and polar angles, respectively.

TABLE III: The energy of the PES Ca2F2 in cm−1 for the global and local minima with optimized bond lengths (in Bohr). The
energies are referred to the CaF + CaF dissociation threshold.

method geometry r12 r13 r34 r23 r24 r14 Emin

CCSD(T) D2h 6.360 4.057 5.039 - - - -18923
MRCI 6.401 4.053 4.979 - - - -17936

CCSD(T) Cs 6.522 3.756 7.337 4.076 4.007 10.268 -15363
MRCI 6.606 3.743 7.327 4.064 4.006 10.337 -14924

Initially, we calculate the optimized geometries of the four-body surface incorporating the basis set described above. Using
the method of geometry optimization in MOLPRO [44], we find one global minimum and one local minimum of the four-body
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surface Ca2F2. At present, we are unaware of literature values of either global or local minima of the Ca2F2 surface. Therefore,
to estimate the uncertainty in our current method of calculation, we determine the same optimization for the global and local
minima by another level of theory, coupled-cluster singles, doubles and perturbative triples excitation [CCSD(T)] using the same
basis sets: Ca = cc-pwCVTZ-PP and F = aug-cc-PVTZ. For both of the minima, the geometric parameters and corresponding
energies are tabulated in Table III for both ab initio methods.

Both calculations confirm that the global minimum of the Ca2F2 surface has a D2h symmetry with a rhombic structure for
which the bond lengths satisfy r13 = r24 = r23 = r14, and that the local minimum has Cs symmetry. The two calculations
moreover agree on the bond lengths at the usual percent level of accuracy.

The energies of these minima, however, differ by up to ∼ 1000 cm−1, with the CCSD(T) calculation consistently finding
deeper minima. It may be presumed that the CCSD(T) calculation is more accurate, because it includes higher order electronic
correlations. However, CCSD(T) is not generally well-behaved across a reaction pathway, and therefore using CCSD(T) for the
entire PES will expectedly lead to irregularities. We therefore chose to carry out the calculations on the MRCI level. In this
context, we therefore use the results of Table III to estimate the uncertainty of our calculation as on the order of ∼ 1000 cm −1,
consistent in fact with the diatomic molecule calculations.

Finally, we check the quality of our chosen basis set for Ca which is used throughout our ab initio calculation. The comparison
of the global well depth in our standard cc-pwCVTZ-PP basis set for Ca is compared to three other basis sets with longer
acronyms in Table IV. The basis set aug-cc-PVTZ is assumed for F throughout. The difference so induced is seen to be of order
∼ 100 cm−1, whereby the influence of the Ca basis set is not regarded as a significant source of uncertainty.

TABLE IV: The comparison of well depth (De) in cm−1 with different basis sets of Ca for the global minimum of Ca2F2.

Serial No. Basis Depth of well (De) error (%)
1 cc-pwCVTZ-PP 17936 —
2 cc-pCVQZ-PP [45] 17787 0.83
3 cc-pwCVQZ-PP [45] 17885 0.29
4 aug-cc-pwCVQZ-PP [45] 17927 0.05

Thus encouraged that the electronic structure calculations are sound, we proceed to use the MRCI method with the basis
sets described above, to calculate the four-body potential energy surface. Focusing here on the short-range part of the surface
relevant to the chemical reaciton, we limit the range of atomic coordinates as follows: For the CaF-CaF reactant arrangement,
we consider coordinates bounded by: 1) monomer bond lengths of CaF (r13, r24) vary from 3.2 a0 to 7 a0 with r24 > r13; 2) RJ
varies from 4.0 a0 to 18 a0; the angles θ1, θ2, and φ1 vary from 0 to π . The corresponding range of product coordinates is given
by: 1) 3.3 a0 < r13 < 7 a0,; 2) 3.4 a0 < r14 < 7.2 a0,; 3) 4 a0 < Rc < 15 a0; and 4) 0 < α,θ ,φ2 < π .

III. MACHINE-LEARNING ALGORITHM: GAUSSIAN PROCESS REGRESSION

Traditionally, interpolation of potential energy surfaces was an art form that required careful assessment of the appropriate
fitting functions in various regions of configuration space, followed by accurate determination of the parameters of these fitting
functions. This situation has changed recently with the use of Gaussian process (GP) interpolation methods, pioneered in this
context by Krems and collaborators [60]. In these methods, the computed ab initio values of the PES at a set of atom coordinates
allows a direct estimate of the value of the PES at a new point at which the ab initio calculation was not performed. This process
proceeds directly without the intermediate step of determining a fitting function. For the final potential energy surface in the
GP fitting we use inverse atomic distance coordinates. Because, it is difficult to describe different chemical arrangements of the
four-body system equivalently by Jacobi coordinates, making it troublesome to fit the reactive part of the PES [41]. Therefore,
we choose inverse interatomic spacing coordinates.

Let x denote a set of six coordinates that defines a configuration of atoms (e.g., these are the inverse interatomic spacings in
the coordinate system we use). There is presumed to exist a continuous PES in these coordinates, denoted V (x). The ab initio
calculation provides a discrete set of such values, yi = V (xi), referred to as the training set in the machine learning argot. The
possible values of the PES at the points xi are assumed to satisfy some Gaussian-like probability distribution

P({Vi}) ∝ exp

[
−1

2 ∑
i j

yiK−1(xi,x j)y j

]
. (2)

Here the function K, called a kernel, describes the covariance of the variables in this distribution. Significantly, the kernel is a
function of the values xi at which the data are computed, and not of the computed values Vi themselves. The functional form of
K is relevant to the quality of the fit. Typically it contains parameters such as a characteristic length scale, so that, for example,
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the data at two points xi and x j are correlated only if |xi− x j| is smaller than this scale, Thus the kernel can describe features
like the smoothness of the fit, but without specifying a particular fitting function.

In the interpolation step, it is desired to know the predicted value y∗ of the PES at a new configuration x∗ at which the ab initio
calculation has not been performed. To make this interpolation, It is assumed that the additional point would satisfy the same
distribution with a kernel of the same functional form. In this case a standard algebraic manipulation yields a distribution for the
unknown value y∗, with mean value and standard deviation [61]

µ(x∗) = K(x∗,x)T [K(x,x)+σ
2
n I
]−1 y (3)

σ(x∗) = K(x∗,x∗)−K(x∗,x)T [K(x,x+σ
2
n I)
]−1

K(x∗,x) (4)

There are many functional forms possible for the kernel function. Each such case, the kernel depends on some set of parame-
ters, which are optimized by maximizing the log marginal likelihood:

log p(y|x;θ3) =−
1
2

yT K−1y− 1
2

log |K|− n
2

log(2π) (5)

where |K| is the determinant of K and θ3 denotes the collective set of parameters for the analytical function of k (see below).
The optimum quality of GP fit for a multidimensional surface depends on the kernel and the coordinate representation. Here,

we consider inverse atomic distance coordinates for GP fitting. Following the GP fits of potential energy surfaces in [41], the
kernel we use is the product of a Matérn kernel [61] and Constant kernel [61]. This kernel takes the form

k(xi,x j) =CM(xi,x j, l1, l2, l3, l4, l5, l6) (6)

where C is the Constant kernel. Here, M is the anisotropic Matérn kernel depending on the parameter (ν) besides length scales
[61]. For ν = 2.5, the Matérn kernel is defined as [41, 61]

M(xi,x j) =
6

∑
k=1

[
1+
√

5l−1
k |xi,k− x j,k|+

5
3

l−2
k |xi,k− x j,k|2

]
× exp

(
−
√

5l−2
k |xi,k− x j,k|2

)
(7)

The characteristic length scales l1− l6 are the parameter of θ3.
In general, validity of the GP model increases monotonically with an increase in the number of training points. However, for

evaluating the PES with n training points, GP involves an iterative inversion of a square matrix n× n, scaling as O(n3). But,
numerical evaluation of a GP model can be reduced to a product of two vectors of size n, scaling as O(n). Therefore, one needs
to care about n so that the maximum number of training points should lie in the configuration space. Besides this, insertion of the
symmetrization in the GP model is essential to explore the reactive part of the surface entirely since GP has no prior information
about the symmetry.

A. Symmetrization of GP

The PES as interpolated by the Gaussian process must be symmetric under the exchange of either the two Ca nuclei, or the two
F nuclei. Accounting for this symmetry can reduce the configuration space over which the fit must be performed. Besides, we
add some symmetrically equivalent points to the training set to improve the quality around the symmetrization boundaries. Let
us define the permutation operators P̂12 that interchange the Ca nuclei and P̂34 that exchange the F nuclei. Then the permutation
operators P̂12, P̂34, and P̂12P̂34 give equivalent energy when two nuclei permute. For the CaF-CaF arrangement, we consider
training point region where r13 < r24 and also fulfills (r13 + r24) < (r14 + r23) since r13, r24 are the bond lengths of each CaF
monomer in the chosen Jacobi coordinate. In the spherical polar coordinates of CaF2+Ca arrangement, the training points region
is considered where r13 < r14.

In our GP model, the symmetrization procedure is accomplished by coupling different contributions utilising a switching
function. Suppose, we consider two functions F1(~x) and F2(~x) between which switch is made, then

Fm [u;m,w,F1(~x),F2(~x)] = z(u,c,w)F1(~x)+ [1− z(u,c,w)]F2(~x) (8)

where the sigmoid function z should be twice differentiable and switches within the finite interval (c−w)< u < (c+w), it can
be expressed as [41]

z(u,c,w) =

{ 0, if u≤ c−w
1
2 +

9
16 sin π(u−c)

2w + 1
16 sin 3π(u−c)

2w , if c−w < u < c+w
1, if u≥ c+w
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Here, u is the parameterizing parameter for switching, c is the value of u around which switch is centered and w is halfwidth of
the switching interval. The symmetrization scheme for CaF-CaF region is given as

V GP
1 (~x) = Fm

[
r13

r13 + r24
;

1
2
,

1
16

,V GP(~x),V GP(P̂12P̂34~x)
]

(9)

V GP
2 (~x) = Fm

[
r23

r23 + r14
;

1
2
,

1
16

,V GP(P̂12~x),V GP(P̂34~x)
]

(10)

V GP
CaF−CaF(~x) = Fm

[
r13 + r24

r13 + r24 + r23 + r14
;

1
2
,

1
16

,V GP
1 (~x),V GP

2 (~x)
]

(11)

For the CaF2-Ca region,

V GP
3 (~x) = Fm

[
r13

r13 + r14
;

1
2
,

1
16

,V GP(~x),V GP(P̂34~x)
]

(12)

V GP
4 (~x) = Fm

[
r23

r23 + r24
;

1
2
,

1
16

,V GP(P̂12~x),V GP(P̂12P̂34~x)
]

(13)

V GP
CaF2−Ca(~x) = Fm

[
r13 + r14

r13 + r14 + r23 + r24
;

1
2
,

1
16

,V GP
3 (~x),V GP

4 (~x)
]

(14)

Finally we merge the above two arrangements as

V GP
12 (~x) = Fm

[
r24

r14 + r24
;

1
2
,

1
16

,V GP
1 (~x),V GP

3 (~x)
]

(15)

V GP
34 (~x) = Fm

[
r14

r14 + r24
;

1
2
,

1
16

,V GP
2 (~x),V GP

4 (~x)
]

(16)

V GP
total(~x) = Fm

[
r13

r13 + r23
;

1
2
,

1
16

,V GP
12 (~x),V GP

34 (~x)
]

(17)

TABLE V: The energy of the PES Ca2F2 in cm−1 for the global and local minima with optimized bond lengths (in Bohr).

method geometry r12 r13 r34 r23 r24 r14 Emin

GP-I D2h 6.355 4.085 5.136 - - - -18417
GP-II 6.400 4.043 4.958 - - - -17847
GP-I Cs 6.320 3.678 7.046 4.176 4.140 9.942 -14907
GP-II 6.323 3.648 6.994 4.336 4.058 9.900 -14330

B. Interpolation of surface by GP models

For the construction of the GP model, the ab initio energies are calculated on selected grids, respecting the symmetrization
as described above. The grid points are chosen within the range of Jacobi and spherical coordinates as described above, and
based on a sampling method developed in Ref [41]. In this method, we initially perform the HF calculations on a random but
roughly equidistant grid using the method of latin hypercube sampling [62]). We reject grid points where the energy of the PES
is above a cutoff energy, as being both irrelevant to the surface, and problematic to interpolate. The selection of the cutoff energy
in different regions in the parameter space is considered in the following way: If any of the interparticle distances between Ca
and F is smaller than 3.4 a0 and if R<10 a0, then we use a cutoff of 5000 cm−1. If one of these two criteria is false we use a
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FIG. 2: A reaction pathway for the reaction CaF + CaF→ CaF2 + Ca with energies and geometries of the stationary points.
The red and blue ball indicates the atoms Ca and F, respectively. The distance between two atoms is in Bohr. The energies are

in cm−1 with respect to the CaF-CaF threshold.

lower value of the cutoff, given by 1000 cm−1. This procedure is chosen so that a proper repulsive barrier is included in the short
range without wasting training points to describe the vibrational potential of the free diatoms in the long range. At the points that
remain, we construct the training set using the full MRCI algorithm described above using inverse atomic distance coordinate.

To test the accuracy of the GP interpolation, we optimize the global and local minima of the PES Ca2F2 for two distinct sets
of training points, referring to the resulting fits as GP-I and GP-II. These two sets consist of 2596 and 3061 training points,
respectively. We use the steepest gradient descent approach for optimization. As reported in Table V, the optimized energies
of the two minima agree within ∼ 500 cm−1 with the ab inito calculation-, for both GP fits. The error is comparable to the
uncertainty in the electronic structure calculations. This suggests that the number of training points is adequate.

As a second check, an additional set of test points is extracted from the ab initio electronic structure calculation. We can then
compare these directly to the values approximated from the GP fit, and determine the root-mean-squared error in the fit of the
test points. This error is on the order of 1200 cm−1 for 1330 randomly chosen test point, another confirmation of the accuracy
of the fit.

Based on the result including the ab initio method of calculation, we find uncertainties on the order of ∼ 1000 cm−1 for the
electronic structure calculation, and ∼ 1200 cm−1 for the GP fit. Therefore, assuming these uncertainties are independent, we
estimate the net uncertainty to be perhaps ∼ 1500 cm−1, or something like 8% of the depth of the potential. The training set
GP-II is made available online at GitHub: [63], along with the fitting routine. In addition, a larger set, GP-III is also available
for exploration.

IV. MINIMUM ENERGY PATH

The complete potential energy surface is therefore ready for dynamical calculations to begin, a task we defer to a future work.
However, an overview of the surface is warranted here, as a first hint of the reaction mechanism. To this end we sketch the
reaction path shown in Figure 2. The first thing to note is that the reaction CaF+CaF→ CaF2 + F is exothermic, releasing 4300
cm−1 of energy.

To get from reactants to products, we trace a hypothetical minimum-energy path, described by the way stations illustrated
in Figure.3. Some of the evolving geometries along this path are indicated by letters ‘a-g’ and are being analysed later. This
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FIG. 3: A transition path between D2h and Cs minima of the Ca2F2 potential surface. The letters a-g represent the evolution of
the geometries along the minimum-energy path.

diagram includes the global minimum of D2h symmetry and the local minimum of Cs symmetry, as identified above. In between
there exists a saddle point, with geometry and energy as shown, and which we identify in this context as a transition state.
Significantly, the energy of this state is well below the reactant and product energies, whereby the transition state occurs via a
submerged barrier.

The transition state is identified using the “climbing image Nudged Elastic Band (NEB)” [64] approach. In this method, a set
of intermediate states (15 in this case) are posited between the two minima. These points are treated conceptually as point masses,
called “beads,”subject to the energy constraint of the PES itself, and to imaginary spring forces artificially applied between each
bead and the next. The minimum-energy path between the potential minima is then obtained by minimizing the energy of this
system of masses. This method produces the energy diagram in Figure 3, constructed using the GP-II interpolation described
above. This figure shows how the energy rises and falls in going between the D2h minimum on the left, and the Cs minimum
on the right. The blue spheres represent the locations of the beads along this trajectory, and the energies at the corresponding
points of the PES. The highest energy state along this line is therefore associated with the transition state. The red curve is an
interpolation to guide the eye.

Figure 4 illustrates the atomic configurations at various steps along this trajectory. One presumes these are given in order as
the reaction coordinate grows from small to large; one of them is the transition state. The geometric parameters of the TS are:
r12 = 6.232, r13 = 3.866, r23 = 4.237, r14 = 7.217, r24 = 4.049, r34 = 5.682, in Bohr. We note that the geometry of the transition
state is not linear. In these drawing the blue circles represent Ca atoms, the red circles represent F atoms.

The main result shows the evolution in geometry is to move the atoms from the D2h symmetry in a), to the zig-zag formation
in (g). From this point, the lower calcium atom has two fluorine neighbors, which it is ready to take away as the CaF2 product. To
get between these arrangements, the F atom in the upper right of (a) swings around, out of the plane of the figure, thereby moving
from right to left. Thus, at least along the reaction path shown, the reaction proceeds by a torsional movement, suggesting that
the product may be put into significant rotation. Also since the lower F atom remains more or less a spectator to the process,
it might be expected that its CaF bond receives less energy than the other bond, leading to asymmetric stretch modes of the
product.

Contrast this with the simple “handoff” mechanism of Ref. [40], explored in the very similar reaction of SrF+SrF. Restricted
to a single spatial coordinate, the F atom in that model was constrained to move in the space between two Sr atoms, and to
choose one or another during the collision event. Inasmuch as this was the only allowed degree of freedom, it could be expected
that the SrF stretch motion would be excited in the F extraction reaction, but no rotation. In contrast, the present result shows
clearly that, along the minimum energy path, the F atom to be transferred swings around the line joining the Ca atoms , thus
imputing a likely rotation of this bond. In context, this discovery is significant: we now expect that both rotations and vibrations
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FIG. 4: The evolution of the geometries on passing from global minimum (a) to local minimum (g) along the minimum-energy
path is shown involving the transition state (TS) Blue spherees represent Ca atoms, while red spheres represent F atoms.

are easily capable of excitation during the reaction. There is therefore a clear branching ratio to attempt to control, namely, that
between vibrationally excited and rotationally excited products.

These conclusions remain, of course, speculative at this point, and will have to be assessed in dynamical calculations, In
particular, following these configurations along an adiabatic path such as this one completely disregards the influence of the
energy the reactants actually have, as they commence the reaction approximately 18,000 cm−1 above the global minimum.
Nevertheless, even in this approximation, it can be seen that a nontrivial re-arrangement may occur, leading to interesting ro-
vibrational branching ratios, which may ultimately be the subject of control in the ultracold environment.

V. CONCLUSION

In summary, we have constructed a six-dimensional singlet potential energy surface of the Ca2F2 system at short range and
analyzed the features and reactivity of the surface. We observed the reaction CaF + CaF→ CaF2 +Ca is exothermic in nature
by liberating energy ∼ 4300 cm−1. The complete construction of the Ca2F2 surface depends on two steps. Firstly the ab initio
points were calculated using the multireference configuration interaction method in MOLPRO and then these points were readily
interpolated by GP fitting. We detected one global minimum and one local minimum having D2h and Cs symmetry, respectively,
and we constructed a minimum-energy path between these two minima that connects them via a submerged barrier. We proposed
a plausible reaction pathway for the formation of the products. However, one can perform a dynamic calculation to establish
the true reaction mechanism for the singlet reactive surface CaF-CaF which is beyond our scope of the study. We hope this PES
would provide an initial platform to study the dynamics of the reaction.

In future work, we will explore both the triplet surface and spin-orbit coupling to the reactive singlet surface. The triplet surface
is non-reactive and suppresses the chemical reaction. Therefore, if we presume a model where initially the sample is prepared
in the spin-polarized triplet state and thereafter switches on the spin-orbit coupling to the singlet surface. We anticipate the
reactivity of the singlet surface where the coupling parameter is significant between these two surfaces, resulting in a chemical
reaction. Therefore, the conversion of the spin-polarized non reactive surface to the non-spin-polarized reactive state can be
studied including the branching ratios. This could impart a new direction in the domain of controlled chemical reactions.
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