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Quantum simulation on near-term quantum hardware is a topic of intense interest. The prepa-
ration of novel quantum states of matter provides a quantitative assessment of the capabilities of
near-term digital quantum computers to implement circuits with structure of relevance to quan-
tum simulation. Here, we conduct a benchmark study by realizing symmetry-protected topological
(SPT) phases of a spin-1/2 Hamiltonian with next-nearest-neighbor hopping on up to 11 qubits
on a programmable superconducting quantum processor using adiabatic state preparation. Using
recompilation techniques to reduce the gate count to around 50 two-qubit gates, we observe clear
signatures of the two distinct SPT phases, such as excitations localized to specific edges and finite
string order parameters. We identify a parasitic phase associated with the two-qubit gate as the
dominant imperfection that limits the depth of the circuits, indicating a research topic of interest
for future hardware development.

I. INTRODUCTION

Quantum computers have long been of interest for their
potential to simulate quantum many-body systems [1–6].
A recent emphasis has been using quantum computers
to treat classically challenging chemistry and condensed
matter problems [5–9]. Advances in near-term quantum
hardware now make prototype versions of these simu-
lations possible, for instance in the computation of the
ground state properties of chemical [10–17] and solid-
state [12, 18–20] quantum systems as well as simulation
of their real-time dynamics for closed [21–31] and open
[32–38] systems. Several recent studies have also reported
the simulation of finite-temperature physics on near-term
devices [39–42].

The realization of topological phases of matter is an-
other area of considerable interest. These phases do not
fit within the Landau paradigm of local order parame-
ters associated with symmetry breaking, and the study
of their ground-state properties and excitations is an ac-
tive area of research in condensed matter physics [43–46].
Analog quantum simulators are able to realize some of
these phases and associated phenomena such as models
with topological band structures [47–51], Thouless charge
pumps [52–54], various symmetry-protected topological
(SPT) phases [55–60] and quantum spin liquids [61]. On
digital quantum computers, the preparation of various
topological phases has been reported, including spin-1/2
chain models with three-body interactions [62–65], the
toric code [66], and topological Floquet phases [67, 68].

Beyond realizing the quantum phase of interest, a com-
parison of the hardware data against theory can serve
to benchmark quantum devices and identify the hard-
ware imperfections that limit circuit complexity [29, 69].
These imperfections have varying impacts depending on
the particular structure of the circuits, implying bench-
marking methods which employ dissimilar circuit struc-

tures are inadequate for characterizing devices for quan-
tum simulation applications [70]. For example, many
protocols used to assess the performance of quantum
computers employ randomized circuits [71, 72] which do
not accurately reflect the impact of coherent errors in
more structured circuits [73, 74].

Circuits which perform representative quantum simu-
lation tasks are expected to provide more relevant infor-
mation on the capabilities of near-term hardware. Spin-
1/2 models with beyond-nearest-neighbor interactions
are an attractive target of study for quantum simulation
due to their richer physics [75, 76] and more complex cir-
cuits compared to those with only nearest-neighbor (NN)
couplings. Of particular interest are topological phases
in these models characterized by non-local string order
parameters and edge excitations [77]. Hence, the prepa-
ration of such phases may serve as a relevant benchmark
of the capabilities of present digital quantum computers
for quantum simulation.

Here, we report the preparation of SPT phases of a
spin-1/2 chain with next-nearest-neighbor interactions
on up to 11 qubits of a programmable superconducting
quantum processor, Google’s Rainbow processor. Cir-
cuits with up to 50 two-qubit gates are found to yield the
topological signatures of the SPT phases, including finite
or zero values of different string order parameters and
edge excitations localized to different sides of the chain
depending on the particular SPT phase. Examination of
the discrepancies with theory demonstrates that a para-
sitic phase in the two-qubit gate is the leading limitation
on the gate depth. Based on these findings, we estimate
the gap between the present achievable gate depth and
that required for realization of other novel phases such as
chiral spin liquids. Our results provide a benchmark of
the current capabilities and limitations of today’s quan-
tum processor in performing quantum simulations based
on digitized adiabatic state preparation.
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II. THEORY

A. SPT phases of spin-1/2 chain with NNN
hopping

We consider a one-dimensional spin-1/2 chain with NN
and next-nearest-neighbor (NNN) interactions as shown
in Fig. 1(a). Its Hamiltonian is given by

HT = −
∑
k

J ′1(σx2kσ
x
2k+1 + σy2kσ

y
2k+1) (1)

+J1(σx2k+1σ
x
2k+2 + σy2k+1σ

y
2k+2)

+J2(σxkσ
x
k+2 + σykσ

y
k+2)

where σx, σy, σz are Pauli operators, J ′1 (J1) denotes the
strength of the NN interactions from the even to odd sites
(odd to even), and J2 denotes the strength of the NNN
coupling.

The phase diagram of HT contains two distinct gapped
SPT phases known as the even-parity dimer (ED) and
singlet-dimer (SD) phases. The model is in the ED (SD)
phase when J ′1 = 2J1 < 0; J1 > 0 (J1 = −2J2 > 0; J ′1 <
0). The solution of the edge states in the two phases were
derived by Zou et al [77]. Each edge state is two-fold de-
generate and protected by time-reversal (TR) symmetry.
The two phases are topologically distinct because they
cannot be deformed into one another without breaking
TR, inversion, and D2 symmetry of spin rotation by π
about the x, y and z axes [78].

These phases can be distinguished by the location of
their edge excitations; for a lattice with an odd number of
lattice points, the ED (SD) phase has an edge excitation
on the right (left) edge of the chain. In addition, the
phases can be distinguished by string order parameters,
defined as:

Ozn = −limr→∞〈(σzn+σzn+1)eiπ
∑

k σ
z
k(σz2r+n+σz2r+n+1)〉

(2)
where the sum over k is restricted to n+2 ≤ k ≤ 2r+n−1
and r should be as large as possible. Generally, a non-
zero string-order parameter indicates the presence of
hidden long-range order and a topologically non-trivial
phase. In the present model, the ED (SD) phase exhibits
a finite Ozn value for odd (even) n. In this work, n is cho-
sen to be 0 or 1. To select r, we choose the largest value
that satisfies the constraint that the number of operators
used to constructOz0 andOz1 are the same. This require-
ment is equivalent to using the maximum integer value of
r that satisfies 2r+1+1 ≤M , where M is the number of
sites of the system. For systems with M = 7, 9, 11, this
constraint corresponds to r = 2, 3, 4, respectively.

B. Preparation of SPT phases on a digital
quantum processor

We used circuits based on adiabatic state preparation
[79, 80] (ASP) to prepare the SPT phases of HT on the
superconducting quantum processor. The system is ini-
tialized in the ground state of an initial Hamiltonian HI

and evolved to the ground state of the target Hamilto-
nian HT over time duration T using a linear interpolation
H(s) = (1 − s)HI + sHT where s ≡ t/T . In this study,
HT is given in Eqn. 1. The initial Hamiltonian is given
by

HI = −Bz
∑
k

(−1)kσzk (3)

with Bz a uniform external field. For Bz > 0 and an
odd number of sites, the ground state of HI is given
by |0101...01010〉 which can be prepared by applying X-
rotation single-qubit gates on sites labeled by odd indices.

To carry out ASP, we Trotterized the adiabatic evo-
lution to first order and implemented the resulting steps
using quantum circuits constructed from single-qubit and
two-qubit quantum gates as shown in Fig. 1(b) The two-
qubit gate K, known as the fermionic simulation(FSIM)
gate, can be constructed using the native gate set avail-
able on the Rainbow chip [29]. An example of a cir-
cuit that implements a single Trotter step for a system
of 7 sites is shown in Fig. 1(c). Despite extensive ex-
perimentation, the overall circuit that carries out the
full ASP was found to produce qualitative inaccuracies
with theory. To assess the maximum gate depth that
could be achieved while yielding quantitative agreement,
we used a circuit recompilation scheme [42] by fitting
the circuits needed to realize the state at each time in
the adiabatic evolution to a parameterized circuit. In
ref. [42], the parameterized circuits consisted of alternat-
ing layers of single-qubit gates and two-qubit gates. We
used this ansatz in our benchmark studies by using the

native gate
√

iS
†

for the two-qubit gate and the native
gate PhasedXZ (φ) for the single qubit gate, respectively.
A schematic of the final recompiled circuit is shown in
Fig. 1(d). The reduction in circuit depth is discussed in
Appendix A.

We used the Google Rainbow and Weber quantum pro-
cessors for this study. The Rainbow and Weber pro-
cessors consist of a two-dimensional array of 23 and 54
transmon qubits, respectively, with each qubit tunably
coupled to its neighbors. The native single-qubit gates
are the PhasedXZ gate which consists of a rotation about
an axis in the XY plane of the Bloch sphere with an ex-
tra phase about the Z axis. The native two-qubit gates

are the
√

iS
†

gates. Further information on the device
parameters are available in Ref. [81]. Simulated data in
the absence of noise are generated using Google’s circuit
emulator qsim. [82]

We perform 8192 repetitions of each circuit with mea-
surements in the Z-basis for all sites at each Trotter
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FIG. 1 Schematic of quantum circuits used to
prepare the SPT phases. (a) Arrangement of sites in a
1D-lattice of 7 sites. The strength of interactions going from
even-labelled to odd-labelled (odd-labelled to even-labelled)
sites are given by J ′

1 (J1); those for NNN couplings are given
by J2. For this study, we also consider chains with 9 and 11
sites. (b) Quantum gates used to construct the circuits for
the demonstrations. Their matrix representations are

provided in ref. [83]. The gates PhasedXZ (φ) and
√
iS

†
are

the native one-qubit and two-qubit gates on the Google
Rainbow processor. (c) Circuit to implement Trotterized
ASP for a system with 7 sites. (d) Schematic of the
recompiled circuit with M gate rounds.

step. While the quantum circuits implemented conserve
the total Sz, the presence of hardware error can lead to
Sz non-conservation. We mitigate this error by post-
selecting the measurements for ∆Sz = 0. The quantities
required to compute string order parameters in Eqn. 2
can be computed from the measurements in the Z-basis.
Similarly, the occupancy of the ith site is simply related
to the expectation value 〈σzi 〉. Both quantities can be
directly computed by performing the appropriate sums
with the measurement bitstrings. Only those bitstrings
with Sz = 0 are used in the computation.

III. RESULTS

A. Signatures of SPT phases

We first report calculations of the string order param-
eters Oz1 for the ED phase versus ASP time s for spin
chains with 7, 9 and 11 sites. We collected data from
15 configurations of qubits; based on the

√
iSWAP gate

cross-entropy benchmarking (XEB) average error per cy-
cle, we selected the ten best configurations, from which
we computed the mean and standard deviation for all
observables. To prepare the ED phase, the Hamiltonian
parameters were set to J1 = 0.2, J ′1 = −1.5, J2 = −0.1,
Bz = 2.5 and T = 3.0, and M = 5 layers of gate rounds
were used for circuit recompilation. Emulated results
were obtained by running the Trotterized ASP circuit on

Google’s circuit emulator qsim.
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FIG. 2 Preparation of ED phase for increasing
system sizes on Rainbow quantum processor.
Absolute value of the string order parameter Oz1 versus
ASP time s for a system size of (a) 7, (b) 9, and (c) 11
qubits, respectively. Data from Rainbow was collected using
15 different configurations of qubits and only the best 10
configurations were selected based on their

√
iSWAP gate

XEB average error per cycle. The hardware data without
any error mitigation (blue triangle) yields qualitative
agreement with the emulated ASP trajectory (red square).
Quantitative agreement is obtained when post selection is
used (purple circle). The ED phase can be prepared reliably
for system sizes of up to 11 qubits. The parameters
J1 = 0.2, J ′

1 = −1.5, J2 = −0.1, Bz = 2.5, and T = 3.0 are
used to prepare the ED phase. The lines through the
symbols are guides to the eye.

We plot |Oz1 | versus ASP time s on 7 sites in Fig.
2(a). We observe good agreement between the final value
of |〈Oz1〉| at s = 1 obtained from Trotterized ASP us-
ing qsim and the value from exact diagonalization in
Fig. 2(a). This result indicates that a Trotter step size of
0.25 is sufficiently small enough to approximate the ASP
evolution that yields the ED phase with high fidelity.

We next compare the data obtained by running Trot-
terized ASP trajectories on qsim with the data obtained
by running recompiled circuits on Rainbow without any
error mitigation for 7 sites. These circuits required 30√

iS
†

gates. Although the trend of Oz1 increasing with
ASP time is reproduced as seen in Fig. 2(a), a clear dis-
crepancy exists for the final value of Oz1 at the end
of the adiabatic trajectory. To mitigate this discrep-
ancy, we perform post-selection based on Sz conservation.
We observe a marked improvement in the quality of the
hardware data, with quantitative agreement obtained be-
tween the hardware data and the simulator. With this
error mitigation step, the quantum processor is able to
reproduce the adiabatic trajectory with sufficient fidelity
to arrive at the expected non-zero value of the string or-
der parameter in the ED phase.

We next compute Oz1 for system sizes of 9 and 11
qubits. The number of two-qubit gates used in the re-
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FIG. 3 Preparation of ED and SD phases using 11 qubits on the Rainbow quantum processor. Absolute value
of the string order parameters (a) Oz0 and (b) Oz1 versus ASP time (s) in the ED phase. (c, d) Analogous result for the SD
phase. Occupancy of each site at the end of the ASP trajectory for the (e) ED and (f) SD phases. The two SPT phases can
be prepared and distinguished clearly by finite or zero string-order parameter and location of edge excitation. The parameters
J1 = 0.2, J ′

1 = −1.5, J2 = −0.1, Bz = 2.5, T = 3.0 were used to prepare the ED phase. The parameters J1 = 1.5, J ′
1 = −0.2,

J2 = −0.1, Bz = 2.5, T = 3.0 were used to prepare the SD phase.

compiled circuits was 40 and 50, respectively, compared
to 30 in the 7 qubit case. Despite the larger number
of gates, we observe good agreement in the value of the
string order parameter over the adiabatic trajectory in
Fig. 2(b) and 2(c), although with a slight degradation
that likely arises from the deeper circuits. The data indi-
cates that the SPT phases for a system of 11 sites can be
prepared with enough fidelity to observe its topological
features on the Rainbow quantum processor.

Next, we verify that we can distinguish the SD and ED
phases using the string order parameters. Figure 3(a)
and 3(b) shows |Oz0 | and |Oz1 | versus s on 11 qubits
when the model is tuned into the ED phase. We observe
good agreement between the hardware data and the sim-
ulator over the adiabatic path. At the end of the adia-
batic path, we measure 0.029 ± 0.007 and 0.829 ± 0.147
for Oz0 and Oz1 , respectively, which is in good agreement
with the expected values of ∼ 0 and 0.964. Similarly, we
tune the model into the SD phase by setting the Hamilto-
nian parameters to J1 = 1.5, J ′1 = −0.2, J2 = −0.1. The
string order parameters Oz0 and Oz1 versus s are given

in Figs. 3(c) and 3(d), respectively. Again, the final
values of the string order parameter from the hardware
are 0.981± 0.085 and 0.034± 0.013, which are in quanti-
tative agreement with the numerically determined exact
values of 0.962 and ∼ 0. In both cases, we measured a
finite value for the appropriate string order parameters
and nearly zero for the other, indicating that the correct
SPT phases were successfully prepared.

Finally, we plot the occupancy of each site at the end
of the adiabatic evolution for the ED and SD phases in
Figs. 3(e) and 3(f), respectively. In the ED (SD) phase,
an edge excitation is predicted to exist on the right (left)
end of the chain. This feature is indeed observed us-
ing the exact solution obtained from exact diagonaliza-
tion. The results from the hardware clearly indicate a
difference in the occupancy on the appropriate edge of
the chain for each phase and the rest of the chain, with
the value in good agreement with the exact result. This
observation provides additional evidence that the SPT
states prepared on the hardware exhibit the key features
expected of these topological phases.

B. Origin of gate depth limitations

The results obtained above required the use of circuit
recompilation techniques to reduce the gate depth for

ASP to a maximum of around 50 two-qubit gates. With-
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FIG. 4 Effects of gate imperfections on |〈Oz1〉| in the
ED phase. Absolute value of the string order parameters
Oz1 versus ASP time (s) in the ED phase when (a) φ, (b) γ,
(c) ζ, and (d) χ are varied. Error bars for the hardware
data (Weber) were obtained from 4 different qubit
configurations. The parameter φ best explains the observed
trend in string order parameter with s. The parameters
J1 = 0.2, J ′

1 = −1, J2 = −0.1, Bz = 1.5, T = 3.0 were used
to prepare the ED phase.

out circuit recompilation, the number of required two-
qubit gates was around 170 for 7 sites, and the hardware
results were in only qualitative agreement with the ex-
pected final string order parameter value. To investigate
the origin of this circuit depth limitation, we examined
the non-idealities of the two-qubit gates on the Rain-
bow processor. The most general excitation-number-
conserving two-qubit gate, denoted by U(θ, ζ, χ, γ, φ)
takes the following form (with the basis states in the
order |00〉, |01〉, |10〉, and |11〉):


1 0 0 0
0 e−i(γ+ζ)cosθ −ie−i(γ−χ)sinθ 0
0 ie−i(γ+χ)sinθ e−i(γ−ζ)cosθ 0
0 0 0 e−i(2γ+φ)

 (4)

While the ideal native two-qubit gate on Rainbow and
Weber is given by U(π/4, 0, 0, 0, 0)†, additional interac-
tions lead to non-zero values of ζ, χ, γ and φ. We nu-
merically simulated the effects of these non-idealities on
the value of the string order parameter along the adia-
batic trajectory by plotting |〈Oz1〉| versus ASP time s on
7 sites for different values of φ, γ, ζ, and χ.

Figure 4 shows the string order parameter versus ASP
time s for various values of φ, γ, ζ and χ. We also col-
lected data from 4 different qubits configurations on We-
ber, a quantum processor with similar specifications as

Rainbow, and plot the mean and standard deviation of
the string order parameter. For comparison, we plot the
ideal trajectory obtained using qsim [82]. Comparing
the ideal trajectory with data from Weber, we observe
a non-monotonic trend at the end of the trajectory in
the hardware data. Similar behavior was observed in
the simulator results for various values of φ, γ, ζ and χ.
The non-monotonic trend is observed to be most sensi-
tive to φ, and the results with φ = π/50 yielded the best
qualitative agreement with the hardware results. These
observations suggest that the parasitic controlled phase
φ is a dominant factor in limiting the gate depth of the
present simulations.

IV. DISCUSSION AND FUTURE OUTLOOK

We now discuss the implications of our findings regard-
ing the role of the parasitic phase in limiting gate depth
for quantum simulation. Error mitigation strategies such
as randomized compiling [84] may be applicable to mit-
igate coherent errors. However, in the present simula-
tions, this protocol cannot be implemented because the
two-qubit native gate does not commute with the Pauli
group. Other strategies to mitigate coherent gate er-
rors may be possible, but their effectiveness is in general
problem-dependent. Several strategies were attempted in
this work but were ultimately unsuccessful (see Appendix
B). Supposing that the parasitic phase can be successfully
mitigated, emulations using Cirq indicate that the max-
imum number of two-qubit gates is around 100 for the
present simulations given reported error rates [29] which
agrees well with the findings of a recent work which sim-
ulated correlated molecules and materials on the same
device [85].

Given the capabilities of present quantum processors,
we examine the resources required to prepare more com-
plex chiral spin liquids that are thought to exist in a spin-
1/2 frustrated honeycomb with similar couplings studied
in our work [75, 76, 86]. For a system size of 20 spins in a
hexagonal lattice, corresponding to 4 unit cells, the total
number of two-qubit gates required to implement a single
Trotter step of the ASP trajectory is 210. Assuming six
Trotter steps are needed in total, 1260 two-qubit gates
would therefore be required. This value exceeds our es-
timate of the achievable gate depth by around an order
of magnitude. Our results provide quantitative metrics
regarding the improvements needed for future quantum
devices to realize more exotic topological phases using
ASP.
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APPENDIX A: Circuit recompilation scheme

This section describes the circuit recompilation tech-
nique originally introduced in [42] and which is used to
reduce the depth of the circuits implemented on the Rain-
bow quantum processor. Let the target unitary be Utarg
and the parameterized circuit be Urec(θ) , where θ is a
composite vector of all the free variables in the parame-
terized circuit. Given a reduced density operator ρ on the
finite domain acted on by the target unitary, the optimal
parameterized circuit is found by performing a gradient
descent to maximize the function

F (θ) =
∣∣Tr(Urec(θ)†Utargρ)

∣∣2 , (A1)

which can be interpreted as the fidelity between Urec(θ)
and Utarg with respect to the reduced density matrix ρ.
For the purpose of this work, we set F (θ) = 0.999 as
the stopping criterion. We compare the number of two-
qubit gates present in the target unitary Utarg at the
end of 12 Trotter steps and in the parameterized circuit
Urec(θ) in Table I. The number of two-qubit gates re-
quired decreases by around an order of magnitude with
recompilation.

System size Utarg Urec(θ)

7 336 30
9 468 40
11 564 50

TABLE I Comparison of number of two-qubit gates in
target unitary Utarg for 12 Trotter steps and in Urec(θ) for

different system sizes

APPENDIX B: Parasitic controlled phase in
non-recompiled circuits

This section describes attempted strategies to mitigate
the parasitic controlled phase. The first approach con-
structs CPHASE(ψ) and appends it to the back of the
native gate with ψ = −φ to compensate for the parasitic

phase; that is we implement
√
iS
†
hardwareCPHASE(ψ =

−φ). This gate can be constructed exactly by using a

series of single-qubit rotations and two
√
iS
†
hardware to

compensate for the phase in each
√
iS
†
. By noting that√

iS
†
hardware is approximately

√
iS
†
CPHASE(φ) for some

parasitic phase φ, a controlled-phase gate between con-
trol qubit i and target qubit j, CPHASE(ψ = −φ)ij can
be constructed exactly as [87]

CPHASE(ψ)ij =(RZi
(π − ψ/2)⊗RZj

(−ψ/2))

(RXi
(−ξi)⊗RXj

(−xij))
√
iS
†
hardware,ij

(RZi(π + φ/2)⊗RZj (φ/2))

(RXi(−2α)⊗ Ij)
√
iS
†
hardware,ij

(RZi
(ψ/2)⊗RZj

(ψ/2))

(RXi
(ξi)⊗RXj

(xij)) (B1)

where RZ , RX are the single-qubit rotations around
the z-axis and x-axis, and the decomposition parameters
α, ξi, ξj are given by

sin(α) =

√
sin2(ψ/4)− sin2(φ/2)

sin2(π/4)− sin2(φ/2)
(B2)

ξi = tan−1
(

tan(α)cos(π/4)

cos(φ/2)

)
+
π

2
(1− sgn(cos(φ/2))) (B3)

ξj = tan−1
(

tan(α)sin(π/4)

sin(φ/2)

)
+
π

2
(1− sgn(sin(φ/2))) (B4)

The cost of this approach is the addition of two native
two-qubit gates for each original two-qubit gate, thereby
increasing the gate depth by a factor of 3.

We tested this scheme on Weber by performing Flo-
quet characterization to estimate the parasitic phase φ
present on each qubit [29], then used the average value
to construct a compensated CPHASE(−φavg) that was

appended to the hardware gate
√
iS
†
hardware. The re-

sults with these compensated circuits are presented in
Fig. 5(a). We observe greater deviations from the exact
result when the compensated circuits are used. The likely
origin of the worse performance is the larger number of
two-qubit gates are used in the compensated circuits (510
versus 170 to reach the end of the adiabatic path).

The second approach is based on the observation that
the phase present in the |11〉 can be removed at the ex-
pense of adding half the phase to the |01〉 and |10〉 us-
ing single-qubit Z rotations. Assuming that fidelity is a
quadratic function of gate parameters, a higher fidelity
can be obtained by splitting the phase into two. We
tested this scheme by performing Floquet calibration to
estimate the φ present on each qubit and used the av-
erage to perform single-qubit Z rotations on the qubits.
The result is shown in Fig. 5(b). Although some improve-
ment in the final value of the string order parameter is
observed, the non-monotonic trend remains largely un-
changed, indicating that manipulation of the parasitic
phase is inadequate to remove the discrepancy.
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FIG. 5 Attempts to compensate for parasitic
controlled phase. Absolute value of the string order
parameters Oz1 versus ASP time (s) in the ED phase for
circuits with (a) CPHASE(φ) appended to each native
two-qubit gate to compensate for the parasitic controlled
phase; (b) single-qubit Z rotations added to split the
parasitic phase among two basis states. The data obtained
from Weber and the noiseless data from the simulator are
also shown. The qualitative trend of the string order
parameter is qualitatively unchanged by the two strategies.
The parameters J1 = 0.2, J ′

1 = −1, J2 = −0.1, Bz = 1.5,
T = 3.0 were used to prepare the ED phase.
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cak, B. Pató, A. Petukhov, N. C. Rubin, D. Sank,
V. Shvarts, D. Strain, M. Szalay, B. Villalonga, T. C.
White, Z. Yao, P. Yeh, J. Yoo, A. Zalcman, H. Neven,
S. Boixo, A. Megrant, Y. Chen, J. Kelly, V. Smelyanskiy,
A. Kitaev, M. Knap, F. Pollmann, and P. Roushan, “Re-
alizing topologically ordered states on a quantum proces-
sor,” (2021), arXiv:2104.01180 [quant-ph].

[67] Philipp T. Dumitrescu, Justin Bohnet, John Gaebler,
Aaron Hankin, David Hayes, Ajesh Kumar, Brian Neyen-
huis, Romain Vasseur, and Andrew C. Potter, “Realizing
a dynamical topological phase in a trapped-ion quantum
simulator,” (2021).

[68] Xu Zhang, Wenjie Jiang, Jinfeng Deng, Ke Wang, Ji-
achen Chen, Pengfei Zhang, Wenhui Ren, Hang Dong,
Shibo Xu, Yu Gao, Feitong Jin, Xuhao Zhu, Qiu-
jiang Guo, Hekang Li, Chao Song, Alexey V. Gorshkov,
Thomas Iadecola, Fangli Liu, Zhe-Xuan Gong, Zhen
Wang, Dong-Ling Deng, and H. Wang, “Digital quan-
tum simulation of floquet symmetry-protected topologi-
cal phases,” Nature 607, 468–473 (2022).

[69] C Kokail, C Maier, R van Bijnen, T Brydges, M K Joshi,
P Jurcevic, C A Muschik, P Silvi, R Blatt, C F Roos, and
P Zoller, “Self-verifying variational quantum simulation
of lattice models.” Nature 569, 355–360 (2019).

[70] Timothy Proctor, Kenneth Rudinger, Kevin Young, Erik
Nielsen, and Robin Blume-Kohout, “Measuring the ca-
pabilities of quantum computers,” Nature physics 18, 75–
79 (2022).

[71] Sergio Boixo, Sergei V. Isakov, Vadim N. Smelyanskiy,
Ryan Babbush, Nan Ding, Zhang Jiang, Michael J.
Bremner, John M. Martinis, and Hartmut Neven, “Char-
acterizing quantum supremacy in near-term devices,”
Nature physics 14, 595–600 (2018).

[72] Andrew W. Cross, Lev S. Bishop, Sarah Sheldon, Paul D.
Nation, and Jay M. Gambetta, “Validating quantum
computers using randomized model circuits,” Phys. Rev.
A 100, 032328 (2019).

[73] Richard Kueng, David M. Long, Andrew C. Doherty,
and Steven T. Flammia, “Comparing experiments to the
fault-tolerance threshold,” Phys. Rev. Lett. 117, 170502
(2016).

[74] Daniel C. Murphy and Kenneth R. Brown, “Controlling
error orientation to improve quantum algorithm success
rates,” Phys. Rev. A 99, 032318 (2019).

[75] Christopher N. Varney, Kai Sun, Victor Galitski, and
Marcos Rigol, “Kaleidoscope of exotic quantum phases
in a frustrated xy model,” Phys. Rev. Lett. 107, 077201
(2011).

[76] Zhenyue Zhu, David A. Huse, and Steven R. White,
“Unexpected z-direction ising antiferromagnetic order in
a frustrated spin-1/2 J1−J2 xy model on the honeycomb
lattice,” Phys. Rev. Lett. 111, 257201 (2013).

[77] Haiyuan Zou, Erhai Zhao, Xi-Wen Guan, and W. Vin-
cent Liu, “Exactly solvable points and symmetry pro-
tected topological phases of quantum spins on a zig-zag
lattice,” Phys. Rev. Lett. 122, 180401 (2019).

[78] Frank Pollmann, Erez Berg, Ari M. Turner, and Masaki
Oshikawa, “Symmetry protection of topological phases
in one-dimensional quantum spin systems,” Phys. Rev.
B 85, 075125 (2012).

[79] M. Born and V. Fock, “Beweis des adiabatensatzes,”
Zeitschrift für Physik 51, 165–180 (1928).

http://dx.doi.org/10.1038/ncomms13986
http://dx.doi.org/10.1038/ncomms13986
http://dx.doi.org/10.1126/sciadv.aao4748
http://dx.doi.org/10.1126/sciadv.aao4748
http://dx.doi.org/ 10.1038/s41534-019-0159-6
http://dx.doi.org/ 10.1038/s41534-019-0159-6
http://dx.doi.org/10.1126/science.aav9105
http://dx.doi.org/10.1126/science.aav9105
http://dx.doi.org/10.1103/PhysRevLett.123.080501
http://dx.doi.org/10.1103/PhysRevLett.123.080501
http://arxiv.org/abs/2104.04119
http://dx.doi.org/10.1103/PhysRevLett.121.086808
http://dx.doi.org/10.1103/PhysRevLett.121.086808
http://dx.doi.org/10.1103/PhysRevLett.125.120502
http://dx.doi.org/10.1103/PhysRevLett.125.120502
http://arxiv.org/abs/1910.05351
http://arxiv.org/abs/1910.05351
http://arxiv.org/abs/2103.12783
http://arxiv.org/abs/2104.01180
http://dx.doi.org/ 10.48550/ARXIV.2107.09676
http://dx.doi.org/ 10.48550/ARXIV.2107.09676
http://dx.doi.org/ 10.48550/ARXIV.2107.09676
http://dx.doi.org/10.1038/s41586-022-04854-3
http://dx.doi.org/10.1038/s41586-019-1177-4
http://dx.doi.org/10.1038/s41567-021-01409-7
http://dx.doi.org/10.1038/s41567-021-01409-7
http://dx.doi.org/10.1038/s41567-018-0124-x
http://dx.doi.org/10.1103/PhysRevA.100.032328
http://dx.doi.org/10.1103/PhysRevA.100.032328
http://dx.doi.org/ 10.1103/PhysRevLett.117.170502
http://dx.doi.org/ 10.1103/PhysRevLett.117.170502
http://dx.doi.org/10.1103/PhysRevA.99.032318
http://dx.doi.org/ 10.1103/PhysRevLett.107.077201
http://dx.doi.org/ 10.1103/PhysRevLett.107.077201
http://dx.doi.org/10.1103/PhysRevLett.111.257201
http://dx.doi.org/10.1103/PhysRevLett.122.180401
http://dx.doi.org/10.1103/PhysRevB.85.075125
http://dx.doi.org/10.1103/PhysRevB.85.075125
http://dx.doi.org/10.1007/BF01343193


11

[80] Alán Aspuru-Guzik, Anthony D. Dutoi, Peter J. Love,
and Martin Head-Gordon, “Simulated quantum compu-
tation of molecular energies,” Science 309, 1704–1707
(2005).

[81] Quantum Computer Datasheet, Google Quantum AI
(2021).

[82] Quantum AI team and collaborators, “qsim,” (2020).
[83] Cirq Developers, “Cirq,” (2021), See full

list of authors on Github: https://github
.com/quantumlib/Cirq/graphs/contributors.

[84] Akel Hashim, Ravi K. Naik, Alexis Morvan, Jean-Loup
Ville, Bradley Mitchell, John Mark Kreikebaum, Marc
Davis, Ethan Smith, Costin Iancu, Kevin P. O’Brien, Ian
Hincks, Joel J. Wallman, Joseph Emerson, and Irfan Sid-
diqi, “Randomized compiling for scalable quantum com-
puting on a noisy superconducting quantum processor,”

Phys. Rev. X 11, 041039 (2021).
[85] Ruslan N. Tazhigulov, Shi-Ning Sun, Reza Haghshenas,

Huanchen Zhai, Adrian T.K. Tan, Nicholas C. Rubin,
Ryan Babbush, Austin J. Minnich, and Garnet Kin-
Lic Chan, “Simulating models of challenging correlated
molecules and materials on the sycamore quantum pro-
cessor,” PRX Quantum 3, 040318 (2022).

[86] Tigran A. Sedrakyan, Leonid I. Glazman, and Alex
Kamenev, “Spontaneous formation of a nonuniform chi-
ral spin liquid in a moat-band lattice,” Phys. Rev. Lett.
114, 037203 (2015).

[87] Eric B. Jones, Logan E. Hillberry, Matthew T. Jones,
Mina Fasihi, Pedram Roushan, Zhang Jiang, Alan Ho,
Charles Neill, Eric Ostby, Peter Graf, Eliot Kapit, and
Lincoln D. Carr, “Small-world complex network genera-
tion on a digital quantum processor,” Nature Communi-
cations 13, 4483 (2022).

http://dx.doi.org/ 10.1126/science.1113479
http://dx.doi.org/ 10.1126/science.1113479
http://dx.doi.org/10.5281/zenodo.4023103
http://dx.doi.org/10.5281/zenodo.5182845
http://dx.doi.org/ 10.1103/PhysRevX.11.041039
http://dx.doi.org/10.1103/PRXQuantum.3.040318
http://dx.doi.org/10.1103/PhysRevLett.114.037203
http://dx.doi.org/10.1103/PhysRevLett.114.037203
http://dx.doi.org/ 10.1038/s41467-022-32056-y
http://dx.doi.org/ 10.1038/s41467-022-32056-y

	Realizing symmetry-protected topological phases in a spin-1/2 chain with next-nearest neighbor hopping on superconducting qubits
	Abstract
	Introduction
	Theory
	SPT phases of spin-1/2 chain with NNN hopping
	Preparation of SPT phases on a digital quantum processor

	Results
	Signatures of SPT phases
	Origin of gate depth limitations

	Discussion and Future Outlook
	Acknowledgements
	Circuit recompilation scheme
	Parasitic controlled phase in non-recompiled circuits
	References


