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The theory of optimal quantum control serves to identify time-dependent control Hamiltonians
that efficiently produce desired target states. As such, it plays an essential role in the successful
design and development of quantum technologies. However, often the delivered control pulses are
exceedingly sensitive to small perturbations, which can make it hard if not impossible to reliably
deploy these in experiments. Robust quantum control aims at mitigating this issue by finding
control pulses that uphold their capacity to reproduce the target states even in the presence of pulse
perturbations. However, finding such robust control pulses is generically hard, since the assessment
of control pulses requires to include all possible distorted versions into the evaluation. Here, we
show that robust control pulses can be identified based on disorder-dressed evolution equations.
The latter capture the effect of disorder, which here stands for the pulse perturbations, in terms of
quantum master equations describing the evolution of the disorder-averaged density matrix. In this
approach to robust control, the purities of the final states indicate the robustness of the underlying
control pulses, and robust control pulses are singled out if the final states are pure (and coincide with
the target states). We show that this principle can be successfully employed to find robust control
pulses. To this end, we adapt Krotov’s method for disorder-dressed evolution, and demonstrate its
application with several single-qubit control tasks.

I. INTRODUCTION

The increasingly precise control of individual quantum
systems has brought into reach the active harnessing of
quantum properties towards quantum technologies with
a tangible quantum advantage. Potential applications
range from quantum sensing [1], to quantum communi-
cation [2, 3], quantum simulation [4–6], and quantum
computation [7, 8]. Promising platforms [9] that are cur-
rently under intense development include, for instance,
superconducting circuits, trapped ions, quantum dots,
ultracold atoms in optical lattices, and nitrogen vacancy
centers.

Besides shielding devices from the detrimental effect
of environmental decoherence, the accurate and efficient
control of systems’ quantum dynamics is an indispensable
prerequisite for the successful deployment of quantum
technologies. This is the objective of optimal quantum
control, which aims at identifying optimal control pulses
such that the resulting Hamiltonians generate a desired
quantum evolution [10–14]. Such control pulses, which
often correspond to pulses of external electromagnetic
fields applied to the quantum systems, lie, for instance,
at the heart of the realization of quantum logic gates in
the circuit model of quantum computation.

While optimal control pulses can, in rare cases, be de-
termined analytically, one typically must resort to nu-
merical means [12, 15]. Numerical approaches include,
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e.g., the Krotov [16–19], the GRAPE (GRadient As-
cent Pulse Engineering) [20], and the CRAB (Chopped
Random-Basis) [21, 22] algorithms. Various experiments
have successfully deployed optimal control pulses ob-
tained through these methods [23–27]. However, such
numerically obtained control pulses in general prohibit
a transparent interpretation, which makes it hard if not
impossible to assess their performance under perturba-
tions.

Under realistic experimental conditions, we must ex-
pect that imprecise device control and uncontrolled ex-
ternal influences, e.g., stray fields, limit the accurate im-
plementation of control pulses, resulting in deviations
from the desired dynamics. Robust quantum control aims
to mitigate the impact of such noise and disorder by
identifying control pulses that uphold their performance
even under the presence of perturbations, see, e.g., [28–
44]. Robust control thus relies on the insight that control
pulses are not unique, which gives us the freedom to fur-
ther select them for robustness.

Various approaches to robust quantum control have
been proposed, including those adapted from classical
control theory [45–47]. A common and intuitive strat-
egy to numerically find robust control pulses relies on
sampling-based “ensemble optimization”, where the av-
erage fidelities over randomly drawn ensembles of per-
turbed pulses are compared for different unperturbed
pulses [36–38, 48]; robust pulses are then identified as
those which maximize the average fidelity with the tar-
get state. Analytical robust control solutions for special
cases have been developed, e.g., in the context of “short-
cuts to adiabaticity” [33, 49].
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Here, we propose a deterministic method for the iden-
tification of robust control pulses based on the formalism
of disorder-dressed quantum evolution. In this frame-
work, which holds in the perturbative limit of weak pulse
perturbations, an evolution equation for the disorder-
averaged quantum state is formulated, where the dis-
order here stands for the pulse perturbations [50, 51]
(earlier versions are found in [52, 53], and applications
to condensed matter systems are described, e.g., in [54–
57]). Even if each disorder realization follows a coher-
ent quantum evolution (i.e., is described as an isolated
quantum system, where a pure state remains pure), the
dynamics of the disorder-averaged state is in general in-
coherent, and hence is captured by an (in general non-
Markovian) quantum master equation. The loss of co-
herence, or equivalently purity, of the disorder-averaged
state then reflects the degree of divergence among the
different disorder realizations. This directly leads to the
key insight for our application to robust control: A con-
trol pulse can be identified as robust, if the purity of the
disorder-averaged state revives when the control pulse ap-
proaches its completion. We use this principle in order
to optimize control pulses based directly on the disorder-
dressed evolution (instead of the Schrödinger equation);
pulses that are optimized this way are automatically ro-
bust, removing the need for a separate ensemble search
for robustness.

To formulate our approach, we first adapt, in Sec-
tion II, the disorder-dressed master equation (DDME)
[51] to the context of optimal control, where the disorder
describes small perturbations of the control pulse. This
can be seen as a generalization to the DDME derived
in [51], where we now also include time-dependent pulse
perturbations. In Section III, we then present an algo-
rithm, based on the well-known Krotov method, which
numerically finds optimal control pulses that maximize
the final-time fidelity between the disorder-averaged state
and the pure target state. As we will show, the stan-
dard Krotov method must now be generalized to take the
disorder-induced incoherent contributions to the DDME
into account. While similar in spirit to ensemble opti-
mization, there is no explicit average over random dis-
order realizations involved, as the DDME inherently de-
scribes the effect of the disorder average. In Section IV,
we then demonstrate the viability of our optimization al-
gorithm with three paradigmatic single-qubit operations
that are commonly performed as quantum logic gates: a
Z gate, an X gate, and a Hadamard gate. In each ex-
ample, we observe the purity revivals predicted by the
DDME-optimized control pulses, and we show how this
results in significantly increased target-state fidelities as
compared to control pulses that are näıvely optimized
based on the Schrödinger equation (not taking pulse per-
turbations into consideration).

II. DISORDER-DRESSED EVOLUTION FROM
PULSE PERTURBATIONS

We now derive the disorder-dressed master equation
for general time-dependent Hamiltonians and disorder
potentials. The latter are subsequently identified with
pulse perturbations in the context of optimal control.
The (in general) mixed density matrix that solves this
equation describes the ensemble average over a collection
of pulse perturbations, and thus comprises the disorder
effect statistically robustly in a single quantum state. We
assume that the effect of pulse perturbations dominates
over environmental decoherence, and hence single dis-
order realizations can be described as closed quantum
systems.

We model a disordered quantum system as an ensem-
ble {(Ĥε(t), pε)} of perturbed Hamiltonians Ĥε(t), each
associated with its corresponding probability of occur-
rence pε, where ε denotes a discrete or continuous index
over the set of disorder realizations. For the sake of con-
creteness, we consider, unless specified otherwise, ε to be
continuous.

We derive the DDME following [51], but now general-
ized to time-dependent Hamiltonians and perturbations
of the form

Ĥε(t) = ˆ̄H(t) + V̂ε(t), (1)

where the mean Hamiltonian ˆ̄H(t) ≡
∫
dε pεĤε(t) rep-

resents the desired Hamiltonian giving rise to the in-
tended dynamics, and the deviations V̂ε(t) represent
time-dependent disorder “potentials” satisfying∫

dε pεV̂ε(t) = 0 ∀t. (2)

We first derive a general form of the DDME based on

these definitions, and later specify ˆ̄H(t) and V̂ε(t) to ar-
rive at the DDME that can be interpreted in the context
of pulse perturbations in optimal control.

A single realization ρ̂ε(t) within the ensemble follows
a closed-system evolution and can thus be described by
the von Neumann equation,

∂tρ̂ε(t) = − i
h̄

[Ĥε(t), ρ̂ε(t)], (3)

and all realizations evolve from the same initial state
ρ̂ε(0) = ρ̂0. To discuss formal solutions of (3), we
introduce the time evolution operator for some time-
dependent Hamiltonian Ĥ(t),

Û(tf, ti) = T exp

{
− i
h̄

∫ tf

ti

dt′ Ĥ(t′)

}
, (4)

where T denotes time-ordering, and we use the short-
hand notation Û(tf) ≡ Û(tf, 0). With this convention,
the time evolution operators generated by the Hamilto-

nians ˆ̄H and Ĥε(t) are denoted by ˆ̄U(tf, ti) and Ûε(tf, ti)
from here on.
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We seek an evolution equation for the disorder-
averaged quantum state

ˆ̄ρ(t) ≡
∫

dε pερ̂ε(t) =

∫
dε pεÛε(t)ρ̂0Û

†
ε (t), (5)

which statistically describes the effect of the perturba-
tions without resorting to individual disorder realiza-
tions. To this end, we define the individual offsets of ρ̂ε(t)
from the disorder-averaged state, denoted as ∆ρ̂ε(t), so
that

ρ̂ε(t) = ˆ̄ρ(t) + ∆ρ̂ε(t). (6)

By inserting (1) and (6) into (3), we obtain

∂tρ̂ε(t) =− i

h̄
[ ˆ̄H(t), ˆ̄ρ(t)]− i

h̄
[V̂ε(t), ˆ̄ρ(t)]

− i

h̄
[ ˆ̄H(t),∆ρ̂ε(t)]−

i

h̄
[V̂ε(t),∆ρ̂ε(t)].

(7)

Taking the ensemble average as in (5) then yields

∂t ˆ̄ρ(t) = − i
h̄

[ ˆ̄H(t), ˆ̄ρ(t)]− i

h̄

∫
dε pε[V̂ε(t),∆ρ̂ε(t)]. (8)

This shows that the dynamics of the disorder-averaged
state is coupled to the individual offsets ∆ρ̂ε(t) caused

by the disorder potentials V̂ε(t), which gives rise to an
incoherent evolution term that can generally lead to a
loss of coherence. The evolution equations for the offsets
∆ρ̂ε(t) can be obtained by taking the time derivatives in
(6) and inserting (8), yielding

∂t∆ρ̂ε(t) +
i

h̄
[Ĥε(t),∆ρ̂ε(t)]

=− i

h̄
[V̂ε(t), ˆ̄ρ(t)] +

i

h̄

∫
dε′ pε′ [V̂ε′(t),∆ρ̂ε′(t)].

(9)

In the short-time limit, the offsets to the disorder-
averaged state are sufficiently small so that we can ap-
proximate ∆ρ̂ε(t) ≈ 0. By inserting this into (9) and inte-

grating, we immediately obtain ∆ρ̂ε(t) = − i th̄ [V̂ε(t), ˆ̄ρ(t)],
which can then be substituted into (8) to recover the
short-time master equation derived in [52], now general-
ized to the time-dependent case.

The source terms on the right-hand-side of (9) exhibit
contributions from the disorder-averaged state and from
the coupling to the offsets of other disorder realizations.
With the initial condition ∆ρ̂ε(0) = 0, the formal solution
of (9) reads, using Green’s formalism,

∆ρ̂ε(t) =

∫ t

0

dt′ Ûε(t, t
′)

{
− i

h̄
[V̂ε(t

′), ˆ̄ρ(t′)]

+
i

h̄

∫
dε′pε′ [V̂ε′(t

′),∆ρ̂ε′(t
′)]

}
Û†ε (t, t′).

(10)

For the control problem to be meaningful, we can as-
sume that the disorder is weak compared to the intended

Hamiltonian, and hence we can approximate (10) to first

order in V̂ε(t), which includes Ûε(t, t
′) ≈ ˆ̄U(t, t′), so that

∆ρ̂ε(t) ≈ −
i

h̄

∫ t

0

dt′ [ ˆ̃Vε(t, t
′), ˆ̄ρ(t)], (11)

where we defined ˆ̃Vε(t, t
′) ≡ ˆ̄U(t, t′)V̂ε(t

′) ˆ̄U†(t, t′).
Finally, by substituting (11) into (8), we obtain the

general form of the DDME,

∂t ˆ̄ρ(t) =− i

h̄
[ ˆ̄H(t), ˆ̄ρ(t)] (12)

− 1

h̄2

∫
dε pε

∫ t

0

dt′ [V̂ε(t), [
ˆ̃Vε(t, t

′), ˆ̄ρ(t)]].

This equation, which holds for general time-dependent
Hamiltonians, will be the basis for our analysis of ro-
bust quantum control. Apart from the assumption that
the disorder potentials can be treated perturbatively, the
derivation is general, in particular with respect to the
dimension of the system and the control pulses. In con-
trast to the disorder-dressed master equation in the static
limit (i.e., time-independent Hamiltonians and correla-
tions within individual disorder realizations are tempo-
rally unbounded), derived in [51], the evolution (12) al-
lows for time-dependent intended Hamiltonians and dis-
order potentials, thus broadening the scope of analysis
to time-dependent control pulses and perturbations with
possibly finite temporal correlations.

Let us remark that, similar to the time-independent
case derived in [51], the evolution equation (12) can be
given the algebraic structure of the Lindblad equation,
which then allows one to assess the non-Markovian na-
ture of the evolution and its positivity.

By interpreting the disorder in terms of pulse perturba-
tions, we can now write the intended Hamiltonian and the
disorder potentials explicitly in terms of control pulses,

ˆ̄H(t) = Ĥ0 +

M∑
m=1

fm(t)Ĥm, (13)

and their associated perturbations,

V̂ε(t) =

M∑
m=1

gε,m(t)Ĥm, (14)

where M denotes the number of control pulses. Here, Ĥ0

represents the drift Hamiltonian, and {Ĥm}Mm=1 is a set
of control Hamiltonians with associated control pulses
{fm(t)}Mm=1. Each of the control pulses is subject to
a small time-dependent perturbation gε,m(t) � fm(t),
where both gε,m(t) and fm(t) are considered to be real
functions in this work. By inserting the resulting disor-
dered Hamiltonian into (12), we obtain

∂t ˆ̄ρ(t) = − i
h̄

[ ˆ̄H(t), ˆ̄ρ(t)] (15)

− 1

h̄2

M∑
m,n=1

∫ t

0

dt′ Cm,n(t, t′)[Ĥm, [
ˆ̃Hn(t, t′), ˆ̄ρ(t)]],
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where ˆ̃Hn(t, t′) ≡ ˆ̄U(t, t′)Ĥn
ˆ̄U†(t, t′), and Cm,n(t, t′) rep-

resents the correlations between the perturbations of the
pulses m and n, given by

Cm,n(t, t′) ≡
∫
dε pεgε,m(t)gε,n(t′). (16)

Note that, while the first term of (15) corresponds to
the unitary evolution generated by the intended Hamil-
tonian, the presence of disorder gives rise to effective
decoherence, as described by the second term. In the
remainder, we refer to (15) as the DDME.

We remark that the perturbative nature of the DDME
implies a finite temporal validity range that depends on
the amplitudes of the pulse perturbations. Outside its
validity range, the solution of the DDME ceases to be
a good approximation to the disorder-averaged quantum
state (5), and eventually may even become unphysical,
i.e., exhibit negative eigenvalues. In the context of op-
timal control, the prerequisite that the disorder-induced
deviations remain small at the target time (a sine qua
non for high-fidelity applications) guarantees that the
DDME operates within its limits of validity. Indeed, in
the numerical examples considered below, we find excel-
lent agreement between the solution of the DDME and
the respective brute-force ensemble-averaged states.

We can recover the static-limit quantum master equa-

tion derived in [51], if we consider both ˆ̄H(t) and V̂ε(t)
in (12) to be constant in time. In the context of optimal
and robust quantum control, however, the possibility of
time-dependent control pulses is imperative. When as-
suming a time-constant correlation function while keep-

ing ˆ̄H(t) time-dependent, (15) allows for the analysis of
time-dependent control pulses under static pulse pertur-
bations.

In the opposite limit of vanishing correlation time (for
simplicity, we also assume vanishing correlations among
the control pulses), Cm,n(t, t′) = αδ(t − t′)δmn ∀m,n ∈
{1, 2, ...,M}, with α > 0, the DDME reduces to

∂t ˆ̄ρ(t) = − i
h̄

[ ˆ̄H(t), ˆ̄ρ(t)]− α

2h̄2

M∑
m=1

[Ĥm, [Ĥm, ˆ̄ρ(t)]], (17)

which agrees with the quantum master equation for
Gaussian white noise considered, e.g., in [58]. It is in-
structive to convert (17) into Lindblad form

∂t ˆ̄ρ(t) = − i
h̄

[ ˆ̄H(t), ˆ̄ρ(t)] +
α

h̄2

M∑
m=1

L
(
Ĥm

)
ˆ̄ρ(t), (18)

where L
(
L̂
)
ρ̂ = L̂ρ̂L̂† − 1

2 L̂
†L̂ρ̂ − 1

2 ρ̂L̂
†L̂. This mas-

ter equation is manifestly Markovian, in which case the
Hermitian Lindblad operators Ĥm can never increase the
state purity. This shows that the purity resurgences
which characterize robust control pulses cannot be ob-
served in the limit of vanishing temporal correlations,
and pulse optimization can at best minimize the purity

loss in this limit. Only finite temporal correlation times
can give rise to the non-Markovian behavior that empow-
ers robust quantum control.

III. KROTOV-BASED OPTIMIZATION

By the definition of ˆ̄ρ(t), it follows directly that the
fidelity with the target state ρ̂targ is equal to unity at
time t if and only if the fidelity between ρ̂ε(t) and the
target state is equal to unity for all ε. Therefore, by
maximizing the fidelity between a target state and the
disorder-averaged state at some specified final time T ,
one can obtain a set of control pulses that drive the initial
state to the target state robustly under the influence of
disorder.

The purity of a disorder-averaged state, defined by
P (ˆ̄ρ(t)) = Tr

{
ˆ̄ρ(t)2

}
, too, is equal to unity at the fi-

nal time if its fidelity with a pure target state is equal to
unity. In the context of pulse perturbations, this intu-
itively corresponds to the situation where the closed evo-
lution reaches the target state regardless of any pulse per-
turbation that may occur in the disorder model. Thus,
for a given set of control pulses and a model of disorder,
one can use the purity at the final time of the disorder-
averaged state driven by these control pulses as a measure
of robustness. Similarly to [51], one can convert (12) into
Lindblad form and notice that the presence of negative
decoherence rates can give rise to a resurgence of coher-
ence in the system. With a robust set of control pulses,
the purity may initially decay at times t > 0 due to en-
semble averaging, but then increase again before t = T
so that it reaches unity at the final time. We stress that,
under the strictly unital dynamics described by the dis-
order average, such purity increases are necessarily an
indication of the non-Markovian nature of the evolution.

Here we develop a pulse-optimization algorithm
that maximizes the fidelity between a pure target
state and the disorder-averaged state, F (ρ̂targ, ˆ̄ρ(t)) =

Tr

{√
ρ̂

1/2
targ

ˆ̄ρ(t)ρ̂
1/2
targ

}
, evaluated at the final time of the

disorder-dressed evolution. Starting from a set of con-
trol pulses that drive an initial state to the target state
with fidelity equal to unity in the disorder-less limit,
we iteratively optimize the pulse shapes over each of
their discretized time steps as we reintroduce disorder.
The algorithm is inspired by the linear variant of Kro-
tov’s method, which is a standard optimal quantum con-
trol algorithm that is usually applied to closed quantum
systems following linear evolution equations [19]. How-
ever, Krotov’s method has also been generalized to non-
unitary evolutions by considering the density operator as
a vector in Liouville space and replacing the Hamilto-
nian by a Liouvillian [59–62]. Similarly, the algorithm
described here generalizes to disorder-dressed evolutions
by replacing the usual von-Neumann equation with the
DDME.

Krotov’s method is an iterative optimization algo-
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rithm, for which the pulse update rule is designed to
achieve, by construction, monotonic convergence of its
cost functional. We consider here the linear variant of
the algorithm, where the guarantee for monotonic con-
vergence may be lost in some control problems, but which
often still converges for an appropriate choice of step size.

To specify the quantum evolution to be solved with
the DDME in each iteration, the algorithm requires
the input of an initial state ρ̂0, a set of initial guess
pulses {fguess

m (t)}Mm=1, drift and control Hamiltonians,
and temporal correlation functions governing the disor-
der or noise suffered by the control pulses, cf. (16). The
guess pulses will only be used in the first iteration, after
which the control pulses will be repeatedly updated. In
order to harness the disorder-averaged state as the solu-
tion of the DDME to obtain the updated control pulses,
the algorithm further requires a target state ρ̂targ, a set
of inverse Krotov step sizes {λm}Mm=1, and a set of up-
date shape functions {Sm(t)}Mm=1 that can be used to
ensure boundary conditions on the control pulses, where
Sm(t) ∈ [0, 1] ∀m. The cost functional is given by [59, 62]

J({f (i)
m (t)}Mm=1) = JT({f (i)

m (t)}Mm=1)

+

M∑
m=1

λm

∫ T

0

dt

[
∆f

(i)
m (t)

]2
Sm(t)

,
(19a)

where

JT({f (i)
m (t)}Mm=1) = 1− Tr

{
ρ̂targ ˆ̄ρ(i)(T )

}
(19b)

and

∆f (i)
m (t) ≡ f (i)

m (t)− f ref
m (t) (19c)

for some reference pulse f ref
m (t) to the mth control pulse,

and we use superscripts to denote the iteration number

i ∈ {0, 1, 2, ...} with f
(0)
m (t) ≡ fguess

m (t) ∀m. In this work,

we use the standard choice f ref
m (t) = f

(i−1)
m (t) [63]. JT

corresponds to the infidelity and is the main part of J
that we would like to minimize, and the second term of J
is a running cost on the control pulses, which is necessary
for the derivation of the Krotov update step.

Let us express the right-hand side of the DDME as
a superoperator K that depends on the upper limit t
of the time integral and all control pulses {fm(t′)}Mm=1

∀ 0 ≤ t′ ≤ t, acting on ˆ̄ρ(t) so that ∂t ˆ̄ρ(t) =
K(t, {fm(t′)}Mm=1) ˆ̄ρ(t). The algorithm then involves solv-
ing the co-state ˆ̄χ(t) from the final value problem{

∂t ˆ̄χ
(i)(t) = −K†(t, {f (i)

m (t′)}Mm=1) ˆ̄χ(i)(t)
ˆ̄χ(i)(T ) = ρ̂targ.

(20)

Note that the time integral in the DDME is still eval-
uated from 0 to t, even though the equation is solved
backwards. Within the algorithm, this corresponds to
first solving for

η̂m,n(t) ≡
∫ t

0

dt′ Cm,n(t, t′) ˆ̃Hn(t, t′), (21)

cf. (15), and then solving (20) backwards by treating it
as a time-local equation that depends on η̂m,n(t).

In practice, the disorder-averaged state is evaluated
on a discretized time grid, where ts = s∆t for s ∈
{0, 1, ..., NT} with uniform spacing ∆t ≡ T

NT
. Every con-

trol pulse is then evaluated on an interleaved time grid
such that fm,(k) ≡ fm(t̃k−1) for k ∈ {1, 2, ..., NT} and

t̃k−1 ≡ tk−1+tk
2 . To avoid confusion, we use subscripts

with square brackets to denote evaluation on the former
time grid, and round brackets for the latter. We intro-
duce, based on first-order Lie-Trotter decomposition, a
superoperator

V(k) ≈ exp
{

∆tK(k),{fm,(k′)}

}
∀ 1 ≤ k′ ≤ k (22)

such that ˆ̄ρ[k] = V(k) ˆ̄ρ[k−1], where K(k),{fm,(k′)} ≡
K(tk, {fm,(k′)}Mm=1). That is, V(k) solves the DDME to

evolve ˆ̄ρ[k−1] to ˆ̄ρ[k]. The co-states are then written as

ˆ̄χ[k] = V†(k+1)V
†
(k+2)...V

†
(NT) ρ̂targ. (23)

Similarly, we introduce the superoperator Ū(k,k′) corre-
sponding to the unitary evolution generated by the in-
tended Hamiltonian such that

ˆ̃Hm,[k,k′] ≡ Ū(k,k′) Ĥm

≡ Ū(k) Ū(k−1)... Ū(k′+1) Ĥm (24)

≡ ˆ̄U(k)
ˆ̄U(k−1)...

ˆ̄U(k′+1)Ĥm
ˆ̄U†(k′+1)...

ˆ̄U†(k−1)
ˆ̄U†(k).

The update rule that we apply to minimize J (i) is given
by

∆f
(i)
m,(k) =

Sm,(k)

λm

NT∑
j=k

Tr

{
ˆ̄χ

(i)
[j]

∂K(j),{fm,(k′)}

∂fm,(k)

∣∣∣∣(i) ˆ̄ρ
(i)
[j]

}
,

(25a)
where

∂K(j),{fm,(k′)}

∂fm,(k)

∣∣∣∣(i)ρ̂ = − i
h̄
δkj [Ĥm, ρ̂]

− 1

h̄2

M∑
n1,n2=1

[
Ĥn1 ,

[
∂η̂n1,n2,(j)

∂fm,(k)

∣∣∣∣(i), ρ̂]]
(25b)

∀ρ̂ and

∂η̂n1,n2,(j)

∂fm,(k)

∣∣∣∣(i) = − i(∆t)
2

h̄

k−1∑
k′=0

Cn1,n2,(j)(k′+1)

Ū (i)
[j,k]

[
Ĥm,

ˆ̃H
(i)
n2,[k,k′]

]
.

(25c)

Here, δkj is the Kronecker delta. Note that the sum-
mation over future time indices in (25a) is present only
because of the contribution from the time-nonlocal in-
coherent term in the DDME, and we recover the usual
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Krotov update step for unitary evolution if we take the
correlation function to be identically 0, which is the case
for unperturbed control pulses.

When Krotov’s method is applied to Markovian quan-
tum dynamics, within each iteration, each time step of
all control pulses is updated sequentially from k = 1
to k = NT. The quantum state must be evaluated
using the updated set of control pulses from previous
time steps of the current iteration, while the co-states
are evaluated outside of the sequential update loop us-
ing control pulses from the previous iteration. The up-
date rule can be applied to each control pulse indepen-
dently. After all control pulses have been updated until
k = NT (corresponding to the final time), the iteration
number is incremented. The same process is then re-
peated until some predefined termination condition has
been met, such as an absolute or relative tolerance on

J
(i)
T ≡ JT({f (i)

m (t)}Mm=1) or a maximum number of itera-
tions.

For the optimization algorithm developed here, which
targets at robust quantum control within the framework
of disorder-dressed evolution, we maintain the general
approach of Krotov’s method with the termination con-
dition defined by an absolute tolerance Jtol. However,
there is one crucial difference: since the DDME is a non-
Markovian quantum master equation, the update rule
for a control pulse at a specific time step depends on
the disorder-averaged state in the present and all future
time steps. Although it is generally possible to apply a
non-Markovian quantum master equation in the Krotov
framework in a time-local fashion as in [64], where an
extended Liouville space was considered, here we bypass
this difficulty by computing the update at time step k
with V(κ) being fully updated ∀κ < k and only partially
updated ∀κ ≥ k; that is, the superscript (i) on opera-
tors (but not control pulses) in (25) refers to evaluations

based on {f (i)
m,(κ)} ∀κ < k and {f (i−1)

m,(κ)} ∀κ ≥ k. By

“partially updated”, we refer to the fact that even before
a control pulse gets updated at a specific time step, the
propagator at this time step has already been affected
by updated control pulses in the past. That is why co-
states are evaluated at iteration i in (25a), instead of at
(i − 1) as in the standard Krotov method. The tradeoff
here is the additional computational cost from solving
the DDME over the entire future time grid in each step
of the sequential update loop and the presence of the
summation in (25a); however, we do not focus on com-
putational efficiency in this work. A pseudocode for the
Krotov-based optimization algorithm used in this work
is given in Appendix A.

IV. SINGLE-QUBIT CONTROL TASKS

In the following, we apply the Krotov-based DDME
optimization algorithm to obtain robust control pulses for
three single-qubit tasks. The three examples considered

are state-to-state transfer tasks that correspond to Z, X,
and Hadamard operations that are commonly applied in
quantum information processing.

Throughout this section, we restrict ourselves to a sin-
gle control pulse, M = 1, and thus abbreviate, with-
out ambiguity, f(t) ≡ f1(t), C(t, t′) ≡ C1,1(t, t′), S(t) ≡
S1(t), and λ ≡ λ1. Next, we specify the drift and con-

trol Hamiltonians to be Ĥ0 = h̄ω0σ̂z and Ĥ1 = h̄ω0σ̂x

for some frequency ω0, and we denote σ̂q as the Pauli-
q operator for q ∈ {x, y, z}. Furthermore, we work in
units where h̄ = ω0 = 1. To discretize time, we choose
T = 10/ω0 and NT = 100. We also specify the cor-
relation function to take the stationary Gaussian form

C(t, t′) = C0 exp
{
− (t−t′)2

t2corr

}
, where tcorr is the correlation

time and C0 is in the order of g2
ε (t). We assume C0 = 0.01

and tcorr = 100/ω0 = 10T , focusing on the limit of quasi-
static pulse perturbations where robust quantum control
can be maximized.

We remark that the disorder correlation strength C0,
which encodes the (square of the) amplitude of the pulse
perturbations, is chosen such that the perturbations have
a significant impact on the performance of (non-robust)
pulses, potentially reducing the purity of the disorder-
averaged state at the target time by more than twenty
percent for some control tasks; nevertheless, the chosen
C0 is still well within the validity range of the DDME,
as demonstrated by the excellent agreement between the
solution of the DDME and the brute-force ensemble-
averaged quantum states. Indeed, additional numeri-
cal analysis (not displayed) has shown that the approx-
imation still works reasonably well if C0 is increased by
more than an order of magnitude, and the solution of the
DDME may become unphysical not before C0 > 1.

Note that, for a single qubit, our choice of Ĥ0 and Ĥ1

guarantees controllability between arbitrary (pure) ini-
tial states and (pure) target states (see, e.g., [65]). This
allows us to use an initial guess pulse h(t) to first obtain
a Schrödinger Equation (SE)-optimized pulse fSE(t) that
drives the initial state to the target state in the disorder-
less limit, and then use this SE-optimized pulse as our
guess pulse for the Krotov-based DDME optimizer to fi-
nally obtain the DDME-optimized pulse fDDME(t). We
employ the standard Krotov method as used in optimal
quantum control to obtain fSE(t), and choose h(t) such
that h(0) ≈ 0 and h(T ) ≈ 0. For both types of Krotov’s
method, we prevent the initial and final time values of
the control pulses from being updated by choosing S(t)
to be [66]

S(t) =


B(t; 0, 2 ton) for 0 < t < ton

1 for ton < t < T − toff

B(t; T − 2 toff, T ) for T − toff < t < T

(26a)
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where B(t; t0, t1) is given by the Blackman shape [67]

B(t; t0, t1) =
1− a

2
− 1

2
cos

(
2π

t− t0
t1 − t0

)
+
a

2
cos

(
4π

t− t0
t1 − t0

)
,

(26b)

for a = 0.16 and some tunable ton and toff.
The first example considers ρ̂0 = |+〉〈+| and ρ̂targ =

|−〉〈−|, where |+〉 and |−〉 are the positive and nega-
tive eigenstates of σ̂x. Thus, the target operation cor-
responds to a Z gate applied to a qubit initialized in
the |+〉 state. We use an initial guess pulse h(t) =

exp
{
−ω

2
0(t−T

2 )2

2

}
, which is a Gaussian function centered

at T
2 . Both Krotov’s method based on the Schrödinger

equation and based on the DDME are performed with
ton = toff = 2/ω0, and for the latter we choose λ = 1.25
and Jtol = 0.003 to obtain fDDME(t).

As a second example, we investigate the case where
ρ̂0 = |0〉〈0| and ρ̂targ = |1〉〈1|, so that the target opera-
tion corresponds to an X gate applied to a qubit initial-
ized in the |0〉 state. We continue to use the same h(t)
and S(t) as in the previous example to obtain fSE(t);
however, this time we choose λ = 0.5 and Jtol = 0.003 to
obtain fDDME(t) with a higher learning rate.

Finally, we consider the transition from ρ̂0 = |0〉〈0| to
ρ̂targ = |+〉〈+|, so that the target operation corresponds
to a Hadamard gate applied to a qubit initialized in the
|0〉 state. For this example, we choose h(t) = sin (πtT ) and
S(t) with ton = toff = 0.3/ω0. Here, fDDME(t) was then
obtained from fSE(t) with λ = 1.25 and Jtol = 0.003.

The results of the numerical experiments for the three
examples are shown in Figure 1 (a-d), (e-h), and (i-l) in
the same order, where each plot in the same vertical line
displays the same features across the different examples.
Curves associated with fSE(t) are shown in orange, while
those associated with fDDME(t) are colored in green. For
each of the examples, we show h(t) (dotted blue), fSE(t)
(dash-dotted orange), and fDDME(t) (dashed green) in
Figure 1 (a,e,i).

To compare the performance of the SE-optimized and
the DDME-optimized control pulses with respect to ro-
bustness, we solve the disorder-dressed evolution for both
control pulses and compare the resulting state purities.
In particular, a final-time purity close to (or of exactly)
unity indicates that the state trajectories associated with
different disorder realizations have all arrived close to (or
exactly at) the target state.

The results of these purity comparisons are shown in
Figure 1 (b,f,j). To demonstrate the excellent approxi-
mation of the DDME, we determine the disorder-dressed
evolution in two ways: by solving the DDME (solid and
dash-dotted lines), and by numerically exact brute-force
averaging (dashed and dotted lines) as described by the
definition (5) of the disorder-averaged quantum state. In
the latter case, we averaged over 4000 random realiza-
tions of symmetric Gaussian noises gε(t) according to a
Gaussian probability distribution and in agreement with

the correlation function C(t, t′). We find very good agree-
ment between the two methods within the timescale con-
sidered.

Consistently across the examples, we observe that,
while the state purity under the SE-optimized evolu-
tion tends to ongoingly decrease, the state purity under
the DDME-optimized evolution recovers after some time
and rises close to unity at the final time. Thus, we ob-
serve that, as expected, fDDME(t) exhibits significantly
increased robustness against disorder.

Figure 1 (c,g,k) display the fidelities between the
disorder-averaged state and the target state for both the
evolution generated by the SE-optimized (dash-dotted
and dotted orange lines) control pulse and the evolution
generated by the DDME-optimized (solid and dashed
green lines) control pulse, where the disorder-dressed evo-
lutions are again obtained both by solving the DDME
and by brute-force averaging. To highlight the most
relevant region, we magnify the final-time infidelities in
the insets on a logarithmic scale. Consistent with the
purity evolutions, the DDME-optimized pulses achieve
final-time fidelities above 0.999 for all examples, while
about 3% in (c), 2% in (g), and 7% in (k) are lost with
the SE-optimized pulses. This strikingly demonstrates
the robustness boost that is obtained with the disorder-
dressed evolution approach.

Finally, for concreteness, we show in Figure 1 (d,h,l)
the Bloch-sphere trajectories for a single arbitrarily cho-
sen disorder realization when the qubit is either driven
by the SE-optimized (orange) or by the DDME-optimized
(green) control pulse. For each example, we observe that
the final state under the SE-optimized evolution devi-
ates largely from the target state, while the final state
of the DDME-optimized evolution remains close to the
target state. This pattern holds for other disorder real-
izations as well, and further confirms the robustness of
the DDME-optimized pulse.

Let us repeat that we have focused on quasi-static
pulse perturbations (tcorr � T ), since in this limit
the performance of robust quantum control can be
maximized and full purity revivals can in principle be
achieved, as exposed by our numerical examples. In
contrast, the opposite limit of vanishing temporal cor-
relations severely limits robust control, cf. (18). We
also verified this numerically with tcorr = 0.05T in Fig-
ure 2, where our algorithm was not able to deliver fi-
delity increases when starting with SE-optimized pulses.
In between these two extreme cases, we observe a mono-
tonic cross-over, where the convergence speed of the al-
gorithm, the maximum achievable purity of the disorder-
averaged state, and the fidelity of the disorder-averaged
state with the target state decrease with decreasing cor-
relation time, see Figure 2.
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(a)

≈

(b)

(c)
(d)

(e)

≈

(f)

(g)
(h)

(i)

≈

(j)

(k)
(l)

FIG. 1. Robust control for the single-qubit control tasks: (a-d) ρ̂0 = |+〉〈+| and ρ̂targ = |−〉〈−|, (e-h) ρ̂0 = |0〉〈0| and
ρ̂targ = |1〉〈1|, and (i-l) ρ̂0 = |0〉〈0| and ρ̂targ = |+〉〈+|. (a,e,i) Compared are a DDME-optimized control pulse (dashed green
line), which is informed about the statistics of pulse perturbations, and a perturbation-ignorant SE-optimized control pulse
(dash-dotted orange line). The initial guess pulse (dotted blue line) is assumed to be Gaussian in (a-d) and (e-h), and sin

(
πt
T

)
in

(i-l). (b,f,j) If perturbations are added to the optimized pulses, the purity, P (ˆ̄ρ(t)) = Tr
{

ˆ̄ρ(t)2
}

, of the disorder-averaged state
tends to decrease for the SE-optimized control pulse, while it revives for the DDME-optimized control pulse and reaches a value
close to unity at the target time. The latter indicates that the differing evolutions induced by individual pulse perturbations
all converge to the target state. Disorder-averaged states are obtained as solutions of the DDME (solid and dash-dotted
lines) and by brute-force ensemble averaging over the evolutions induced by 4000 random pulse perturbations (dashed and
dotted lines), and we find very good agreement between the two evaluation methods. This demonstrates that the DDME
approximates the evolution of the disorder-averaged states well. (c,g,k) In agreement with the purity, the fidelity between

the target state and the disorder-averaged state, F (ρ̂targ, ˆ̄ρ(t)) = Tr

{√
ρ̂

1/2
targ

ˆ̄ρ(t)ρ̂
1/2
targ

}
, arrives at above 0.999 for all three

DDME-optimized control pulses, while it is diminished to 0.971 in (c), 0.975 in (g), and 0.930 in (k) under the SE-optimized
pulses. This drastic performance discrepancy is highlighted in the insets, where the infidelities 1−F close to the final time are
displayed on a logarithmic scale. Recall that, by construction, the SE-optimized pulses yield fidelities of unity in the absence of
pulse perturbations. (d,h,l) Bloch-sphere evolution under an individual pulse perturbation. While the DDME-optimized pulse
transports the initial state (dark grey arrow) close to the target state, the final state driven by the SE-optimized pulse deviates
largely from the target state. This pattern holds generally throughout different disorder realizations.

V. CONCLUSIONS

We have demonstrated how robust control pulses can
be systematically identified with the help of disorder-
dressed evolution equations. The latter apply in the
perturbative limit of weak pulse distortions. In contrast

to schemes based on searches over random ensembles,
our approach is deterministic, relying on the maximiza-
tion of the purity of the disorder-averaged state. We
expect that this conceptually founded approach will fur-
ther deepen our understanding of what constitutes robust
control pulses, and in special cases analytical solutions



9

0 5 10 15 20 25 30
Iterations
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F)

tcorr = 0.05 T
tcorr = 0.2 T
tcorr = 0.6 T
tcorr = T
tcorr = 1.4 T

FIG. 2. Role of temporal correlations in the pulse perturba-
tions for the prospect of robust control. For the control task
ρ̂0 = |+〉〈+| and ρ̂targ = |−〉〈−| (the first example discussed in
Section IV), and starting from the SE-optimized control pulse,
the Krotov-based optimization is performed for different cor-
relation times tcorr ∈ {0.05T, 0.2T, 0.6T, T, 1.4T} (displayed
as lines from top to bottom corresponding to ascending or-
der of tcorr) for T = 10/ω0 while fixing all other parameters.
Without specifying an absolute tolerance, the optimizer is run
for 30 iterations. We find that the infidelity does not decrease
in the near-Markovian limit (tcorr = 0.05T ), indicating that
robust control becomes impossible in this limit, in agreement
with (18). With increasing correlation time, we observe a
monotonic cross-over to the quasi-static case (tcorr = 1.4T ),
where the convergence speed of the algorithm and the fidelity
of the disorder-averaged state with the target state increase
with increasing correlation time. The performance difference
in terms of the infidelity reduction can, depending on the cor-
relation time, span several orders of magnitude.

may be possible. For the automatized numerical deter-
mination of robust control pulses in field applications,
we have developed an adapted and generalized variant of
Krotov’s method. Our single-qubit demonstrations ex-
pose the power of our method, indicated by target-state
fidelities beyond 0.999, which amounts to improvements
of up to two orders of magnitude across the examples.

To formulate the underlying disorder-dressed evolu-
tion equation, we have generalized existing formula-
tions to time-dependent Hamiltonians; moreover, we
have adapted them to (in general time-dependent) pulse
perturbations. In our numerical analysis, we focus
on the (quasi-static) limit of correlation times larger
than the pulse duration, where pulse perturbations vary
slowly over the temporal extent of the pulse. In this
limit, the disorder-dressed evolution becomes highly non-
Markovian and (in principle full) purity revivals can
emerge.

We have adopted Krotov’s method for our numerical
implementation, and its successful application to several

single-qubit control tasks verifies the viability of the al-
gorithm. Irrespectively, the main focus of this work is
conceptual, and the adoption of other optimal control
algorithms to the disorder-dressed evolution may yield
further performance improvements. Moreover, a com-
parison of the computational complexity of the disorder-
dressed approach with the computational complexities
of other approaches to robust control may be insight-
ful. While there is an increased cost per iteration due to
the adaption of the disorder-dressed master equation to
the updated pulse at each time step, our numerical ex-
periments indicate that the required number of iterations
may be reduced by several orders of magnitude compared
to, e.g., ensemble optimization. For the single-qubit tasks
considered above our algorithm converges after less than
30 iterations.

While we restrict us in our numerical analysis to proof-
of-principle demonstrations with single qubits and single
control pulses, our method and the developed algorithm
are applicable to general (finite-dimensional) quantum
systems and arbitrary numbers of control pulses. For
example, a natural next step would be to address the ro-
bust control of entangling two-qubit gates. Moreover, the
DDME formalism is easily adapted to error sources other
than pulse perturbations, such as, e.g., disorder on the
drift Hamiltonian. Finally, while the presented formalism
is designed for the mitigation of coherent error sources
(i.e., disorder in the Hamiltonian), it should be clear
that the formalism and code can be naturally extended
to include also decoherence channels induced by envi-
ronmental coupling. These channels would then, to first
order in the sufficiently small environment-induced deco-
herence rates, be added as (Markovian) incoherent dy-
namical terms to the evolution of the disorder-averaged
quantum state.

ACKNOWLEDGMENTS

Part of the code used in the numerical experiments
utilizes the tools provided by QuTiP [68, 69]. C.G.
would like to thank D. Burgarth for discussions during his
visit funded by the Australian Research Council, project
FT190100106, where the idea to apply disorder-dressed
evolution to robust control was born. F.N. is supported
in part by: Nippon Telegraph and Telephone Corpora-
tion (NTT) Research, the Japan Science and Technology
Agency (JST) [via the Quantum Leap Flagship Program
(Q-LEAP), Moonshot R&D Grant No. JPMJMS2061],
the Japan Society for the Promotion of Science (JSPS)
[via Grants-in-Aid for Scientific Research (KAKENHI)
Grant No. JP20H00134], the Army Research Office
(ARO) (Grant No. W911NF-18-1-0358), the Asian Of-
fice of Aerospace Research and Development (AOARD)
(via Grant No. FA2386-20-1-4069), and the Foundational
Questions Institute Fund (FQXi) via Grant No. FQXi-
IAF19-06.



10

Appendix A: Pseudocode for Krotov-based
Optimization Algorithm

We present in Algorithm 1 the pseudocode for the
Krotov-based optimization algorithm for robust quan-
tum control introduced in the main text, following
an implementation inspired by [66], but highly mod-
ified. The pseudocode terminates with the satisfac-
tion of an absolute tolerance J tol

T or a maximum num-
ber of iteration imax, where if there exists i ≤ imax

such that J (i) < J tol
T , then the algorithm succeeds

and outputs a set of discretized optimal control pulses
{{fopt

m,(k)}
M
m=1}

NT

k=1. Otherwise, the algorithm fails, and

terminates right after the iteration where i = imax. We

take the unitary (generated by ˆ̄H(t)), DDME, and back-
ward DDME solvers to be given functions, and denote
their evolutions from t = tj′ to t = tj for j ≥ j′ by

Ū (i)
[j,j′]( · ), V(i)

[j,j′](A; · ), and V†(i)[j,j′](A; · ), respectively.

Here, the unitary solver depends on Ĥ0, {Ĥm}Mm=1 and

{{f (i)
m,(k)}

M
m=1}

j
k=j′+1, but we suppress these dependences

in the pseudocode for clarity of the presentation. The
DDME and backward DDME solvers additionally de-

pend on {η̂(i)
n1,n2,[k]}

j
k=j′+1, which will be precomputed

using {{f (i)
m,(k)}

M
m=1}

j
k=0 and stored in the storage ar-

ray A, hence the notation. Similarly, we suppress the
inputs to the functions D(i) Solver, η̂(i) Solver and
ˆ̃H(i) Solver defined in the pseudocode whenever they
are called, and their inputs are to be understood as cor-
responding to the inputs in the function definition unless
specified otherwise. All sets of inputs in the function def-
initions are to be understood as running over all indices
(e.g. {Ĥm} means {Ĥm}Mm=1). The time integral in (21)
and thus (25c) are approximated by Riemann sums.
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Algorithm 1 Krotov-based Optimization Algorithm for Robust Quantum Control

Inputs and auxiliary functions:

1. Initial density matrix ρ̂0

2. Target density matrix ρ̂targ

3. Drift Hamiltonian Ĥ0

4. Control Hamiltonians {Ĥm}Mm=1

5. Guess pulses {{fguess
m,(k)}

M
m=1}NT

k=1

6. Correlation functions {{Cn1,n2,(j)(l)}
M
n1,n2=1}NT

j,l=1

7. Update shape functions {{Sm,(k)}Mm=1}NT
k=1

8. Inverse Krotov step sizes {λm}Mm=1

9. Absolute cost tolerance Jtol
T

10. Maximum number of iterations imax

11. Unitary Solver Ū (i)

[j,j′]( · )

12. DDME Solver V(i)

[j,j′](A; · )

13. Backward DDME Solver V†(i)[j,j′](A; · )

Success Criterion: ∃ iteration number i such that i ≤ imax and J
(i)
T ≡ JT({{f (i)

m,(k)}
M
m=1}NT

k=1) ≤ Jtol
T . Failure otherwise.

Output: Optimized set of control pulses {{fopt
m,(k)}

M
m=1}NT

k=1 such that J
(i)
T ≤ Jtol

T .

1: procedure DDME Krotov Optimization(ρ̂0, ρ̂targ, Ĥ0, {Ĥm}, {fguess
m,(k)}, {Cn1,n2,(j)(l)}, {Sm,(k)}, {λm}, Jtol

T , imax)

2: allocate storage array Φ[0 . . . NT] . for ˆ̄ρ(t)
3: allocate storage array X[0 . . . NT] . for ˆ̄χ(t)
4: allocate storage array A[1 . . .M, 1 . . .M, 0 . . . NT] . for η̂n1,n2(t)

5: allocate storage array B[1 . . .M, 0 . . . NT, 0 . . . NT] . for ˆ̃Hm(t, t′)
6: Φ[0]← ρ̂0

7: X[NT]← ρ̂targ

8: ∀m, k : f
(0)

m,(k) ← fguess
m,(k) . initial guess pulse

9: B ← ˆ̃H(0) Solver( · · · ; B)

10: A← η̂(0) Solver( · · · ; B,A)

11: Φ[NT]← V(0)

[NT,0](A; Φ[0])

12: J
(0)
T ← 1− Tr{X[NT]Φ[NT]} . cost before optimization (19b)

13: i← 0 . iteration number
14: while J

(i)
T > Jtol

T and i < imax do . optimization loop
15: i← i+ 1
16: ∀m, k : f

(i)

m,(k) ← f
(i−1)

m,(k)

17: for k ← 1, 2, . . . , NT do . sequential update loop
18: if k 6= NT then
19: for j ← NT − 1, NT − 2, . . . , k do

20: X[j]← V†(i)[j,j+1](A;X[j + 1]) . store ˆ̄χ(i−1)(t) ∀ future time steps

21: end for
22: end if
23: for j ← k, k + 1, . . . , NT do

24: Φ[j]← V(i)

[j,j−1](A; Φ[j − 1]) . store ˆ̄ρ(i)(t) ∀ future time steps

25: end for
26: for m← 1, 2, . . . ,M do . update each control pulse independently
27: Dm,(k) ← D(i) Solver( · · · ; Φ, X, B, m, k) . obtain gradient (25)

28: f
(i)

m,(k) ← f
(i−1)

m,(k) +
Sm,(k)

λm
Dm,(k) . apply update (25a)

29: end for

30: B ← ˆ̃H(i) Solver( · · · ; B) . recalculating A & B after sequential update step

31: A← η̂(i) Solver( · · · ; B,A)

32: Φ[k]← V(i)

[k,k−1](A; Φ[k − 1]) . replace Φ[k] with the one evolved with updated {fm,(k)}Mm=1

33: end for
34: J

(i)
T ← 1− Tr{X[NT]Φ[NT]} . obtain cost after iteration i (19b)

35: end while
36: if J

(i)
T ≤ Jtol

T then

37: ∀m, k : fopt
m,(k) ← f

(i)

m,(k)

38: return {{fopt
m,(k)}

M
m=1}NT

k=1 . return optimized set of control pulses if converged

39: end if
40: end procedure
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Algorithm 1 Krotov-based Optimization Algorithm for Robust Quantum Control (continued)

41: procedure D(i) Solver(Ĥ0, {Ĥm}, {f (i)

m,(k)}, {Cn1,n2,(j)(l)}; Φ, X, B, m, k)

42: D̃1 ← − i
h̄

[Ĥm,Φ[k]] . derivative of coherent term

43: D ← Tr
{
X[k]D̃1

}
44: for j ← k, k + 1 . . . , NT do . summation from product rule (25a)

45: D̃2 ← 0
46: for n1 ← 1, 2 . . . ,M do
47: for n2 ← 1, 2 . . . ,M do
48: D̃′2 ← 0
49: for l← 0, 1 . . . , k − 1 do . Riemann sum (25c)

50: D̃′2 ← D̃′2 + Cn1,n2,(j)(l+1)Ū (i)

[j,k]([Ĥm, B[n2, k, l]])

51: end for
52: D̃′2 ← − i(∆t)

2

h̄
D̃′2

53: D̃2 ← D̃2 + [Ĥn1 , [D̃
′
2,Φ[j]]]

54: end for
55: end for
56: D̃2 ← − 1

h̄2 D̃2

57: D ← D + Tr
{
X[j]D̃2

}
. add derivative of incoherent terms

58: end for
59: return D . derivative of coherent & incoherent terms
60: end procedure

61: procedure η̂(i) Solver({Cn1,n2,(j)(l)}; B, A)
62: for n1 ← 1, 2, . . . ,M do
63: for n2 ← 1, 2, . . . ,M do
64: A[n1, n2, 0]← 0
65: for j ← 1, 2, . . . , NT do
66: Ã← 0
67: for l← 0, 1, . . . , j − 1 do . Riemann sum (21)

68: Ã← Ã+ ∆t Cn1,n2,(j)(l+1)B[n2, j, l]
69: end for
70: A[n1, n2, j]← Ã
71: end for
72: end for
73: end for
74: return A
75: end procedure

76: procedure ˆ̃H(i) Solver(Ĥ0, {Ĥm}, {f (i)

m,(k)}; B)

77: for m← 1, 2, . . . ,M do
78: for j ← 0, 1, . . . , NT do
79: for l← 0, 1, . . . , j do

80: B[m, j, l]← Ū (i)

[j,l](Ĥm) . coherently evolve each Ĥm
81: end for
82: end for
83: end for
84: return B
85: end procedure
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[49] D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Tor-
rontegui, S. Mart́ınez-Garaot, and J. G. Muga, Short-
cuts to adiabaticity: concepts, methods, and applica-
tions, Rev. Mod. Phys. 91, 045001 (2019).

[50] C. Gneiting and F. Nori, Quantum evolution in disor-
dered transport, Phys. Rev. A 96, 022135 (2017).

[51] C. Gneiting, Disorder-dressed quantum evolution, Phys.
Rev. B 101, 214203 (2020).

[52] C. Gneiting, F. R. Anger, and A. Buchleitner, Incoherent
ensemble dynamics in disordered systems, Phys. Rev. A
93, 032139 (2016).

[53] C. M. Kropf, C. Gneiting, and A. Buchleitner, Effective
dynamics of disordered quantum systems, Phys. Rev. X
6, 031023 (2016).

[54] C. Gneiting and F. Nori, Disorder-induced dephasing in
backscattering-free quantum transport, Phys. Rev. Lett.
119, 176802 (2017).

[55] C. Gneiting, Z. Li, and F. Nori, Lifetime of flatband
states, Phys. Rev. B 98, 134203 (2018).

[56] C. Gneiting, D. Leykam, and F. Nori, Disorder-robust
entanglement transport, Phys. Rev. Lett. 122, 066601
(2019).

[57] J. Han, C. Gneiting, and D. Leykam, Helical transport in
coupled resonator waveguides, Phys. Rev. B 99, 224201
(2019).

[58] A. Kiely, Exact classical noise master equations: appli-
cations and connections, EPL 134, 10001 (2021).

[59] A. Bartana, R. Kosloff, and D. J. Tannor, Laser cooling
of internal degrees of freedom. II, J. Chem. Phys. 106,
1435 (1997).

[60] R. Schmidt, A. Negretti, J. Ankerhold, T. Calarco, and
J. T. Stockburger, Optimal control of open quantum
systems: cooperative effects of driving and dissipation,
Phys. Rev. Lett. 107, 130404 (2011).

[61] M. H. Goerz, D. M. Reich, and C. P. Koch, Optimal
control theory for a unitary operation under dissipative
evolution, New J. Phys. 16, 055012 (2014).

[62] D. Basilewitsch, F. Cosco, N. L. Gullo, M. Möttönen,
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