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We study binary atomic boson–fermion mixtures confined in one dimensional box potentials by
few-body theory with contact interactions and mean-field many-body theory with density-density
interactions. A variety of correlations and structures arise as the inter- and intra- species interactions
are tuned. Both few-body and many-body results show that miscible phase and three-chunk phase
separation are directly observable in the density profiles. Meanwhile, two-chunk phase separation
can be inferred from the few-body correlations and many-body density profiles. We present phase
diagrams of selected types of atomic mixtures to show where different structures survive. The few-
body analysis demonstrates that two-body correlation functions can reveal information relevant to
the results from many-body calculations or experiments. From the many-body density profiles in
the phase-separation regime, we extract the healing lengths of each species and explain the scaling
behavior by an energy-competition argument.

I. INTRODUCTION

Advancement in trapping and cooling atoms has made
it possible to study quantum many-body physics using
ultracold atoms. After the realizations of Bose-Einstein
condensate (BEC) in a single-component atomic gas
[1–3], experimental groups have created condensates in
atomic boson-boson mixtures [4, 5] and BEC of molecules
in two-component Fermi gases with tunable interactions
[6, 7]. Those experiments explored two-component mix-
tures using two hyperfine states of the same species.
Later, fermionic atoms were mixed with bosonic atoms in
several examples, including 7Li–6Li mixtures [8, 9], 23Na–
6Li mixtures [10], 87Rb–40K mixtures [11–13], 87Rb–
6Li mixtures [14], 87Sr–84Sr mixtures [15], 41K–6Li mix-
tures [16], and 133Cs–6Li mixtures [17]. In general, bi-
nary atomic boson-fermion mixtures with repulsive inter-
species interactions demonstrate a bosonic BEC and a
single-component normal Fermi gas since pairing mecha-
nism is not involved.

On the other hand, theoretical investigations have
been carried out to characterize multi-component ul-
tracold atomic systems. For example, the ground-
state properties of two-component bosons confined be-
tween hard walls [18], phase separation in harmon-
ically trapped and mass-imbalanced fermion-fermion
mixtures[19, 20], one-dimensional harmonically trapped
boson-fermion mixtures [21], ground-state densities of re-
pulsive two-component Fermi gases [22], and repulsive
boson-fermion mixtures in harmonic traps [23, 24] have
been studied, to name a few. It has been demonstrated
that the structures of atomic mixtures depend on the
inter- and intra- species interactions. For example, re-
pulsion between bosons and fermions in a binary mix-
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ture leads to spatial separation, minimizing the overlap-
ping region [23, 24]. In contrast, attraction in a mix-
ture may lead to collapse [12, 13] or droplet formation
[25, 26]. There have been studies of thermodynamics
and structural transitions of binary atomic boson-fermion
mixtures using path integral formalism [27]. Ref. [28] on
binary boson-boson or fermion-fermion mixtures in 1D
box potentials has suggested different phase-separation
structures, including those induced by the mass imbal-
ance. Many interesting phenomena of 1D atomic mix-
tures have been reviewed in Ref. [29]. When compared
to purely bosonic or fermionic gases, boson-fermion mix-
tures are particularly interesting as the two components
follow different spin-statistics. For example, sympathetic
cooling may use bosons to cool down fermions, as sum-
marized in Ref. [30].

Conventionally, ultracold atomic gases have been
trapped in harmonic potentials, causing inhomogeneous
density profiles. Recent progress in engineering optical
potentials has brought us box potentials [31–37], which
simplify the comparison between theories [38–40] and ex-
periments in the bulk. Homogeneous BEC of trapped
bosonic atoms in quasi-1D [31, 34], 2D [33] and 3D [32]
have been realized. For two-component fermions, homo-
geneous 3D Fermi gases [35] and 2D Fermi gases [36] have
been realized. Recently, dipolar dimers of non-reactive
fermionic 23Na40K molecules have been realized experi-
mentally to analyze the collision of ultracold molecules
in optical box potentials for a comparison with those in
dipole traps [37].

Here we envision future combinations of research on
multi-component atomic gases and box potentials. Ex-
plicitly, we study binary atomic boson-fermion mixtures
in quasi-1D box potentials to explore the rich phase dia-
grams, ground state properties, and interface structures.
The bosons can interact with themselves and with the
fermions through two-body s-wave scattering, but iden-
tical fermionic atoms do not interact with each other
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due to Pauli exclusion principle that suppresses two-body
s-wave scattering [41]. We will begin with the Hamil-
tonian and divide our analyses into two parts: Exact
treatments of few-body systems and mean-field approx-
imations of many-body systems. The methods are com-
plementary and allow us to take a closer look at differ-
ent regimes. The former reveals exact properties of the
ground state and the correlations that explain the macro-
scopic picture. The latter gives access to the macroscopic
structures, including those with broken-symmetry. The
many-body picture is also typical in experiments prob-
ing single-particle properties, such as those measuring
the density profiles. More sophisticated measurements
could look within multi-particle correlations. Such state-
of-the-art experiments are possible both in few-body [42–
44] and many-body [45, 46] regimes, and tools are known
as atomic microscopes.

We will diagonalize the few-body Hamiltonian via the
single-particle basis to obtain the ground state, though
which the density profiles and two-body correlations can
be evaluated. The complexity of the few-body calculation
grows rapidly, calling for an approximate treatment for
many-body systems. By coupling the Gross-Pitaevskii
equation of the bosonic condensate and Hartree approx-
imation of the fermions with boson-fermion interactions,
the many-body approximation will show a variety of den-
sity profiles in the ground state and maps out the phase
diagrams for the most stable configuration. We then an-
alyze effects of mass imbalance and interactions on the
density profiles and two-body correlations. Both few-
body and many-body results show that the hard-wall
boundary condition leads to structures different from
those in a harmonic trap due to differences in the single-
particle spectra. For example, the harmonic trap favors
the core-plus-shell structure while a box potential can
accommodate sandwich structures or two-chunk separa-
tion.

The rest of the paper is organized as follows. Sec. II
summarizes the few-body and many-body formalisms of
binary boson-fermion mixtures and the numerical pro-
cedures for simulations. Sec. III presents the phase di-
agrams, density profiles, and correlation functions from
our few-body calculations. The analysis of the correla-
tions will reveal more details of the structures than the
density profiles. Sec. IV shows the phase diagrams and
density profiles from the many-body mean-field calcu-
lations. By analyzing the widths of the density varia-
tions, we present the healing lengths of the bosons and
fermions. A scaling argument from energy competitions
captures the main features of the healing lengths. Sec. V
discusses possible measurements of the phase-separation
properties and implications for exotic phases of matter
in atomic boson-fermion mixtures. Sec. VI concludes our
work.

II. THEORETICAL FRAMEWORK

Here we summarize the theoretical frameworks of both
few- and many -body pictures. For the whole analysis,
we assume equal population of the bosons and fermions
with Nb = Nf ≡ N confined in a quasi-1D box of length
L. Depending on the picture considered, N will be of the
order of one or a hundred. We denote the masses of the
bosons and fermions as mb and mf , respectively.

For a binary boson-fermion mixture, there are two cou-
pling constants from the two-body s-wave collisions: The
intraspecies interactions between bosons, gbb, and the in-
terspecies interaction between bosons and fermions, gbf .
For single-component fermions, the Pauli exclusion prin-
ciple suppresses two-body s-wave collisions between iden-
tical fermions, hence gff = 0. The non-vanishing cou-
pling constants gbb and gbf can be respectively expressed
in terms of the two-body s-wave scattering lengths abb
and abf away from resonance by [41]

g3Dbα = 2π~2a3Dbα /mbα (1)

with the reduced mass mbα = (1/mb + 1/mα)−1, where
α ∈ {b, f}. Here a3Dbα > 0 (or < 0) corresponds to a
repulsive (or attractive) interaction. In experiments, a
magnetic field induced Feshbach resonance can be uti-
lized to tune the 3D s-wave scattering length a3Dbα , lead-
ing to tunable interactions [41, 47]. In experiments, gbb
and gbf may change together with the external magnetic
field. Here we assume the two coupling constants can be
tuned independently and map out the phase diagrams for
selected atomic mixtures.

Quasi one-dimensional atomic gases can be realized by
freezing the motion (with a tight confinement) in the
transverse directions. Away from resonance, the cou-
pling constant g1D of a 1D atomic gas can be expressed
in terms of a3D via [48] g1Dbα =

(
2~2a3Dbα

)
/a2⊥, where a⊥

is the length scale associated with the tight confinement
in the transverse directions. Hence, g1Dbα can be tuned by
adjusting the ratio between a3Dbα and a⊥. In the follow-
ing, we will drop the superscript 1D in the coupling con-
stants and introduce the dimensionless parameters g̃bα to
rewrite the coupling constants as gbα = g̃bαE

0
f/k

0
f . Here

E0
f is the Fermi energy and k0f = πNf/2L is Fermi wave-

vector of a 1D noninteracting Fermi gas with the same
particle number as the fermions of the mixture in the
same 1D box potential.

A. Few-body theory

Here we consider a mixture of equal numbers of bosons
and fermions confined in a box of length L. The few-body
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Hamiltonian of the Bose-Fermi mixture reads:

H =
∑
α

∫ L

0

dxΨ̂†α(x)

(
− ~2

2mα

d2

dx2

)
Ψ̂α(x)

+
gbb
2

∫ L

0

dxΨ̂†b(x)Ψ̂†b(x)Ψ̂b(x)Ψ̂b(x)

+gbf

∫ L

0

dxΨ̂†b(x)Ψ̂†f (x)Ψ̂f (x)Ψ̂b(x),

(2)

where α ∈ {b, f} denotes bosons and fermions, respec-
tively. The consecutive lines represent the single-particle
Hamiltonian consisting only of the kinetic energy, the
intrabosonic interactions, and the inter-species interac-
tions between the bosons and fermions. The bosonic
(fermionic) field operator Ψ̂b(x) (Ψ̂f (x)) annihilates a
particle at position x. The operators obey appropriate
(anti)commutation relations:

[Ψ̂†b(x), Ψ̂b(x
′)] = δ(x− x′), (3a)

{Ψ̂†f (x), Ψ̂f (x′)} = δ(x− x′), (3b)

[Ψ̂b(x), Ψ̂f (x′)] = 0. (3c)

Note that the last commutation relation, Eq. (3c), is de-
fined for distinguishable particles. It means that our
choice of bosonic commutation relation is arbitrary as
long as it is employed systematically throughout the anal-
ysis [49], and the choice of the fermionic anticommutation
relation would not alter the results.

The field operators can be expanded in a single-particle
basis φn(x) as

Ψ̂α(x) =
∑
n

φn(x)âαn, (4)

where n runs over the complete basis spanned by
{φn(x)}, and the operator âαn annihilates a particle of
type α in state n. The single-particle basis φn(x) is the
same for both species in the box:

φn(x) =

√
2

L
sin
(nπ
L
x
)

(5)

and does not depend on the mass of the particles. In con-
trast, the single-particle energy depends on the inverse of
the mass:

Eαn =
~2π2n2

2L2mα
. (6)

Moreover, the number of particles is conserved in the few-
body calculations, therefore the Hamiltonian Eq. (2) can
be diagonalized independently in each subspace of fixed
Nb, Nf .

1. Observables

Similar to our previous study of atomic Bose-Bose and
Fermi-Fermi mixtures [28], we are mainly interested in

the correlations and structures of the boson-fermion mix-
tures. The single-particle density of species α for the
ground state |Φ0〉 reads

ρα(x) = 〈Φ0|Ψ̂†α(x)Ψ̂α(x)|Φ0〉. (7)

To quantify the homogeneity of the system, we introduce
the following definition of homogeneity:

h = 1−
∫ L

0

|ρb(x)− ρf (x)|
Nb +Nf

dx. (8)

Here the definition by construction gives h = 0 for the
miscible (homogeneous) phase and h = 1 for total phase
separation with no overlap between the densities of the
two species. We mention that other indicators, such as
a weighted sum of the entropy of mixing or entropy of
localization [50], have been introduced to characterize the
structures of boson-boson mixtures.

The homogeneity gives an important information
about the structure but does not tell the whole story.
First of all, the above consideration concerns the ground-
state properties. However, a ground state can be in a su-
perposition, which cannot be observed directly via single-
particle measurements in experiments. After a measure-
ment, the wave function collapses, and one realization
is observed. Therefore, to shed light on the underlying
structures of boson-fermion mixtures, we analyze two-
body correlations. In particular, we will focus on the
density-density correlations in real space from the ground
state |Φ0〉, defined by

Cbb(x, y) = 〈Φ0|Ψ̂†b(x)Ψ̂†b(y)Ψ̂b(y)Ψ̂b(x)|Φ0〉, (9a)

Cff (x, y) = 〈Φ0|Ψ̂†f (x)Ψ̂†f (y)Ψ̂f (y)Ψ̂f (x)|Φ0〉, (9b)

Cbf (x, y) = 〈Φ0|Ψ̂†b(x)Ψ̂†f (y)Ψ̂f (y)Ψ̂b(x)|Φ0〉. (9c)

Here x, y denote two points inside the 1D box.

2. Numerical calculation

The formalism introduced in Eq. (4) assumes an in-
finite sum. In practice, to calculate the properties of
desired few-body states, one introduces a cutoff in the
number of single-particle orbitals used. With such a nu-
merical approximation, the matrix elements of the Hamil-
tonian (2) are calculated. It is worth noting that the di-
mension DH of the Hilbert space H grows exponentially
with n, as shown in Fig. 1.

In our calculations, the dimension DH is around 2 ×
105, and the results do not change significantly with in-
creasing n. We note that the Hamiltonian is an operator
and has dimension D2

H. However, the Hamiltonian ma-
trix for the boson-fermion mixture studied here is sparse.
Therefore, we can very effectively use the Arnoldi pack-
age [51] to perform exact diagonalization and obtain the
lowest-energy eigenstate. Since we use the method of
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FIG. 1. The dimension DH of the Hilbert space H of a mix-
ture with N bosons and N fermions with a cutoff parameter
nc. The exponential growth is very rapid in the limit of large
nc. The dashed horizontal line shows the maximal dimension
considered in the following studies.

exact diagonalization extensively for many years, the de-
tails can be found, for example in Ref. [28] or in the
Appendix of Ref. [52]. For each given N = 4, mass ratio
mb/mf , and cutoff nc = 10, we performed 100 diagonal-
izations to obtain the g̃bb-g̃bf phase diagram.

It is worth noting that there is a crucial difference be-
tween the boson-fermion mixtures and our previous stud-
ies of Bose-Bose mixtures and Fermi-Fermi mixtures [28].
When both components obey the same spin-statistics,
the only difference in the energy scale in the single-
particle picture comes from the relation Eq. (6), i.e., the
mass dependence. For boson-fermion mixtures, however,
there is another difference at the single-particle level: The
Fermi energy of the fermions differs significantly from the
last level occupied by the bosons. The difference in the
energy scales leads to more demanding overhead in the
calculations.

B. Mean-field many-body theory

In a mean-field treatment of many-body systems,
the contact interaction is coarse-grained into a density-
density interaction [41], which ignores the details of the
wavefunction and only accounts for the energy change
due to the overlap of the density profiles. The ground-
state energy functional E[ψb, ψf,1, · · · , ψf,Nf ] of a binary
boson-fermion mixture in a 1D box potential can be writ-

ten as

E =

∫ L

0

dx
[ ~2

2mb
Nb|∂xψb|2 +

~2

2mf

∑
i≤Nf

|∂xψf,i|2

+
1

2
gbbN

2
b |ψb|4 + gbfNb|ψb|2

∑
i≤Nf

|ψf,i|2
]
. (10)

Here
√
Nbψb is the condensate wavefunction and ψf,i is

the ith fermionic eigen-state. The normalization condi-
tions

∫ L
0
dx|ψb|2 = 1 and

∫ L
0
dx|ψf,i|2 = 1 for all i are

imposed.
In the mean-field description of the ground state, the

condensate wavefunction describing the bosons is gov-
erned by the Gross-Pitaevskii equation [41, 53]. To
find the minimal-energy configuration, we implement the
imaginary-time formalism [41, 54] by searching for the
stable solution to the imaginary-time evolution equa-
tion −∂ψb/∂τ = δE/δψ∗b in the τ → ∞ limit, start-
ing from a trial initial configuration. The normalization∫
|ψb|2dx = 1 is imposed at each imaginary-time incre-

ment to project out higher-energy states. Here τ = it is
the imaginary time. Explicitly,

−~∂ψb
∂τ

= − ~2

2mb
∂2xψb + gbbρbψb + gbfρfψb, (11)

where, ρα with α ∈ {b, f} denotes the bosonic and
fermionic density, respectively. Meanwhile, we describe
the fermions by using the Hartree approximation, which
leads to set of eigenvalue equations:

− ~2

2mf

∂2ψf,i
∂x2

+ gbfρbψf,i = Eiψf,i. (12)

We choose the units so that ~ = 2mf = 1. The coupled
equations of the bosons and fermions are then solved to-
gether to obtain a configuration for the boson-fermion
mixture.

The density profiles can be obtained from the conden-
sate wavefunction and fermion wavefunctions via

ρb = Nb|ψb|2, ρf =
∑
i≤Nf

|ψf,i|2. (13)

The total number of particles of each species is given by

Nα =

∫ L

0

dxρα. (14)

It is possible to obtain different solutions from differ-
ent initial conditions that respect or violate the parity
symmetry. In our numerical calculations, we have tried
as many different initial states as possible and collected
their final solutions. By comparing the ground-state en-
ergies via Eq. (10) from those different solutions, the
lowest-energy state can be identified.
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FIG. 2. The g̃bb-g̃bf phase diagrams for various boson-fermion mixtures with Nb = Nf = N = 4, showing the homogeneity
h of different mixtures with increasing mass ratio mb/mf . We smoothed the results obtained for interactions changing by
∆g̃bα = 0.64. While the diagrams becomes featureless for large mass imbalances, in the region of mb/mf ≈ 1.55, the structures
are very rich. The yellow regions (h ≈ 1) mark a miscible mixture while the blue region (h ≈ 0) shows phase separation. Here
the quantities h, g̃bb, and g̃bf are dimensionless.

III. FEW-BODY RESULTS

The boson-fermion mixtures have multiple parame-
ters, implying rich structures and phenomena. Moreover,
these parameters are not merely theoretical variables but
associated with quantities that can be controlled in ex-
periments either by choosing atomic species to vary the
masses mα or by tuning the inter- and intra- species in-
teractions g̃bα.

A. Limiting cases

Before focusing on particular results, we consider some
limits of the parameters and simple scenarios to give us
physical intuition. First of all, when g̃bf = 0, the two
species are independent of each other, so they can be
treated on their own. Especially, for strongly interact-
ing bosons (i.e., for g̃bb → ∞,) the density profile of the
bosons tends to that of non-interacting fermions. Due to
the equal numbers of both species, the density profiles
will overlap perfectly, giving rise to a homogeneous mix-
ture. Note that in this limit, the mass ratio is irrelevant
since the bosons and fermions are decoupled. Therefore,
the bottom of the g̃bb − g̃bf phase diagrams are similar
for different types of mixtures. As the inter-species in-
teraction g̃bf increases, the differences start to come in

while the homogeneity is lost. Those features are clearly
shown in Fig. 2.

In contrast, by setting g̃bb = 0, the only interaction
is between the bosons and fermions, which should favor
phase separation. This is because the bosons are nonin-
teracting and can be described by just the lowest single-
particle orbital, where the bosons bunch together because
of their spin-statistics. Due to the parity symmetry of the
box, one species will stay in the middle, and the other is
divided into two parts on the two sides. Since the Pauli
exclusion principle favors separation of fermions, the rule
of thumb suggests that the bosons will stay in the middle
while the fermions extend to the two sides. That is the
case under the assumption that both species have compa-
rable kinetic energies. However, here the kinetic energy
strongly depends on the mass. In particular, by increas-
ing the mass of one species, the single-particle energy
goes down as 1/mα, favoring the species for accommo-
dating spatial distortion and staying near the walls. In
lithium-rubidium mixtures, the masses differ by an or-
der of magnitude. It means in practice, for sufficiently
large g̃bf , the lithium atoms will stay in the middle and
the rubidium atoms will spread towards the walls. The
miscible-immiscible transition occurs sharply in a narrow
regime, see Fig. 2(a) and Fig. 2(h). For a huge mass im-
balance, the kinetic energy plays an important role in
determining the structure.
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FIG. 3. Top row: Density profiles, ρα(x). Second to the last rows: Two-body correlations Cbf (x, y), Cbb(x, y), and Cff (x, y)
for the corresponding mixtures, respectively. Here Nb = N = Nf = 4. From the left column to the right, we present the
results from the points labeled on Fig. 2. Here the two-body correlations inform case A as miscible, cases B and C as 2-chunk
separation, and cases D and E as 3-chunk separation.

We remark that the main features of those results are
due to the confinement of the box. Moreover, the fermion
density is strongly modulated due to the Pauli exclu-
sion principle, which alters how the components mix and
separate. In the many-body treatment, those features
are still observable. We also note that particular fea-
tures may emerge in the few-body results. For instance,
one can observe ’islands’ of homogeneity in the regime
of phase separation in Fig. 2(b)-(d). Those particular
features stem from the subtle interplay between the in-
teractions, spin-statistics, and the kinetic energies that
strongly depend on the masses.

B. Miscible and two-chunk structure

As a concrete example, we first focus on the 133Cs-
86Rb mixture with a mass ratio mb/mf ≈ 1.55. We
choose five representative states with (g̃bb, g̃bf ) given by
A: (4.46, 0.64), B: (0.64, 6.37), C: (2.55, 4.46), for various
interaction strengths (see Fig. 2(d)). In Fig. 3, we analyze
single-particle and two-body properties for those states.
In the consecutive rows we present the densities ρα and
the correlations Cbf , Cbb, and Cff .

Since the bosons are heavier, they stay near the walls
of the box. Moreover, when x = y in the plots of the
correlations, the corresponding values are zero because
of either the repulsion between bosons or the Pauli ex-
clusion principle of the fermions. As we remarked earlier,
when the intraspecies interaction dominates like the bot-
tom of Fig. 2(d), the system is a miscible mixture, as one
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can see in Fig. 3A. Apart from the fact that two identi-
cal fermions would avoid each other due to the vanishing
correlation at the same position, the probability of mea-
suring two particles is almost uniform. This property
fully fulfills the definition of a miscible mixture. Fur-
thermore, no clear separation is seen in the weakly in-
terspecies interaction regime. The slight distortion near
the hard walls is due to the boundary condition. With
the size of the box goes to infinity, the homogeneity is
expected to approach one for the miscible phase.

Next, we observe that the density profiles in the
stronger interspecies interaction regimes, as shown in the
first row of Fig. 3, separate into three parts with the
lighter species in the middle. For a finite system in a
box, the separation is not sharp unless very strong in-
teractions are involved. However, we have to be careful
when interpreting the single-particle density profiles be-
cause there are superpositions of states respecting the
parity symmetry, which in 1D is equivalent to the mirror
symmetry with respect to the center of the box. As will
be shown in the mean-field approach and expected in ex-
periments, the parity symmetry may be broken by, for
example, imperfections in the preparation and/or trap
potential, fluctuations from the environment, or round-
ing in numerical evaluation. If the parity symmetry is
broken, two-chunk structures in the density profiles may
emerge with the bosons and fermions occupying opposite
regions of the box to lower the interaction energy. To fur-
ther differentiate the phase-separation structures in the
few-body results, we analyze the two-particle correlations
between the atoms.

For cases B and C of Fig. 3, the tendency to form
two-chuck structures if the parity symmetry is broken
can actually be observed in the two-body correlations.
First of all, the inter-species correlation Cbf shows that
the existence of a boson on one side of the box (left or
right) corresponds to the existence of a fermion on the
opposite side. Meanwhile, all the bosons are seen to con-
gregate on one side according to Cbb. Similarly, all the
fermions can be found either on the left or right half of
the box according to Cff . The behavior of fermions is a
bit counter-intuitive since it implies the Pauli principle is
not enforced. A careful analysis shows that two fermions
are correlated in the left or right part of the box while
the Pauli exclusion principle prohibits identical fermions
from occupying the same position, which is reflected by
the vanishing correlation along the diagonal of the plot.

Similar effects are also observable in the two-particle
correlations shown in panel C of Fig. 3 for stronger re-
pulsion between the bosons. The two-body correlation
landscape showing aggregations of same species and sep-
aration of different species explains that the underlying
structure is actually two-chunk, but the superposition in
the ground state conceals it in the single-particle density
profile. We anticipate that two-chunk phase separation
will be revealed in the many-body limit after the parity
symmetry is broken.

C. Three-chunk structure

Cases D and E of Fig. 3 show features that are as-
sociated with three-chunk structures of 7Li-86Rb mix-
tures with mb/mf = 0.08 and 87Rb-6Li mixtures with
mb/mf = 14.5, respectively, see also Fig. 2(a) and (h).
Again, the few-body single-particle density profiles may
or may not reflect the many-body structures after the
parity symmetry is broken. It is thus crucial to analyze
the correlations Cff , Cbb, and Cbf to find out where the
two species of atoms tend to congregate. In case D, the
two-body correlation of fermions Cff is peaked at the four
corners, which means that for a given fermion near a wall,
there is a high probability of finding another one near the
same or opposite wall. In contrast, the boson-boson cor-
relation Cbb clearly shows that the bosons occupy the
center of the box. Thus, the correlations indicate the
system prefers a sandwich structure.

In case E, the two-body correlation of fermions Cff
are similar to case A, but the correlations are within a
smaller region. This means that the fermions are spread
uniformly in the center of the box. Moreover, the bo-
son correlation Cbb is now peaked at the four corners,
which means that for a given boson near the wall, there
is high probability of finding another one near the same
or opposite wall. The picture of the boson-fermion corre-
lation Cbf further corroborates the above interpretation.
When the fermions (or bosons) are concentrated in the
middle of the box, the bosons (or fermions) will be near
the walls. With the analysis, we conclude that the sys-
tem will show three-chunk phase separation (or sandwich
structure) in the many-body limit when imperfections or
fluctuations from the atoms or traps are considered. We
remark that for a strong mass imbalance, the heavy par-
ticles in a three-chunk structure will occupy the regions
near the walls to reduce the kinetic energy due to the
distortion of the wavefunctions.

The two-chunk separation inferred from the two-body
correlations can be found in almost all the phase di-
agrams shown in Fig. 2, apart from the one with the
smallest mass ratio mb/mf = 0.08. In that special case,
the results are limited by the demanding computation to
explore the strong-interaction regime, so the appropri-
ate range for two-chunk separation on the phase diagram
may not have been covered in our calculation. On the
other hand, we did not find three-chunk separation in
the correlations of boson-fermion mixtures with compa-
rable masses. While this may be due to the limitation of
the parameter space that we can explore, we anticipate
the three-chunk separation regime to be small in general,
which is consistent with the many-body results that will
be shown in the next section.

IV. MANY-BODY RESULTS

Here we present the results from many-body mean-field
theory of binary boson-fermion mixtures. The first case
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is with nearly equal masses, exemplified by a mixture of
7Li and 6Li, and then cases with larger mass imbalance
will be presented, including 7Li - 86Rb and 6Li - 87Rb
mixtures. Our method is general and applies to other
atomic boson-fermion mixtures in 1D box potentials as
well. Unless otherwise specified, we will present the re-
sults of Nb = 50 = Nf . We have verified that increasing
the particle numbers does not introduce further features.
A 1000-point grid is used to discretize the space, and
we have checked the results are insensitive to a further
refinement of the grid.

A. Comparable masses: 6Li–7Li mixture

After solving the coupled equations of the binary
boson-fermion mixtures in a 1D box and comparing
the ground-state energies of possible solutions to pick
the lowest-energy configuration, we identify the stable
ground-state structures of a mixture of 6Li and 7Li.

1. Phase diagram and density profiles

The g̃bb-g̃bf phase diagram of the ground-state struc-
tures of a mixture of 6Li and 7Li is shown in Fig. 4(a). We
also show the homogeneity h, defined in Eq. (8). There
are three possible structures: The miscible phase in the
weak inter-species interaction region, two-chunk separa-
tion in the strongly interacting region, and three-chunk
(or sandwich) separation in the intermediate regime.
When h → 1, the mixture is in the miscible phase
and when h → 0, the bosons and fermions are phase-
separated (into either a three-chunk or two-chunk struc-
ture). Representatives of the three regimes of Fig. 4(a)
are shown in Fig. 4(b), (c), and (d). In the miscible
phase, there is a substantial overlap between the two
species except the regions near the hard walls, where the
wavefunctions are distorted by the boundary condition.
In the three-chunk separation, the fermions congregate at
the center, enclosed by the bosons on both sides. Finally,
in the two-chunk separation, the bosons and fermions oc-
cupied opposite sides and break parity symmetry due to
imperfections of the initial condition or fluctuations in
the calculations. We remark that the total energies of
different structures have been compared, and the most
stable state is chosen for each set of parameters.

When compared to a previous analysis in an infinitely
large system without boundary [27], one can see that the
three-chunk structure from the mean-field calculation is
only possible in the presence of the hard walls. This is be-
cause the fermions already have the main contribution to
the kinetic energy from the piling-up of the Fermi sea, so
they are less sensitive to the distortion at the hard walls.
On the other hand, the bosons with finite g̃bf can have a
smoother profile when interfacing with the fermions than
with the hard walls. Therefore, the mean-field result of
the three-chunk structure in a box potential shows the

FIG. 4. Phase diagram (a) and density profiles (b)-(d) of 7Li–
6Li boson-fermion mixtures with mass ratio mb/mf = 7/6.
Here Nb = Nf = 50 and g̃bb = 2 with g̃bf = 2 (b), g̃bf = 8 (c),
and g̃bf = 14 (d) with their locations labelled on panel (a).

influence of geometry on quantum systems. One may
observe that the repulsive boson-boson interaction com-
petes with the influence of the repulsive boson-fermion
interaction. This is because the condensate of bosons has
negligible kinetic energy, so the bosonic self-interaction
plays the role of the Fermi pressure and pushes the other
species.
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FIG. 5. Healing lengths of (a) bosons and (b) fermions at
the opposite boundaries of the box potential for a 7Li–6Li
mixture from the simulations and Eqs. (15) and (16). Here
Nb = Nf = 50 in (a) and (b) with g̃bf = 40 in (a) and
g̃bb = 1, g̃bf = 10 in (b).

On the other hand, a two-chunk structure breaks the
parity symmetry in a box potential. If a calculation and
its conditions respect the parity symmetry, two-chunk
structures will not emerge in the density profile. In our
few-body calculations, we analyze the correlations to re-
veal the underlying two-chunk structure. In our mean-
field calculations, however, we use fluctuations in the ini-
tial conditions to break the parity symmetry and con-
firm the two-chunk structure with separating densities
becomes the most stable in the strong-interaction regime.
For realistic situations in experiments, fluctuations in the
preparation, trapping, and manipulations of atoms in the
strong-interaction regime may also break the parity sym-
metry and result in the stable two-chunk structure.

A closer examination of Fig. 4(b), (c), (d) suggests
that increasing the repulsive boson-fermion interaction
tends to reduce the width of the overlap between the
two species. This is expected because the overlap region
incurs high interaction energy. In the following, we will
analyze the interface properties of the mixtures.

2. Healing lengths at the walls

For pure bosons in a box with hard walls, ψb → 0
at the walls and ψb approaches the constant bulk value
away from the boundary. The distance over which the
wavefunction rises from zero at the wall to its bulk

FIG. 6. Healing lengths of (a) bosons and (b) fermions at the
interface of a 7Li–6Li mixture in a two-chunk structure from
the simulations and Eqs. (18) and (19). Here Nb = Nf = 50
in (a) and (b).

value is often referred to as the healing (or coherence)
length [41, 54]. Near the wall, ψb is governed by a com-
petition between the kinetic and interaction energies. If
we denote the length scale of the variation of the bosons
at the wall by ξb, the kinetic energy per particle due to the
distortion of the wavefunction is given by KEb = ~2

2mbξ2b
.

The healing length of bosons is defined as the length scale
at which the kinetic energy per particle matches the in-
teraction energy per particle, gbbρb. This leads to an
estimation ~2

2mbξ2b
∼ gbbρb. By defining ξ̃b = ξb/L as a

dimensionless quantity, the scaling of the healing length
is

ξ̃b ∼
√

mf

mbk0fL

1√
g̃bbρbL

≡ 1√
Sbw

. (15)

Here we define a dimensionless parameter Sbw ≡
g̃bbρbk

0
fL

2mb/mf to simplify the scaling analysis. The
presence of the fermionic parameters is only to fix the
units.

Meanwhile, the length scale of the variation of fermions
at the wall, denoted by ξf , may be determined by match-
ing the kinetic energy per particle with the Fermi energy.
The reason is because Pauli exclusion principle may be
viewed as an effective (statistical) interaction between
fermions, leading to an energy scale determined by the
Fermi energy Ef . The balance KEf = ~2/(2mfξ

2
f ) ∼ Ef

then leads to ξf ∼ 1
kf
. Here kf is the bulk Fermi

wavevector, determined by the bulk fermion density ρf
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via kf = πρf/2. In terms of the dimensionless healing
length ξ̃f = ξf/L, we have

ξ̃f ∼
1

kfL
≡ 1√

Sfw
. (16)

Here we define another dimensionless parameter Sfw ≡
(kfL)2 to simplify the scaling analysis.

Now we consider two-chunk separation in the strong-
interaction regime, where the bosons occupy one side of
the box while the fermions occupy the other side. In such
configurations, there is practically only one species near
each hard wall. In our analyses of the healing lengths, we
take the width as the distance between 95% and 5% of
the value of√ρα at the plateau in the bulk. Taking differ-
ent criteria or using functional fits to the density profiles
leads to basically the same scaling behavior, which veri-
fies the robustness of the energy-competition argument.
Fig. 5 shows the scaling of the healing lengths of the
bosons and fermions near the hard walls, respectively.
The scaling behavior confirms the arguments based on
the competition of the kinetic and interaction energies for
each species. We note that the energy-competition argu-
ments do not fix the pre-factors of the healing lengths,
causing a parallel shift between the data and analytic
formulas on a log-log plot.

3. Healing lengths at the interface

In the phase-separation structures, both species are
present at the interface between the two species. The
interaction energy (IE) per particle of the bosons and
fermions at the boson-fermion interface may be respec-
tively estimated as

IEb = gbbρb + gbfρf , IEf = Ef + gbfρb. (17)

For the fermions, Pauli exclusion principle may be con-
sidered as an effective (statistical) interaction, which in-
troduces the Fermi energy Ef to IEf . If ξα denotes
the healing lengths for species α = b, f , then the ki-
netic energy per particle due to the distortion of the
wavefunction is again given by KEα = ~2

2mαξ2α
. As dis-

cussed earlier, the healing lengths may be estimated using
the conditions KEα ≈ IEα. Explicitly, for the bosons,

~2

2mbξ2b
∼ gbbρb + gbfρf , which leads to

ξ̃b ∼
√

mf

mbk0fL

1√
g̃bbρbL+ g̃bfρfL

≡ 1√
Sbi

. (18)

For the fermions, ~2

2mfξ2f
∼ ~2k2f

2mf
+ gbfρb, which leads to

ξ̃f ∼
1√

(kfL)2 + g̃bf (ρbL)(k0fL)
≡ 1√

Sfi
. (19)

Similar to the analyses of the healing lengths at the
hard walls, here we define two dimensionless parameters

Sbi ≡ [g̃bbρbL+ g̃bfρfL]mbk
0
fL/mf and Sfi ≡ [(kfL)2 +

g̃bfρbk
0
fL

2] to simplify the scaling analyses of the heal-
ing lengths at the boson-fermion interface. We note that
when comparing the analyses of the healing lengths at
the hard walls versus those at the boson-fermion inter-
face, the expressions of Sαi for α = b, f are consistent
with those of Sαw because only one species is present
near each hard wall in two-chunk phase separation but
both species are present at the boson-fermion interface.

We remark that in the expressions of the healing
lengths, ρα denotes the bulk density of the correspond-
ing species away from the interface or hard wall, and
k0f = πNf/2L is the noninteracting Fermi wavevector
while kf = πρf is the bulk Fermi wavevector of the
fermions in the mixture. The interface widths for both
species from the simulation results can be obtained from
the density profiles by following the same analyses as we
did for the healing lengths at the hard walls. Moreover,
we have verified that taking different criteria or using
functional fits to the density profiles basically leads to
the same scaling behavior.

Fig. 6 shows that the healing lengths of the bosons and
fermions at the interface scale according to Eqs. (18)
and (19), respectively, in the two-chunk regime shown in
Fig. 4. Since testing the scaling behavior requires a broad
range of parameters, the two-chunk regime is more ap-
propriate because the three-chunk regime is narrow along
the g̃bf direction. The agreement of the scaling behavior
between the simulations and analytical formulas of the
healing lengths verifies that the energy-competition ar-
gument works well with binary boson-fermion mixtures
in a 1D box. We remark that more complicated analyses
with constructions of piecewise energy functionals [55–57]
may lead to refinements of the structures and interface
widths, which will in turn determine the pre-factors of the
healing lengths that cannot be explained by the scaling
analysis. Nevertheless, the simple scaling from energy-
competitions provides us the main physical meaning for
explaining future experiments on atomic boson-fermion
mixtures.

B. 87Rb-6Li: heavy bosons and light fermions

1. Phase diagrams and structures

For boson-fermion mixtures with prominent mass im-
balance, we first analyze mixtures of 87Rb and 6Li. This
system also exhibits the miscible phase, three-chunk sep-
aration, and two-chunk separation of the two species as
the inter-species interaction increases. Fig. 7(a) shows
the phase diagram of 87Rb and 6Li mixtures. Fig. 7(b),
(c), and (d) show the representative density profiles of
the miscible phase in the weak inter-species interaction
regime, three-chunk (sandwich) separation in the inter-
mediate interaction regime, and the two-chunk separa-
tion in the strong interaction regime, respectively. Heav-
ier mass lowers the kinetic energy due to distortion of
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FIG. 7. Phase diagram (a) and density profiles (b)-(d) of
87Rb–6Li mixtures. Here Nb = Nf = 50 and g̃bb = 2 with
g̃bf = 2 (b), g̃bf = 10 (c), and g̃bf = 18 (d) with their locations
labelled on panel (a).

the density profile in a phase-separation structure be-
cause the mass appears in the denominator of the kinetic
energy. To minimize the kinetic energy due to the dis-
tortion of the wavefunction in the three-chunk structure,
the density of the lighter species tends to stay away from
the hard walls while the heavier species tends to occupy
the region there until the two-chunk structure becomes

FIG. 8. Scaling behavior of the healing lengths of (a) bosons
and (b) fermions at the interface of a 87Rb - 6Li mixture in
the two-chunk separation from the simulations and Eqs. (18)
and (19). Here Nb = Nf = 50 in (a) and (b).

energetically more favorable than the three-chunk struc-
ture.

2. Interface properties of 87Rb - 6Li mixture

The healing lengths of the bosons and fermions with
larger mass imbalance at the hard walls in a 1D box are
found to follow the same scaling as their counterparts in
the 7Li–6Li mixture. Hence, we do not repeat the analy-
sis of ξα at the hard walls. For the interface between the
two species, we found that since the three-chunk struc-
ture exists in a narrow parameter range, it is more chal-
lenging to analyze the scaling behavior. Therefore, the
interface properties of the mixtures are discussed only
for the two-chunk structure that extends well into the
strongly interacting regime.

For 87Rb - 6Li mixtures, we found that the healing
lengths of the bosons and fermions at their interface scale
according to Eqs. (18) and (19), respectively. The scal-
ings of the healing lengths with interactions are shown
in Fig. 8, which confirm that the widths of the bosons
and fermions at the interface are determined by compe-
titions between the kinetic energy due to the distortion
of the density and the interaction energy, which includes
the inter- and intra- species interactions and the effective
(statistical) interaction of fermions. Furthermore, the
scaling analyses correctly capture the power-law depen-
dence of the healing lengths of the bosons and fermions
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FIG. 9. Phase diagram (a) and density profiles (b)-(d) of
7Li–86Rb boson-fermion mixtures. Here Nb = Nf = 50 and
g̃bb = 10 with g̃bf = 5 (b), g̃bf = 20 (c), and g̃bf = 50 (d) with
their locations labelled on panel (a).

at the phase-separation interface and verify the energy-
competition argument.

FIG. 10. Healing length of (a) bosons and (b) fermions at the
interface of a 7Li - 86Rb mixture in the two-chunk separation
from the simulations and Eqs. (18) and (19). Here Nb = Nf =
50 in (a) and (b).

C. 7Li-86Rb: light bosons and heavy fermions

1. Phase diagram and structures

Here we consider a 7Li-86Rb mixture as an example
of light bosons and heavy fermions. The phase diagram
is shown in Fig. 9(a) with a relatively large three-chunk
regime when the boson-boson interaction is weak. Inter-
estingly, we could not reach the regime in the few-body
calculations to observe two-chunk separation in 7Li-86Rb
mixture due to the demanding computation, which im-
plies that the parameter space for the three-chunk struc-
ture is relatively large. This is indeed the case from the
many-body result.

For the three-chunk structure, the boson is now in the
center of the box because the kinetic energy is relatively
small for the heavy fermions, which tend to stay near the
hard walls and push the bosons away from the hard walls.
Meanwhile, the bosons rely on the boson-boson interac-
tion to build up pressure to push against the fermions.
Hence, the three-chunk structure remains energetically
favorable than the two-chunk structure when g̃bb is weak
and the bosons cannot repel the fermions at both hard
walls. When g̃bf >> g̃bb, however, the bosons are tightly
compressed by the fermions and eventually pushed to one
side of the box to form a two-chunk structure with lower
total energy.
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2. Interface properties of 7Li - 86Rb mixture

Since the density profiles of the 7Li - 86Rb mixture in
the two-chunk regime are similar to those of the 87Rb -
6Li mixture, the analyses of the widths that reflect the
healing lengths at the phase-separation interface are also
similar. We again focus on the two-chunk regime due
to its broad coverage of the strong-interaction region on
the phase diagram. The scaling of the healing lengths
with the interactions are shown in Fig. 10. The same
scaling analysis confirms the functional dependence of
the healing lengths of the bosons and fermions described
by Eqs. (18) and (19) at the phase-separation interface,
showing the generality of the energy-competition argu-
ment. We mention that the scaling analyses only reveal
the functional forms of the healing lengths, and the pre-
factors need to be determined from simulations or direct
evaluations of the energy functionals for the inhomoge-
neous systems. Moreover, we have verified the scaling of
the healing lengths with more particle numbers or grid
points, and the functional forms remain the same because
of the energy-competition mechanism.

V. IMPLICATIONS

We verify the qualitative agreement between the few-
body exact calculation and mean-field treatment by com-
paring the phase diagrams of 6Li - 7Li mixtures in Fig.
11. To facilitate a fair comparison, we use Nb = 4 = Nf
for the mean-field treatment as well. As one can see in
both diagrams, the miscible phase starts to separate as
g̃bf increases, with a three-chunk regime in between the
miscible phase and the two-chunk regime. The two ap-
proaches indeed agree qualitatively despite some subtle
differences in the details.

To analyze the interface structures of atomic mixtures,
high-resolution imaging of cold-atom systems at the level
of single-atom sensitivity is desired. Microscopy tech-
niques inspired by the scanning electron microscopy have
been successfully used for detection of single atoms inside
a quantum gas in an optical lattice with a resolution bet-
ter than 150 nm [58] but with low accuracy of single-atom
detection. The invention of quantum gas microscopes,
for example, allows sub-micron resolution of the order
of 0.5 µm and near-unity detection efficiency by fluores-
cence imaging in a pinning lattice for ultracold atoms in
optical potentials [59]. A review of recent developments
of quantum gas microscopes is given in Ref. [46]. Super-
resolution imaging based on nonlinear response of atoms
in an optical lattice to an optical pumping is demon-
strated with the capability of imaging the structure of
an atomic cloud with a resolution of 30nm and a local-
ization precision of the pinning lattice below 500 pm [60].
Recently, trapped few-body systems with experimentally
relevant setups have been analyzed by using the quan-
tum point spread function [61], suggesting a resolution
of (1/33)al smaller than the lattice spacing (al) of the

FIG. 11. Phase-diagrams of 7Li - 6Li boson-fermion mixtures
from (a) few-body calculation and (b) mean-field treatment
for Nb = 4 = Nf .

pinning lattice.
Those progresses will guide experimental efforts to-

wards high-resolution imaging in non-lattice systems as
well. For a typical 1D box potential of length L =
160µm [34], the resolution required to analyze the in-
terface width of ∼ L/100 ∼ 1.6µm for studying the heal-
ing lengths is reasonably within the experimental reso-
lution limit. With the rapid developments of cold-atom
microscopes capable of higher resolution beyond lattice
systems, the widths of different atomic species at the in-
terface will reveal interesting thermodynamic properties
of interacting multi-species quantum systems via their
structures.

Furthermore, we remark that atomic mixtures like the
7Li - 86Rb mixtures are promising to track down the
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elusive signatures of the so-called Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) state, which has been predicted in
two-component fermionic mixtures with attraction and
population imbalance [62, 63]. The conventional Cooper
mechanism cannot be fulfilled in the presence of high
population imbalance, and the Cooper pairs may posses
non-vanishing net momentum to maximize the pairing
between the two components of the fermions in the FFLO
state. There have been experimental evidence suggesting
the FFLO state in quasi-1D two-component 6Li gases
with population imbalance [64]. Few-body calculations
suggest the FFLO state may be enhanced by suitable
confinement [65]. To directly observe the FFLO state,
one has to measure the two-body correlations [52, 66],
which may be inferred in state-of-the-art experiments.

However, standard experiments usually involve single-
particle measurements, for example, measurements of the
density. It has been shown [67] that the FFLO corre-
lations might be strongly enhanced by interactions with
bosons. Since three-chunk structures naturally occur due
to interactions in boson-fermion mixtures confined in 1D
box potentials, such settings provide a feasible route for
enhancing and probing the FFLO correlations. Neverthe-
less, the system for observing the FFLO state will involve
three components: one species of bosons repelling both
components of fermions, and two-component fermions
with population imbalance and attractive interactions.
Since the 7Li - 86Rb mixture has a broad range of the
three-chunk regime as shown in our analysis, strong cor-
relations and Pauli exclusion principle of the fermions
may immune the system from a collapse into a two-chunk
structure when two internal states of the fermions with

attractive interactions are introduced, which may provide
a feasible setup for future studies of the FFLO state.

VI. CONCLUSION

We have presented both few-body calculations and
many-body mean-field approximations of binary atomic
boson-fermion mixtures in 1D box potentials, showing
different structures as the parameters vary. The stable
structures are determined by competitions between the
interaction and kinetic energies, which are further com-
plicated by the presence of the hard walls, mass imbal-
ance, and boson-fermion interface if the two species sep-
arate. While the few-body results reveal the correlations
among the bosons and fermions, the many-body results
allow a systematic extraction of the healing lengths of the
bosons and fermions. Moreover, the scaling behavior of
the healing lengths at the boson-fermion interface in the
phase-separation regime confirms the energy-competition
mechanism behind the structures of binary atomic boson-
fermion mixtures. With advancement in trapping and
manipulating atoms in box potentials, our results may
be verified in coming experiments and inspire future re-
search.
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