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Improving coherence is a fundamental challenge in quantum simulation and sensing experiments with trapped
ions. Here we discuss, experimentally demonstrate, and estimate the potential impacts of two different
protocols that enhance, through motional parametric excitation, the coherent spin-motion coupling of ions
obtained with a spin-dependent force. The experiments are performed on 2D crystal arrays of approximately
one hundred 9Be+ ions confined in a Penning trap. By modulating the trapping potential at close to twice the
center-of-mass mode frequency, we squeeze the motional mode and enhance the spin-motion coupling while
maintaining spin coherence. With a stroboscopic protocol, we measure 5.4 ± 0.9 dB of motional squeezing
below the ground-state motion, from which theory predicts a 10 dB enhancement in the sensitivity for
measuring small displacements using a recently demonstrated protocol [Science 373, 673 (2021)]. With a
continuous squeezing protocol, we measure and accurately calibrate the parametric coupling strength. Theory
suggests this protocol can be used to improve quantum spin squeezing, limited in our system by off-resonant
light scatter. We illustrate numerically the trade-offs between strong parametric amplification and motional
dephasing in the form of center-of-mass frequency fluctuations for improving quantum spin squeezing in our
set-up.

I. INTRODUCTION

Trapped-ion systems have demonstrated high-fidelity
quantum logic gates1–5, spin squeezing6–10 and the gen-
eration of many-ion entangled states11,12, and motional
sensing below the ground-state motion of the ions13–16.
In these experiments, the interaction between qubits is
engineered by coupling the spins to the collective mo-
tion of the ions using lasers or magnetic field gradi-
ents. Depending on the source of decoherence, stronger
spin-motion coupling can enable higher fidelity gates and
improved quantum sensing. However, the interaction
strength is limited by the available laser power or cur-
rent that can be driven through the trap electrodes. In
the case of laser-based interactions, the dominant source
of decoherence is typically spin decoherence from spon-
taneous emission, so increasing the laser power alone will
not necessarily improve the fidelity.

A viable approach to stronger spin-motion coupling
that overcomes some of these technical and fundamental
challenges is parametric amplification17,18. By modulat-
ing the trapping potential at twice the motional mode
frequency, one quadrature of motion is amplified while
the orthogonal quadrature is attenuated19. This leads
to motional squeezing and an amplification of the spin-
motion coupling strength. Improved displacement sens-
ing of a single ion16 and faster two qubit ion gates have
recently been achieved with this technique20. Here we
experimentally characterize both a stroboscopic and a

continuous squeezing protocol on two-dimensional (2D)
crystal arrays of approximately 100 ions. Based on this
characterization we estimate the potential improvements
for displacement sensing and spin squeezing with large
trapped-ion crystals.

In the stroboscopic protocol, parametric amplification
is applied over a discrete interval to create a squeezed
motional state. The size of this motional squeezing is
experimentally characterized through a phase-coherent
Ramsey sequence to measure the variance of the center-
of-mass (c.m.) motion in the squeezed and unsqueezed
directions. The c.m. motion is squeezed by 5.4± 0.9 dB
(10.8 ± 1.8 dB) below the ground-state motional uncer-
tainty (variance). By applying this level of squeezing
to amplify a spin-independent displacement, theory pre-
dicts a 10 dB improvement in the sensitivity for measur-
ing small displacements, accounting for c.m. frequency
fluctuations. This has the potential to improve the sensi-
tivity for measuring small displacements obtained with
the protocol demonstrated in Ref. 13 from 8.8 dB to
nearly 19 dB below the standard quantum limit (SQL).
Here the SQL is given by the ground state c.m. mode
zero-point fluctuations.

For faster, higher fidelity quantum simulations, we also
investigate a continuous squeezing protocol20. In this ex-
periment, the parametric drive is applied simultaneously
with the spin-dependent force to amplify the strength of
the spin-motion coupling. Theory17 shows that this pro-
tocol leads to an equivalent interaction Hamiltonian with
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a rescaled detuning and stronger interaction strength. By
measuring this rescaled detuning, we experimentally de-
termine the parametric coupling strength g, which agrees
well with predictions from a numerical model. As an ap-
plication of this continuous protocol, we theoretically ex-
plore how this increased interaction strength will lead to
an improvement in quantum spin squeezing6. Our model
suggests that frequency fluctuations of the c.m. mode will
be the primary limitation to the enhancement. With a
reduction of the frequency fluctuations from our current
40 Hz to 10 Hz, theory predicts 14 dB of spin squeezing is
possible for a 400-ion crystal.

The rest of the manuscript is structured as follows:
In Sec. II, we describe the Penning trap setup, and the
implementation of parametric amplification. Next, in
Sec. III, the stroboscopic squeezing protocol is discussed.
We describe how the motional squeezing is character-
ized and the predicted improvements in the sensitivity
of detecting small displacements. Section IV then fo-
cuses on the continuous squeezing protocol. Experimen-
tal data with and without continuous parametric amplifi-
cation are presented from which the parametric coupling
strength is extracted without precise control of the phase
of the parametric drive. Theory predicts that this con-
tinuous parametric amplification protocol will enable im-
proved spin squeezing in the presence of decoherence due
to off-resonant light scatter6. The amount of improve-
ment will likely be limited by the frequency stability of
the c.m. mode. A summary and conclusion are included
in Sec. V.

II. EXPERIMENTAL APPARATUS

In our experimental apparatus14, 2D crystal arrays
of approximately 100 9Be+ ions are confined in a Pen-
ning trap as shown in the simplified schematic of Fig. 1.
The ions are confined axially by a quadratic potential
formed by static voltages applied to a stack of cylindri-

cal electrodes. Radial confinement results from ~E × ~B
induced rotation of the crystal. This rotation of the

crystal through the ~B = 4.5ẑ T magnetic field (9Be+

cyclotron frequency of Ωc/(2π) = 7.6 MHz) produces a
radially confining Lorentz force. In the rotating frame of
the crystal, to a very good approximation the confining
potential can be written as

qφtrap =
1

2
Mω2

z

(
z2 + βrρ

2
)
, (1)

where M is the mass and q is the charge of 9Be+, z (ρ) is
the axial distance (cylindrical radius) from the trap cen-
ter, and the axial c.m. oscillation frequency ωz/(2π) =
1.59 MHz quantifies the strength of this confining poten-
tial. The magnetic field strength and rotation frequency
determine the relative strength of the radial confinement

βr =
ωr (Ωc − ωr)

ω2
z

− 1

2
, (2)

FIG. 1. A simplified cross-sectional schematic of the Pen-
ning trap. To generate the ωz/2π = 1.59 MHz axial confine-
ment potential (solid blue curve), voltages VC = −2 kV and
VM = −1.75 kV are applied to three of the ring electrodes
(yellow) with radius RW = 1 cm. This confining potential
is modulated to induce parametric amplification by applying
a sinusoidal voltage of zero-to-peak amplitude Vp on top of
VM . A small tuning voltage VT = −43 V shifts the ion crystal
(blue dots) to the null of this modulated potential. These elec-
trodes are held in the room-temperature bore of a B = 4.5 T
superconducting magnet to provide radial confinement of the
ions. When cooled, the ions form a 2D crystal with an ion-
ion spacing of ∼ 15µm resulting in a crystal with a radius of
approximately 100µm. The two optical dipole force beams
(green) intersect at a 20◦ angle at the ions to form the 1D
traveling wave potential with a wavelength of 900 nm and a
frequency µ that is equal to the frequency difference between
the two beams.

which we control by setting the rotation frequency
ωr/(2π) = 180 kHz through the use of a weak dipole ro-
tating wall potential21 (neglected in Eq. (1)).

To parametrically amplify the axial c.m. mode, the
confining potential is modulated at near twice the mode
frequency. This modulation is achieved by applying a si-
nusoidal voltage with an amplitude ranging from 1 V to
51 V at a frequency ωp ∼ 2ωz in addition to the confining
voltage VM = −1.75 kV (see Fig. 1). Ideally, this modu-
lation parametrically amplifies the c.m. motion along one
quadrature and attenuates the motion in the orthogonal
quadrature, producing motional squeezing.

However, if the ion crystal is not in the null of the
modulated potential, motion is also directly driven at ωp.
To minimize this motion, we modulate the confining po-
tential at an off-resonant frequency ωp/(2π) ∼ 1.7 MHz,
and detect this driven motion using techniques similar
to Ref. 15. A small tuning voltage VT is then applied
to one of the end cap electrodes, which shifts the crystal
axially, and this experiment is repeated. Through this



3

process, the axial position with the minimum driven mo-
tion (null of the modulated potential) is determined to
within 0.1µm.

For our experiments, the two qubit states are the |↑〉 ≡
|S1/2,ms = +1/2〉 and |↓〉 ≡ |S1/2,ms = −1/2〉 valence

electron spin projections of the 2S1/2 electronic ground
state, which are separated by approximately 124 GHz.
Global spin rotations are implemented with a microwave
source with a π−pulse duration tπ of about 50 µs22.

In this apparatus axial motion is coupled to the spins
through the implementation of a spin-dependent optical
dipole force (ODF). Two far-detuned ∼ 313 nm beams
are overlapped at a 20◦ angle at the ions, as shown in
Fig. 1, to form a moving 1D optical lattice with an effec-
tive wavelength of 900 nm and a tunable beat frequency
µ. As described in the Supplementary Information of
Ref. 23, the frequency and polarizations of the ODF laser
beams are adjusted to null the AC Stark shift of each
beam and to produce a force on the |↑〉 state that is
equal and opposite to the force on the |↓〉 state.

With the assumption that the ODF couples only to
the c.m. mode, the interaction Hamiltonian describing
this spin-motion coupling is17,18

ĤODF =
h̄f

2
√
N

(
âe−iφODF + â†eiφODF

) N∑
i

σ̂zi − h̄δâ†â,

(3)
where f represents the strength of the ODF interac-
tion, σ̂zi is the z Pauli operator for spin i, δ = µ − ωz
is the detuning of the ODF beatnote frequency µ from
the c.m. mode, â†(â) is the raising (lowering) operator
for the c.m. mode, and φODF is the phase of the opti-
cal dipole force. When the ODF is applied for a dura-
tion τ on-resonance δ = 0, a spin-dependent displace-
ment D̂sd(α) ≡ exp((αâ† − α∗â)

∑
σ̂zi ) is created with

α = −ifeiφODF τ/(2
√
N).

III. STROBOSCOPIC PROTOCOL

A. Characterizing Motional Squeezing

To characterize the motional squeezing from paramet-
ric amplification, we use a stroboscopic protocol as shown
in Fig. 2(a). First, pulses of Doppler and electromag-
netically induced transparency (EIT) cooling are sequen-
tially applied to cool the c.m. mode to n̄z = 0.38 ± 0.2,
and the other axial drumhead modes to near their mo-
tional ground state24,25. A repump laser then initializes

the spins in the state |↑〉⊗N . The c.m. motion is then
squeezed, followed by an analysis of the motional state
with a resonant (µ = ωz) spin-dependent force26.

For initial spin states that are product states and res-
onant applications of the spin-dependent force, the spins
remain uncorrelated and the calculation of the expecta-
tion value of the composite spin of the system reduces to
calculating the expectation value of an individual spin27.

We also begin by treating the c.m. motional state as a
Fock state and extend this treatment to a thermal state
by averaging a mixture of Fock states. Therefore after
the spins are optically pumped, we assume the system
is in the state |Ψ0〉 = |↑〉 |n〉, where |n〉 is the harmonic
oscillator Fock state of the c.m. mode.

The c.m. mode is squeezed by briefly modulating the
trap potential to induce parametric amplification, which
is described by the interaction Hamiltonian17,18

Ĥs = ih̄
g

2

[
â2e−iθ − â†2eiθ

]
, (4)

where g and θ are the parametric coupling strength and
phase, respectively. The parametric coupling strength is
dependent on the amplitude of the voltage modulation
Vp of the quadratic trapping potential. By numerically
modeling the trap geometry and applied voltages, we cal-
culate the expected g for an applied modulation ampli-
tude Vp.

Application of this Hamiltonian for duration ts imple-
ments the unitary squeezing operator

Ŝ(ξ) ≡ exp

[
1

2

(
ξ∗â2 − ξâ†2

)]
, (5)

where ξ(r, θ) = r exp(iθ) and r = gts. Along the
squeezed axis the motional uncertainty is reduced by
exp(−r), and in the orthogonal direction the motional
uncertainty is amplified by exp(r), so that the phase
space uncertainty area is preserved. For this sequence,
the modulation at ωp = 2ωz ∼ 2π × 3.18 MHz is typi-
cally applied for a duration of about ts = 40µs, which
squeezes the initial state into the squeezed motional state
|Ψ1〉 = |↑〉 Ŝ(ξ) |n〉. A phase space sketch of this squeezed
state is shown in Fig. 2(a).

We define the relative phase of the parametric drive to
the spin-dependent displacement as

∆φ = θ − 2φODF − π. (6)

The factor of 2 is due to the parametric drive occurring
at twice the frequency of the ODF beatnote, and the
additional π is to define in phase (∆φ = 0) as when
the squeezed axis and spin-dependent displacements are
aligned along the same direction. This relative phase ∆φ
is actively stabilized and controlled14.

The amount of motional squeezing is experimentally
determined by measuring, through a Ramsey sequence,
the coherence of the spins under the application of a spin-
dependent ODF as a function of the relative phase ∆φ26.
A first microwave π/2-pulse rotates the spins to create

|Ψ2〉 = R̂
(π

2
, 0
)
|Ψ1〉 =

|↑〉+ |↓〉√
2

Ŝ(ξ) |n〉 , (7)

where we define the following qubit rotation matrix:

R̂ (θr, φr) =

(
cos( θr2 ) −e−iφr sin( θr2 )

eiφr sin( θr2 ) cos( θr2 )

)
. (8)
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FIG. 2. (a) Motional squeezing resulting from parametric
amplification is characterized by entangling the spin and mo-
tion of the ions through a spin-dependent displacement and
then measuring the coherence of the spins, which is sensi-
tive to the overlap of the displaced, squeezed states. The
relative phase between the parametric drive (yellow block),
which squeezes the motion, and the spin-dependent displace-
ment (orange block) is controlled. To reduce spin decoherence
from magnetic field fluctuations, the spin-dependent displace-
ment is performed in a spin-echo protocol where φODF in the
second arm is advanced by π. This is equivalent to the Ram-
sey sequence shown in the block diagram. The phase space
diagram shows the c.m. motional mode in a frame rotating at
ωz. Axis labels represent c.m. momentum (pz ∝ Im(α)) and
position (z ∝ Re(α)) in the c.m. mode rotating frame. (b)
The measured bright fraction (black points) depends on the
relative phase ∆φ (see Eq. (6)), shown with a theoretical fit
(green curve, Eq. (12)). Confidence intervals (green shaded
region) represent uncertainty in the fitted n̄z. When the dis-
placement is parallel (perpendicular) to the squeezed axis,
corresponding to ∆φ = 0 (∆φ = π), the overlap of the dis-
placed motional states is small (large) and the resulting bright
fraction is high (low). The fitted value for the reduced mo-
tional uncertainty of the squeezed state is 5.4± 0.9 dB below
the motional uncertainty of the ground state. The blue line
is the signal that would be obtained from the c.m. motional
ground state without squeezing, calculated from Eq. (12) with
r, n̄z = 0. Error bars represent the standard deviation in the
bright fraction over the 50 experimental trials.

The spin and motion are then entangled through a spin-
dependent displacement D̂sd(α) created by applying the
ODF beams for a duration τ . This separates the spin
states in phase space as shown in Fig. 2(a) to form the
state

|Ψ3〉 = D̂sd(α)R̂
(π

2
, 0
)
|Ψ1〉

=
|↑〉 D̂(α) + |↓〉 D̂(−α)√

2
Ŝ(ξ) |n〉 ,

(9)

where D̂(α) ≡ exp(αâ† − α∗â).
A final π/2-pulse then creates

|Ψf 〉 = R̂
(π

2
, 0
)
D̂sd(α)R̂

(π
2
, 0
)
|Ψ1〉

=
1

2
|↑〉
[
D̂(α)− D̂(−α)

]
Ŝ(ξ) |n〉

+
1

2
|↓〉
[
D̂(α) + D̂(−α)

]
Ŝ(ξ) |n〉 ,

(10)

and maps this entangled state into a population imbal-
ance in the |↑〉 and |↓〉 spin states. The probability of
measuring |↑〉 for state |Ψf 〉 is dependent on the overlap
between the displaced states

P
(n)
↑ =

1

2
+

1

2
〈Ψf | σ̂z |Ψf 〉 e−Γτ , (11)

where we have included a spin decoherence rate Γ due
to off-resonant light scatter from the ODF laser beams.
Taking a Boltzmann-weighted thermal average over all
Fock states, we obtain

P↑ =
1

2
− 1

2
e−Γτ exp

[
− 1

4N
|fτ |2 (2n̄z + 1)χ(r,∆φ)

]
,

(12)
where

χ(r,∆φ) = e2r [1 + cos(∆φ)] + e−2r [1− cos(∆φ)] (13)

contains the dependence on the parametric drive param-
eters. Equation 12 reduces to Eq. A5 of Ref. 27 when
no parametric drive is applied (r = 0). The population
in |↑〉 is measured by pulsing on the parallel Doppler
cooling beam and counting the resulting fluorescence.
This is referred to as the bright fraction throughout this
manuscript.

Figure 2(b) shows the resulting bright fraction versus
the relative phase ∆φ for a crystal of N = 86± 10 ions.
Each data point (black circles) is an average over 50 ex-
perimental trials. Using Eqs. 12 and 13 to fit this data,
we extract r = 1.25± 0.2, where the uncertainty in r re-
sults from the scatter of the data and the uncertainty in
the temperature n̄z = 0.38 ± 0.2. This agrees well with
the predicted r = 1.3 ± 0.2 from the applied parametric
drive voltage and duration. The solid green curve shows
this theory fit, where the shaded region represents the un-
certainty in the measured n̄z. When the spin-dependent
displacement is along the squeezed axis (∆φ = 0, 2π),
the overlap between the displaced states is small and the
bright fraction is high. In contrast, when D̂sd(α) is or-
thogonal to the squeezed axis, there is strong overlap be-
tween the states resulting in a low bright fraction. The
motional uncertainty of the fitted squeezed state has been
attenuated by 5.4 ± 0.9 dB (10.8 dB in variance) below
the ground-state motional uncertainty. Higher squeez-
ing might be possible as will be discussed in Sec. IV,
but higher squeezing will also be more sensitive to noise
in ∆φ, providing a trade-off in the utility of employing
higher squeezing.
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B. Improved Displacement Sensitivity

One application of this stroboscopic squeezing proto-
col is improving the experimental sensitivity for detecting
small displacements. Experiments conducted with a sin-
gle ion16 demonstrated an enhancement of 17.2± 0.3 dB
to the displacement sensitivity with parametric amplifi-
cation. On the large 2D crystals confined in this device,
a displacement sensitivity of 8.8± 0.4 dB below the stan-
dard quantum limit has recently been achieved13. In this
section, we theoretically explore improving this sensitiv-
ity through the addition of parametric amplification in a
crystal of ions.

Figure 3(a) shows the proposed experimental sequence
for improved displacement sensing. When no paramet-
ric amplification is applied, this protocol is identical to
the sequence used in previous sensing work13. The c.m.
motion is entangled with the collective spin via a many-
body echo, enabling detection of a small displacement
through the resulting spin rotation while avoiding quan-
tum back-action and thermal noise. By squeezing the
motional mode before and anti-squeezing after the ap-
plied displacement as shown in the phase space diagram
of Fig. 3(b), the displacement is amplified, resulting in
a larger geometric phase, and ideally improving the de-
tection sensitivity. The amplification obtained with the
squeeze/displace/anti-squeeze sequence is given by the
identity

D̂sd(βf ) ≡ Ŝ†(ξ)D̂sd(βi)Ŝ(ξ), (14)

where the initial displacement βi is amplified by G =
exp(r) to βf = Gβi when the displacement is along the
direction of maximum parametric amplification. Ideally,
this would improve the displacement sensitivity (∆β)2,
the variance with which βi can be determined in a single
measurement, by exp(2r).

In Ref. 13, experimental measurements and theory
showed that the displacement sensitivity of the protocol
in Fig. 3 without parametric amplification was limited by
σ/(2π) = 40 Hz frequency fluctuations of the c.m. mode.
The analysis assumed the c.m. mode frequency was con-
stant during a single experiment but exhibited Gaussian
fluctuations with standard deviation σ from one experi-
ment to the next. Expanding the theoretical treatment of
Ref. 13 to include both c.m. frequency fluctuations and
parametric amplification, we generalize Eq. (S48) of the
Supplementary Information of Ref. 13 for the sensitivity
(∆β)2 of the protocol shown in Fig. 3(a). We obtain

FIG. 3. (a,b) After Doppler cooling and initializing the ions in
the spin up state, a many-body spin echo enables detection of
small displacements of the ion crystal caused by weak electric
fields resonant with the c.m. motion (green block and arrows).
The addition of the squeezing and anti-squeezing operations
(yellow blocks and arrows) amplifies this spin-independent
displacement β (red, green arrows) by er (effective displace-
ment blue arrows). The amplified effective displacement βer

(blue arrows) encloses a larger phase space area compared
to no squeezing, as shown by the red area without squeezing
and the additional enclosed blue area from the effective am-
plified displacement. This larger enclosed phase is predicted
to improve the sensitivity to small displacements. (c) Pre-
vious experimental (black points) and theoretical (red curve)
work13 without parametric amplification showed the displace-
ment sensitivity to be limited by 40 Hz frequency fluctuations
of the c.m. mode. Confidence bands represent c.m. frequency
fluctuations between 20 − 60 Hz. The addition of motional
squeezing will amplify this frequency noise, but displacement
sensitivity nearly 19 dB below the SQL (orange line) is still
predicted (blue curve), assuming the duration of the squeez-
ing and displacement are short compared to τ .

(∆β)
2 ≈ e2Γτ

4f2τ2e2r

[
1 +

σ2τ2

3

+
σ2

g2

(
r − 1− e−2r

2

)
+
σ2τ

g

1− e−2r

2

]

+
σ2τ2

2e2r

(
1 +

sinh(r)er

gτ

)2(
n̄z +

1

2

)
+
f2σ2τ4

9e2r
,

(15)
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where the duration of the squeeze and excitation of the
spin-independent displacement are assumed to be short
compared to τ . Here τ is the duration of an ODF pulse in
a single arm of the spin-echo protocol of Fig. 3. When no
squeezing is applied (r = 0), Eq. (15) recovers the prior
displacement sensitivity results. The exp(2r) term in the
denominator expresses the ideal enhancement to the sen-
sitivity if the squeezing only amplified the displacement.
However, the squeezing also increases the noise from fre-
quency fluctuations, which reduces the overall gain. For
a more detailed discussion and physical interpretation of
the individual terms of Eq. (15), see the Supplementary
Information of Ref. 13.

In Fig. 3(c), we plot the prior experimental data (black
circles) and theory (red curve) of the displacement sensi-
tivity without parametric amplification13. Assuming the
same experimental parameters as this previous experi-
ment and the addition of the demonstrated r = 1.25 of
motional squeezing, Eq. (15) predicts nearly 10 dB en-
hancement to our displacement sensitivity (blue curve in
Fig. 3(c)). With the assumption that the duration of the
squeezing and displacement are short compared to the
duration of the spin-dependent force, the quantum en-
hancements from the many-body echo and the squeezing
approximately add, resulting in a displacement sensitiv-
ity nearly 19 dB below the SQL. Further improvements
would be possible by reducing the temperature of the
ion crystal with EIT cooling, increased squeezing, and
reduced frequency fluctuations of the c.m. mode.

IV. CONTINUOUS PROTOCOL

A. Measuring g From Shifts in the Decoupling Points

Figure 4(a) shows the continuous squeezing protocol,
where the spin-dependent force and the parametric am-
plification are applied simultaneously16,17. In this proto-
col, the spin-dependent force is detuned from resonance
with the c.m. motion by δ. The parametric amplification
is applied at twice the frequency of the spin-dependent
force. The total Hamiltonian of the system is now given
by

ĤT =
h̄f

2
√
N

(
âe−iφODF + â†eiφODF

) N∑
i

σ̂zi

− h̄δâ†â+ ih̄
g

2

[
â2e−iθ − â†2eiθ

]
.

(16)

Under the condition 0 < g < δ, the total Hamiltonian
can be written in a simple form as

ĤT =
h̄

2
√
N

(
f ′∗b̂e−iφODF + f ′b̂†eiφODF

) N∑
i

σ̂zi − h̄δ′b̂†b̂,

(17)

by using a Bogoliubov transformation b̂ = cosh râ +
ieiθ sinh râ† with r = (1/4) ln[ δ+gδ−g ]. Here the new effec-

tive detuning is δ′ ≡
√
δ2 − g2 and the rescaled strength

of the ODF interaction is f ′ ≡ f
(
cosh r + ei∆φc sinh r

)
.

The relative phase between the parametric drive and the
ODF in the continuous protocol is defined as ∆φc =
θ − 2φODF − π/2, so that ∆φc = 0 results in the largest
amplified effective force f ′. We note that this different
definition gives rise to a π/2 phase shift relative to the
definition of ∆φ in Eq. (6) for the stroboscopic protocol.
The state evolution under the total Hamiltonian Eq. (17)
is provided in Appendix A.

The continuous squeezing protocol provides an alter-
native method for measuring the parametric coupling
strength g that is insensitive to shot-to-shot noise in ∆φc.
With no parametric amplification, circular trajectories
in phase space are driven. These trajectories are closed
when δ is a multiple of 2π/τ , which results in a decou-
pling of the spin and motion of the ions (Fig. 4(b)). Here
τ is the duration of the ODF application in each arm of
the spin-echo sequence. The area enclosed in the phase
space loop is equal to the acquired geometric phase. With
the parametric drive applied at twice the frequency of the
spin-dependent force µ, the circular trajectories are dis-
torted into ellipses as the c.m. motion is squeezed and
anti-squeezed along the path. In addition, the frequency
of the first decoupling point17 shifts to

δ =
√

(2π/τ)2 + g2. (18)

By measuring this frequency shift when the parametric
drive is applied, we can extract the parametric coupling
strength. The frequency offset δ required to drive a closed
loop in phase space only depends on τ and g and is in-
dependent of the phase of the spin-dependent force rel-
ative to the phase of the parametric drive. Therefore
this method of measuring g is insensitive to shot-to-shot
fluctuations in the relative phase.

When the spins and motion are decoupled (closed loop
in phase space), the measured bright fraction at the end
of the sequence given in Fig. 4(a) will be at a minimum.
To better resolve these decoupling points, the c.m. mo-
tion is heated. This improves the resolution by increas-
ing the spin-motion entanglement signal, which depends
on the motional temperature27,28. The heating pulse is
applied directly after Doppler cooling. It is white-noise
with a 10 kHz bandwidth centered around ωz. This noise
heats the c.m. mode, but the other axial modes remain
near the Doppler limit.

The measured bright fraction versus detuning away
from the c.m. mode is shown in Fig. 4(c) when no para-
metric amplification is applied. As predicted for the
ODF duration τ = 1.0 ms, the minimum in the measured
bright fraction occurs at multiples of 1/τ = 1.0 kHz.
With only thermal motion, the bright fraction would sat-
urate at 0.5. The higher observed bright fraction suggests
the addition of a coherent displacement. This displace-
ment arises from the heating burst not being purely ran-
dom. The curve through the data of Fig. 4(c) is a fit used
to extract n̄z = 28.0± 13 and the coherent displacement
of amplitude β = 13.0 ± 0.4. The phase of the coherent
displacement is assumed to be random when averaged
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FIG. 4. (a) Pulse sequence implemented with the continu-
ous squeezing protocol to measure the parametric coupling
strength g. The c.m. mode is initially heated to increase the
contrast due to spin-motion entanglement. A spin echo se-
quence is then used to couple the spin and c.m. motion of the
ions with the ODF and parametric drive applied simultane-
ously in each arm for a duration τ . (b) Phase space trajec-

tories for the state |↑〉⊗N during the first (red) and second
(green) arm of the pulse sequence. Without parametric am-
plification, the spin and motion are decoupled in each arm
(closed loop in phase space) when (2π)/δ is an integer multi-
ple of τ . Parametric amplification squeezes and anti-squeezes
the motion along this trajectory (grey circles) and shifts the
decoupling points to higher frequencies. A new effective de-
tuning δ′ =

√
δ2 − g2 sets the condition for closing loops in

phase space when (2π)/δ′ is an integer multiple of τ . (c) A
scan over several decoupling points without parametric ampli-
fication. The curve is a theory fit used to extract the elevated
n̄z and coherent excitation β resulting from the heating pulse.
(d),(e) With parametric amplification the decoupling points
(black, blue, red arrows) are shifted to higher frequency as
predicted by theory (curves). The shaded region reflects the
uncertainty in ∆φc from [0, 2π]. The theory curve then as-
sumes an intermediate value of ∆φc = π/2, and all curves are
averaged over 40 Hz frequency fluctuations of the c.m. mode.
Below δ = g (dashed lines) is not scanned as the ions are
rapidly heated.

over many experiments (see Appendix A).
Figure 4(d) and (e) show equivalent scans, but with

the addition of different strengths of parametric amplifi-
cation. As the parametric drive voltage is increased, the
decoupling points shift to higher frequency as predicted.
From this frequency shift, we extract the parametric cou-
pling strength by solving for g in Eq. (18). Experimen-
tally, we find that for δ < g that the ions are heated
significantly making recovery with Doppler cooling diffi-
cult.

The curves of Fig. 4(d) and (e) are theory assuming
the n̄z and β obtained from the fit of Fig. 4(c) and g de-
termined from the shift in the first decoupling frequency.
The shaded region reflects the uncertainty in the rela-
tive phase between the ODF and parametric drive. For
these experiments, we focused on the shift in the decou-
pling points, which are insensitive to the relative phase,
so the relative phase at the ions was not measured prior
to each experiment. Including this uncertainty, the the-
ory confidence intervals largely encompass the measured
values. The observed increase in the bright fraction at
the first decoupling frequency results from spin-squeezing
(see Appendix A for detailed theory) and a convolution
of the narrow dip in the bright fraction at the decoupling
point with the measured 40 Hz frequency fluctuations of
the c.m. mode.

Figure 5 plots the measured g versus the applied para-
metric drive voltage Vp for three different values of τ .
The coupling strength increases linearly with the volt-
age. We see no saturation in g/(2π) up to the highest
measured value of 15.5 kHz at 51.0 V, which suggests that
even higher parametric coupling strengths may be achiev-
able. The blue line of Fig. 5 is the predicted coupling
strength from the applied voltage, which is in excellent
agreement with the measurements.

B. Spin Squeezing Limited by Frequency Fluctuations

As an application of the continuous squeezing proto-
col, we investigate how the increased spin-motion cou-
pling will improve quantum spin squeezing in the pres-
ence of decoherence due to off-resonant light scatter. At
the decoupling points, the spin-state evolution under the
application of Eq. (3) simulates the Ising model,

ĤI =
1

N

∑
i<j

Jij σ̂
z
i σ̂

z
j , (19)

where the spin-spin interaction Jij ≈ J̄ = f2/(2δ) be-
cause the c.m. mode is primarily driven in our experi-
mental set-up6,23. This leads to one-axis twisting and
quantum spin squeezing29,30. Using the continuous para-
metric amplification protocol, Eq. (3) transforms into an
identical Hamiltonian with rescaled detunings and mod-
ified interaction strengths (Eq. (17)). Under optimal
relative phase (∆φc = 0), the spin-dependent force is
amplified resulting in an increased spin-spin interaction
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FIG. 5. From the shift in the decoupling frequency, the para-
metric coupling strength g is calculated for a range of drive
voltages and ODF arm durations. As predicted by theory
(blue line), g increases linearly with the amplitude of the
parametric drive reaching g/(2π) = 15.5 kHz at 51 V. The
5% horizontal error bars of the experimental data represent
the uncertainty in the applied voltage and the vertical error
bars (smaller than points) reflect the frequency step size of
the scans over the decoupling points. To calculate g from the
applied voltages, the trap potential is numerically modeled.
The shaded region is the 10% uncertainty in that model.

J̄ = f2/(2(δ−g)). In Ref. 17, the predicted improvement
in quantum spin squeezing from parametric amplification
was explored. Here, we extend this analysis to include
frequency fluctuations of the c.m. mode, which will limit
the potential enhancement.

Quantum spin squeezing is characterized by the Ram-
sey squeezing parameter ξR, where ξ2

R = 1 for coher-
ent spin states and ξ2

R < 1 for squeezed states29 (see
Appendix B). In previous experiments on 2D crystals
of approximately 100 ions, 4.0 ± 0.9 dB of spin squeez-
ing was measured, fundamentally limited by off-resonant
light scatter from the optical dipole force laser beams6.
In these experiments, Γ/J̄ ≈ 0.05 where Γ is the single
spin decoherence rate due to off-resonant light scatter
and J̄ was the spin-spin interaction strength obtained
with a detuning of δ/(2π) = 1 kHz. Parametric ampli-
fication will enhance the spin-spin interaction strength
J̄ while keeping Γ fixed by the laser power, which will
enable greater spin squeezing.

Figure 6(a) illustrates the potential enhancement in
the spin squeezing with parametric amplification on a
crystal containing 400 ions, cooled to n̄z = 0.5, and as-
suming no frequency fluctuations of the c.m. mode. Here
Γ/J̄ = 0.05, where now J̄ is the strength of the spin-spin
interaction with δ/(2π) = 0.83 kHz and g = 0. When
g = 0, the spin squeezing is limited by spin decoherence
from off-resonant light scatter to 11.3 dB. We note this
larger spin squeezing as compared to Ref. 6 is due in
part to the larger ion number, as well as technical exper-
imental limitations. As g is increased, the ratio Γ/J̄ is
decreased, enabling greater spin squeezing. The optimal

FIG. 6. (a) The Ramsey squeezing parameter ξR is plotted
versus the interaction duration τ assuming 400 ions, no fre-
quency fluctuations of the c.m. mode, and with a decoherence
rate Γ due to off-resonant light scatter of Γ = 0.05J̄ where J̄
is the strength of the spin-spin interaction (see Eq. (19)) with
δ/(2π) = 0.83 kHz and g = 0. Single loop gates are assumed
where for each interaction duration τ a detuning δ given by
Eq. (18) is assumed. Larger values of g reduce the effective
Γ/J̄ and produce large spin squeezing. (b), (c) The predicted
spin squeezing assuming the same parameters as (a), but now
including 10 Hz (b) and 40 Hz (c) frequency fluctuations of
the c.m. mode. As the frequency fluctuations are increased,
the gain in the quantum spin squeezing with parametric am-
plification is limited.

squeezing approaches the spin decoherence free value of
16.4 dB for large g.

However, frequency fluctuations of the c.m. mode will
place a limit on the improvement to spin squeezing from
parametric amplification. As the parametric coupling
strength increases, the frequency separation between the
ODF detuning δ and g decreases as shown by Eq. (18)
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and Fig. 4(d) and (e). To realize the maximal optimal
spin squeezing free from noise associated with the c.m.
frequency fluctuations, σ � δ − g.

In Fig. 6(b) and (c), the predicted spin squeezing is
plotted as a function of the parametric coupling strength
for the same parameters as Fig. 6(a), but including 10 Hz
and 40 Hz frequency fluctuations of the c.m. mode. Spin
decoherence from off-resonant light scatter and frequency
fluctuations limit the spin squeezing in the absence of
parametric amplification. Figure 6(c) shows a 1.1 dB gain
in spin-squeezing with a g/(2π) = 4 kHz and the current
40 Hz frequency fluctuation of the c.m. mode. However,
at larger values of g, the 40 Hz frequency fluctuations
limit further improvements. In Fig. 6(b), we show that
a 2.8 dB gain is possible if the frequency fluctuations are
reduced to 10 Hz with a g/(2π) = 40 kHz.

V. CONCLUSION

In summary, we have shown experimental results char-
acterizing parametric amplification using two different
protocols. With the stroboscopic protocol, motional
squeezing of 5.4± 0.9 dB below the ground-state motion
was demonstrated corresponding to a squeezing param-
eter r = 1.25 ± 0.2. Phase noise between the ODF and
parametric drive prevented larger amounts of squeezing
from being achieved. Theory predicts that this level of
squeezing will improve the sensitivity of measuring small
displacements of large trapped-ion crystals by nearly
10 dB. With the continuous protocol, stronger parametric
coupling strengths were demonstrated, even in the pres-
ence of shot-to-shot phase noise, by measuring the shift
in the frequency of the spin-motion decoupling points.
A linear increase in the measured parametric coupling
strength g with the applied parametric drive voltage up
to g/(2π) = 15.5± 0.1 kHz was observed. Measured val-
ues of g agreed well with the predicted strength from nu-
merical modeling of the trap potentials. Stronger para-
metric coupling strengths may be possible with larger ap-
plied voltages. An improvement in quantum spin squeez-
ing in the presence of decoherence due to off-resonant
light scatter is predicted with the continuous squeezing
protocol. The amount of improvement will be limited
by the current 40 Hz frequency fluctuations of the c.m.
mode. With reduced frequency fluctuations, further im-
provements to both the displacement sensitivity and spin
squeezing might be possible.
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Appendix A: Derivation of the Bright Fraction Under the
Continuous Protocol

Here we describe the calculation used to generate the
theoretical curves of Figs. 4 (c), (d), and (e). Because
the continuous protocol of Fig. 4 generates correlations
between the ion spins, a single-spin calculation like that
described in Sec. III is no longer adequate.

Assume that the spin of the ions are initially in |ψ〉s =

|↑〉⊗N and that the c.m. motional mode of interest is
a thermal coherent state described by a thermal occu-
pation number n̄z and coherent amplitude β. The ini-
tial motional state density matrix is then given by ρ̂m =

D̂(β)
∑
n pn|n〉〈n|D̂†(β), where pn = 1

1+n̄z

(
n̄z

1+n̄z

)n
and

D̂(β) = exp
(
βâ† − β∗â

)
is the displacement operator

with amplitude β. To derive the effect of the motional
thermal coherent state on the bright fraction, it is most
convenient to write31

ρ̂m =
1

πn̄z

∫
e−|γ|

2/n̄z |β + γ〉 〈β + γ| d2γ. (A1)

Because of the mixture of ρm in terms of coherent states
|γ̄〉 with γ̄ = β + γ, we can start with the initial system
to be

|ψ0〉 = |↑〉⊗N |γ̄〉 . (A2)

Then we can average out the contribution from different
coherent mixtures.

Consider the protocol shown in Fig. 4(a). After the
π
2

∣∣
y

pulse, we have |ψ1〉 = |+〉⊗N |γ̄〉, where |+〉 =
1√
2

(|↑〉+ |↓〉). The spin-dependent ODF is then applied

simultaneously with the parametric amplification for a
duration τ . According to Ref. 17 and Ref. 18, the ef-
fective interaction from Eq. (17) in the main text can
be described by a product of two unitary operations of
the spin-spin interaction and spin-motion coupling in the

interaction picture of −h̄δ′b̂†b̂, which are

Ûss(t0, t1) = exp

iΦ(t0, t1)
∑
i,j

σ̂zi σ̂
z
j

 , (A3)

and

Ûsm(t0, t1) = D̂sd (α(t0, t1)) , (A4)

where

α(t0, t1) =
eiφODF

2
√
N

[
α̃(t0, t1) cosh r + ei∆φc α̃∗(t0, t1) sinh r

]
,

(A5)
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and

Φ(t0, t1) = − 1

4N

∣∣∣∣f ′δ′
∣∣∣∣2 [(t1 − t0)δ′ − sin δ′(t1 − t0)] .

(A6)
Here f ′ = f

(
cosh r + ei∆φc sinh r

)
is the enhanced spin-

dependent force with parametric drive from Eq. (17) in

the main text, α̃(t0, t1) = (f ′/δ′)
(
e−iδ

′t1 − e−iδ′t0
)

is

the displacement of the Bogoliubov mode b̂, and α(t0, t1)
is the displacement in the original motional mode â.

After a simultaneous parametric amplification and
ODF pulse for a duration τ , the state is given by

|ψ2〉 = Ûss(0, τ)Ûsm(0, τ) |ψ1〉 . (A7)

The π|x pulse for a duration tπ flips the state of the
spins. After the second pulse of parametric amplification
and ODF, the state is

|ψ3〉 = Ûss(τ + tπ, 2τ + tπ)Ûsm(τ + tπ, 2τ + tπ)R̂X(π) |ψ2〉
= R̂X(π)eiΦT

∑
i,j σ̂

z
i σ̂
z
j D̂sd(αT ) |ψ1〉 ,

(A8)

where R̂X(π) = R̂(π, π/2)⊗N (see Eq. (8)), and the ex-

pression has been simplified by commutating R̂X(π) with
the operators to its right, combining the spin-spin in-
teraction terms by recognizing Ûss(τ + tπ, 2τ + tπ) =

Ûss(0, τ), and collecting the spin-spin interaction and the
spin-motion coupling terms, respectively. Here the total
displacement is

αT ≡ α(0, τ)− α(τ + tπ, 2τ + tπ)

=
eiφODF

2δ′
√
N

[
f ′(e−iδ

′τ − 1)(1− e−iδ
′(τ+tπ)) cosh r

+ ei∆φcf ′∗(eiδ
′τ − 1)(1− eiδ

′(τ+tπ)) sinh r
]
,

(A9)
and the effective total geometric phase is

ΦT ≡ 2Φ(0, τ)− Im[α(τ + tπ, 2τ + tπ)α∗(0, τ)]

=
|f ′|2

2δ′2N

{
sin(δ′τ)− δ′τ + [1− cos(δ′τ)] sin δ′(τ + tπ)

}
,

(A10)
which recovers the results in Ref. 24 when we take r = 0.
To measure the bright fraction, we rotate |ψ3〉 by another
π
2

∣∣
y

pulse and detect σ̂zk, which gives

〈σ̂zk〉γ̄ = 〈ψ3| R̂Y (π/2)†σ̂zkR̂Y (π/2) |ψ3〉

= −e
−2|αT |2

2

[
e2αT γ̄

∗−2α∗T γ̄ + c.c.
]

cos(4ΦT )N−1,

where R̂Y (π/2) = R̂(π/2, 0)⊗N . Now we sum up the
contributions from different components in the initial mo-
tional thermal coherent state via the integral

〈σ̂zk〉 =
1

πn̄z

∫
e−|γ|

2/n̄z 〈σ̂zk〉γ̄ d
2γ. (A11)

Only the factor e2αT γ̄
∗−2α∗T γ̄ + c.c. =

e2αT β
∗−2α∗T βe2αT γ

∗−2α∗T γ + c.c. will be im-
pacted by the integral. We realize that

1
πn̄z

∫
e−|γ|

2/n̄ze2αT γ
∗−2α∗T γd2γ = e−4|αT |2n̄z , there-

fore we find

〈σ̂zk〉 = −e−2|αT |2(2n̄z+1) cos(4θβ) cos(4ΦT )N−1, (A12)

where θβ = Im[β∗αT ]. The coherent displacement
β in this experiment is caused by the application of
noise to heat the ions. We therefore assume that the
phase of this displacement varies from shot-to-shot, so
we average Eq. (A12) over a random phase θc, giving
1

2π

∫
cos(4|αT ||β| sin θc)dθc = J0(4|αT ||β|), where J0 is

the 0th Bessel function of the first kind. The spin deco-
herence factor exp(−2Γτ) can be included independently.
The bright fraction of the trapped-ion spins at the end
of the pulse sequence is then given by

P↑ =
1

2
(1 + 〈σ̂zk〉)

=
1

2
− 1

2
e−2|αT |2(2n̄z+1)e−2ΓτJ0(4|αT ||β|) cos(4ΦT )N−1.

This expression was used to model the experimental mea-
surements in Fig. 4. To include 40 Hz frequency fluc-
tuations of the c.m. mode, we averaged this expression
assuming Gaussian frequency fluctuations of the mode.

Appendix B: Spin Squeezing with Spin Decoherence

This section discusses the calculation of quantum spin
squeezing in the presence of decoherence due to off res-
onant light scatter and due to frequency fluctuations of
the c.m. mode. The calculation is used to generate the
theory curves of Fig. 6.

Quantum spin squeezing (QSS) along a direction
rotated by ψ (from +z direction) about the x-axis

is defined by ξ2
ψ = N(∆Ŝψ)2/| 〈S〉 |2, where Ŝψ =

cos(ψ)Ŝz − sin(ψ)Ŝy, (∆Ŝψ)2 = 〈Ŝ2
ψ〉 − 〈Ŝψ〉

2
, and S =

1
2

∑
i

(
σ̂xi , σ̂

y
i , σ̂

z
i

)
. The Ramsey spin squeezing is ob-

tained by minimizing (∆Ŝψ)2 over the angle ψ,

ξ2
R =

N minψ((∆Ŝψ)2)

| 〈S〉 |2

=
N

2| 〈S〉 |2
(

(∆Ŝy)2 + (∆Ŝz)
2

−
√(

(∆Ŝy)2 − (∆Ŝz)2
)2

+ 4Cov
(
Ŝy, Ŝz

)2)
,

(B1)

where the optimal angle is

ψopt =
1

2
arctan

[
2Cov

(
Ŝy, Ŝz

)
/
(
(∆Ŝy)2 − (∆Ŝz)

2
)]
(B2)

with

Cov
(
Ŝy, Ŝz

)
≡ 1

2
〈ŜyŜz + ŜzŜy〉 − 〈Ŝy〉 〈Ŝz〉 . (B3)
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In the presence of dephasing at rate Γel and spontaneous
spin flips from |↑〉 to |↓〉 (|↓〉 to |↑〉) at rate Γud (Γdu),
spin dynamics due to an Ising interaction in the ẑ basis
can be modeled by a master equation in the Lindblad
form, which can be solved exactly32. For completeness,
we quote the spin correlation functions in the case of
uniform coupling, i.e. Jij = J for all i and j,

〈σ̂+
i 〉 =

e−Γt

2
ΦN−1(J, t)e−2|α|2(2n̄z+1),

〈σ̂ai σ̂bj〉 =
e−2Γt

4
ΦN−2((a+ b)J, t)e−2|α|2(a+b)2(2n̄z+1),

〈σ̂ai σ̂zj 〉 =
e−Γt

2
Ψ(aJ, t)ΦN−2(aJ, t)e−2|α|2(2n̄z+1), (B4)

where a, b ∈ {+,−},

Φ(J, t) = e−
(Γud+Γdu)t

2

[
cos
(
t
√

(2iγ + 2J/N)2 − ΓudΓdu

)
+ t

Γud + Γdu

2
sinc

(
t
√

(2iγ + 2J/N)2 − ΓudΓdu

) ]
,

Ψ(J, t) = e−
(Γud+Γdu)t

2 t [i(2iγ + 2J/N)− 2γ]

· sinc
(
t
√

(2iγ + 2J/N)2 − ΓudΓdu

)
, (B5)

and

J =
f ′2

δ′

(
1− sin δ′t

δ′t

)
,

α =
1√
N

f ′

δ′
[
(cos(δ′t)− 1) er − i sin(δ′t)e−r

]
. (B6)

Here r, f ′, and δ′ are the same as defined in Appendix A.
The above expressions are obtained assuming the ini-
tial state is a product state with all spins pointed along
the x direction and the motional state to be a ther-
mal state. The factor e−2|α|2(2n̄z+1) describes the ef-
fect of spin-motion entanglement when α 6= 0. Here
γ = (Γud − Γdu) /4, Γ = (Γr+Γel)/2, and Γr = Γud+Γdu.
The numerical results of the plots in Fig. 6 (a) are
obtained using Eq. (B1) together with Eqs. (B4)-(B6).
The numerical results of the plots in Fig. 6 (b) and (c)
are obtained by averaging Eq. (B1) for 4000 randomly
Gaussian-distributed frequencies at the respective fre-
quency fluctuation.
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