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We investigate the lifetimes of complexes formed in ultracold molecule collisions. Employing
both transition-state-theory and a non-Hermitian microscopic model, we examine processes that
can extend the lifetime of complexes beyond that predicted by Rice-Ramsperger-Kassel-Marcus
(RRKM) theory. We focus on complexes that possess only one open channel, and find that the
extreme distribution of widths for this case favors low decay rates. Thus decay from a complex into
a single energetically available channel can be anomalously slow, even orders of magnitude slower
than the RRKM rate, and moreover the decay may be nonexponential in time.

I. INTRODUCTION

Ultracold molecules live at the fascinating intersection
of simplicity and complexity. While molecules can be
produced in their absolute ground state [1, 2] and their
long-range collisional dynamics described by a single par-
tial wave, their short-range collisional dynamics is highly
intricate [3]. It is this combination of simplicity and com-
plexity which makes ultracold molecules such a power-
ful tool for the study of fundamental collisional mecha-
nisms [4].

However there is currently a specter haunting the field,
the specter of sticky collisions [5]. Diatomic molecules
are observed to collide and go away, as if perishing in a
chemical reaction, even those that are not chemically re-
active at zero temperature [6–15]. Rather, it is believed
that these diatomic molecules enter into a a four-atom
collision complex, where they dwell for an observable
amount of time, before completing their collision. The
molecules have been observed to dwell inside these com-
plexes for extraordinarily long time scales approaching
milliseconds [12–14]. In at least one case, the same mil-
lisecond time scale holds for molecules colliding with indi-
vidual atoms [16]. Such collisions are colloquially referred
to as “sticky”, following the terminology of Bethe from
nuclear physics [17].

The idea of long-lived, sticky collision complexes is an
appealing one. Owing to their deep, barrierless poten-
tial energy surfaces and rather large masses, four-body
complexes of alkali atoms might be expected to possess
a high density of states ρ in which the atoms are unable
to dissociate and can get randomly stuck. The added
feature of ultracold temperatures ensures that molecules
which originate in their ground states can only dissoci-
ate into a single open channel, denoted No = 1. In this
circumstance, it might be expected that the lifetime of
the complex is proportional to ρ and inversely propor-
tional to No, expressed in the simplest way by the Rice-

Ramsperger-Kassel-Marcus (RRKM) expression [18]

τ ≈ τRRKM =
2π~ρ

No
. (1)

Considerations such as these led to early speculations of
sticking in ultracold molecules [19–21].
This naive expectation however proves inadequate.

High-quality estimates of the relevant densities of states
reveal that realistic RRKM lifetimes are shorter than
those observed. The longest predicted lifetime is 0.25ms
for the heaviest species RbCs [22]. While this particular
estimate does nearly agree with the measured 0.53 ms life-
time of (RbCs)∗2 [12], other experiments that have mea-
sured the lifetime find results orders of magnitude larger
than the RRKM lifetime [13, 14, 16]. A caveat is rele-
vant here: we are discussing the lifetimes of the complex
in the dark, that is, in transient intervals where light from
the optical dipole trap that confines the molecules is tem-
porarily turned off. It is established that the complex’s
lifetimes are significantly reduced by scattering photons
of the trapping light [23, 24], but that is not our concern
here.
We are instead interested in the natural, light-free life-

times of the complexes, and how they can come to be
far longer than the RRKM lifetimes. To understand this
situation, we consider the time-dependence of a complex
assumed to consist of many resonances, each with its own
characteristic decay rate, following an approach by Pe-
skin et al [25]. This approach gives an effective decay
rate that agrees with the RRKM rate in certain limits,
yet can deviate under other circumstances. In particular,
we find that in the limit of a very small number of open
channels, especially the No = 1 case of particular inter-
est to ultracold molecule applications, the distribution
of decay rates can strongly favor decays slower than the
RRKM result. In this context, we note that for decay
of the chemically reactive species KRb, the collision com-
plexes do appear to decay on timescales consistent with
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the RRKM result [24], a comforting fact, since the num-
ber of open channels No, due to products of the reaction,
is much larger than one in this case.
In this article, we focus specifically on the role of the

number of open channels in the statistical model. In
Sec. II we will present general remarks on the statistical
model in the present context, pointing out its limitations,
yet arguing why it is relevant to pursue anyway. In Sec.
III we review the transition-state theory and how it es-
tablishes a baseline RRKM rate with which to compare
all results. Sec. IV will tackle the statistical theory by
presenting a non-Hermitian model Hamiltonian, capable
of identifying a mean decay rate of the complex in all
regimes of coupling, from weak to strong. Sec. V follows
by detailing the distribution of decay rates in the model,
emphasizing that this distribution heavily favors slow de-
cays for No = 1. It also presents numerical simulations
to illustrate these distributions.
As a final introductory note, it may be worth consid-

ering the influence of nuclear spins in the complexes. If
the nuclear spins of different hyperfine manifolds are cou-
pled, then these additional degrees of freedom would in-
crease the effective density of states, hence also increase
the RRKM lifetime. The role of nuclear spins has been
discussed recently by several auuthors [20, 27–30]. For ul-
tracold exothermic processes such as for KRb molecules,
experimental results are consistent with the fact that nu-
clear spins play a spectator role in the complex [29, 30].
As No is large for this type of process, the lifetime of the
complex in Eq. (1) might be short enough so that spin
changing processes do not have time to occur [28]. In
contrast for ultracold endothermic processes, No = 1, life-
times become longer and the role of nuclear spins might
play an important role [20, 27, 28]. In any event, we do
not explicitly consider such an influence in what follows.

II. THE STATISTICAL ASSUMPTION

The physics of the complexes is divided conceptually
into two arenas, the formation of the complex and its sub-
sequent decay, regarded as independent events. Central
to the theory of complex formation in ultracold molecules
is a statistical approach, which has been adopted from
the literature of nuclear physics [31–38] and unimolecular
dissociation [25, 39]. This approach assumes that many
resonances occur in the range of collision energies consid-
ered, so that quantities such as the scattering matrix can
be averaged over these resonances. In this way, the aver-
aged scattering matrix becomes sub-unitary, and in the
theory it can account for the apparent loss of molecules
due to complex formation [26, 40].
And here is where the problems begin. For, the density

of states ρ appears to not strictly large enough for this
critical assumption of the model to hold. The mean spac-
ing between energy levels in the complex, d = 1/ρ, tends
to be large on ultracold scales, ranging from ∼ 200µK
in LiNa, to ∼ 0.2µK for RbCs [22]. Thus in a gas of

temperature T ≈ 0.5µK, the number of resonances di-
rectly relevant would be of order unity at best, and far
below this in general. Additional resonances could be rel-
evant if they are very broad, but this remains uncertain
at present [41].

Nevertheless, molecules in experiments certainly be-
have as if they are governed by a statistical theory.
Molecular loss is convincingly modeled by theories in
which the molecules, upon approaching a certain relative
distance, vanish with a probability that usually sits some-
where between 0.5 and 1 [42]. It is assumed that these
molecules vanish into complexes, as there is no place else
for them to go. Indeed, in at least one case, KRb+KRb
collisions (where there actually is somewhere else to go),
the resulting complexes have been directly observed by
photoionization followed by mass spectrometry [43], as
have the products of reaction, which are distributed ac-
cording to statistical laws [44].

Moreover, in the case of complexes destroyed by light
scattering, this destruction appears to be adequately de-
scribed by a model that assumes photoabsorption by com-
plexes [23]. Finally, the observed ability of an applied
electric field to increase the rate of loss due to complex
formation [9, 14], is explained using statistical analyses of
the complex. Specifically, the effective density of states
rises when the total angular momentum of the complex
is no longer conserved and states of alternative total an-
gular momentum contribute [45].

Further evidence of statistical behavior comes from
calculations. For example, classical trajectory calcula-
tions certainly seem to indicate that the atoms in the
complex explore phase space ergodically [46, 47] More-
over, quantum scattering calculations, in cases where
this can be done, confirm that ultracold molecular col-
lisions agree with the statistical predictions of quantum
chaos [3, 48, 49].

One further argument may be lobbied in favor of the
statistical approach. In quantum statistical mechanics,
it is known that an isolated system, evolving according
to unitary time evolution, can exhibit apparent thermal-
ization, if the system is chaotic and if only a few de-
grees of freedom are sampled. In such a case, thermody-
namic variables that should be computed by averaging
over many quantum states, are actually well-represented
by an average over a single representative state, since
either way, the chaotic states explore large portions of
the available phase space. This is a consequence of the
eigenstate thermalization hypothesis [50]. For the theory
of collision complexes, one may run this argument in re-
verse. If only approximately a single resonant state is
populated in a collision, no matter; we replace averages
over this state by an ensemble average over convenient
nearby resonant states.

In any event, motivated by these encouraging exam-
ples, and in the interest of developing the statistical anal-
ysis as far as possible, we freely incorporate a statistical
approach here and intend to average decay rates over
many resonances.
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III. RATES IN TRANSITION STATE THEORY

We therefore begin by positing that a complex has
been formed, and that it has access to considerable phase
space, as measured in the model by incorporating many
resonant states. The complex has total energy E, as-
sumed to lie in the vicinity of the original entrance chan-
nel. The density of states ρ(E) at this energy defines a

characteristic frequency (2π~ρ)
−1

= d/(2π~), identified
by Weisskopf as the frequency with which a wave packet
composed of stationary states of the complex can reach
the complex’s periphery and try to escape [33, 35].
On each attempt at escape, let the probability of ac-

tually escaping to infinity in open channel i be denoted
pi. If there are No open channels, i = 1, 2, . . . , No, then
the escape rate is that given by transition state theory
(TST) [25, 39],

kTST =
d

2π~

No
∑

i=1

pi. (2)

In the very simplest approximation, one assumes that the
probability is unity in each open channel, pi = 1, whereby

kTST → d

2π~

No
∑

i=1

1 =
dNo

2π~
= kRRKM. (3)

This gives the RRKM rate, whose reciprocal is of course
the RRKM lifetime in Eq.(1). Thus, in general, kRRKM

represents a fastest decay rate, that is, a lower limit on
the lifetime, at least within transition state theory. From
this standpoint already, it is reasonable to assert that
observed lifetime may be longer than τRRKM.
If we consider the case with only one open channel

such that there are no inelastic losses possible and note
that the complex cannot decay before one full period of
oscillation we obtain a lower limit on the lifetime

τ ≥ 2π~

d
. (4)

Noting the lifetime is also given by τ = ~/γ, we find the
ratio of the mean width γ to the mean spacing d to be

γ

d
≤ 1

2π
, (5)

known as the Weisskopf estimate.

IV. MEAN DECAY RATES

Transition state theory provides approximate rate con-
stants, based on a key parameter, the attempt frequency
d/(2π~) for the complex to decay, which is a scale, not a
specific frequency of particular events. More concretely,
time evolution in quantum mechanics is governed by the
relative energies of the stationary states, or of quasi-
stationary states in the event that those states can de-
cay. We here develop this picture, based on a microscopic

model in which a non-Hermitian Hamiltonian is employed
to describe the effects of decay of the resonances. Fol-
lowing common practice in the nuclear physics literature
from which we draw the model, we refer to this as an “op-
tical model,” although we do not consider any influence
due to light [36–38].

A. Optical Model

We begin with a model of the resonant spectrum. This
is described by the Hamiltonian

Heff
µν = Eµδµν − iπ

∑

i

WµiWiν . (6)

The bare energies Eµ are assumed to be the eigenvalues
of a model Hamiltonian HGOE drawn from a Gaussian
orthogonal ensemble with mean spacing d = 1/ρ; and
the coupling constantsWµi are Gaussian distributed vari-
ables with mean values

〈WµiWνj〉 = δµνδijν
2
i , (7)

that is, ν2i is the variance of the matrix elements. Each
matrix element Wµi is regarded as the integral of the
interaction potential between a bound state |µ〉 and
an energy-normalized continuum state |i〉 into which it
might decay. Thus ν2i has units of energy. The nu-
clear physics literature typically normalizes the bound-
continuum coupling in units of the mean level spacing,
defining a dimensionless parameter in each open channel,

xi = π2 ν
2
i

d
. (8)

This quantity xi plays a role in determining the the stick-
ing probability in channel i (see Ref. [26] and Sec. IVD
below). In this regard it plays the role of the absorption
coefficient y in the universal theory of Idziaszek and Juli-
enne [51], but adapted to a specific model of loss due to
complex formation.
The time evolution of the resonant states is given by

the complex eigenvalues of HGOE, denoted

Eλ − i

2
γλ. (9)

A state of the collision complex is assumed to be a coher-
ent superposition with initial probability amplitude cλ in
resonant state |λ〉. In accord with the statistical approx-
imations of the model, the coefficients cλ are randomly
chosen, subject to normalization

∑

λ |cλ|2 = 1 [25]. The
distribution from which these coefficients are chosen re-
flects assumptions made about the formation of the com-
plexes in the first place, a topic we do not address here.
The time evolution of such a state is

|ψ(t)〉 =
∑

λ

cλ|λ〉 exp
[

− i

~
(Eλ − (i/2)γλ)t

]

. (10)
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The time evolution of the diminishing population is there-
fore multi-exponential,

P (t) = 〈ψ(t)|ψ(t)〉 =
∑

λ

|cλ|2 exp(−γλt/~) (11)

This is arbitrarily normalized to P (0) =
∑

λ |cλ|2 = 1,
hence represents the time-evolving population of com-
plexes relative to the initial population. Thus the res-
onance widths γλ represent decay arising from the non-
hermiticity of the short-range Hamiltonian Eq. (6), and
each resonance has its characteristic decay rate kλ =
γλ/~.
We can reveal how the value of xi controls the decay by

looking into several limits. These are regarded as weak,
strong, and intermediate couplings, insofar as xi ≪ 1,
xi ≫ 1, or xi ≈ 1, respectively.

B. Weak Coupling Limit

In the perturbative limit, xi ≪ 1, the decay rate from
|µ〉 into |i〉 is given by Fermi’s golden rule as

kpert,i =
2π

~
|Wµi|2. (12)

In this perturbative limit, the resonances are isolated,
and the mean decay rate into channel i, averaged over
many such resonances, is

〈kpert〉i =
2π

~
ν2i =

d

2π~
(4xi), (13)

This rate corresponds to the transition-state theory rate
(2) where in each channel the probability is pi = 4xi.
Then the total decay rate to the No open channels, aver-
aged over many resonances, is

〈kpert〉 =
No
∑

i=1

〈kpert〉i =
d

2π~
Nop̄, (14)

with

p̄ =
1

No

No
∑

i=1

pi =
1

No

No
∑

i=1

4xi = 4x̄, (15)

defining p̄ and x̄ is the arithmetic mean of the pi’s and
xi’s.
Thus interpreted, the mean rate can also be viewed in

transition state theory. The decay probability pi in each
exit channel can be expressed in terms of the mean cou-
pling ν2i [this quantity is already averaged over resonant
states, Eqn. (7)]. Thus

pi = 4xi ≈
4π2ν2i
d

, (16)

and the transition state rate, averaged over exit channels,
is

kTST =
d

2π~

No
∑

i=1

4xi =
d

2π~

No
∑

i=1

4π2ν2i
d

= No
γ̄

~
, (17)

in terms of the mean resonance width

γ̄ =
1

No

∑

i

2πν2i =
2

π
dx̄. (18)

From this point of view, the Weisskopf limit (5), γ̄/d ≤
1/2π, implies an upper limit to the dimensionless pa-
rameter, x̄ ≤ 1/4. This value x̄ ≈ 1/4 is beguilingly
close to the measured value for RbCs of x =0.26(3) [11].
Nevertheless, values of x extracted from collision data
sometimes exceed this limit, and indeed values of x > 1
describe the potentially physically relevant limit of over-
lapping resonances, the Ericsson fluctuation regime [26].
We conclude that the perturbative limit is not the whole
story.

C. Strong Coupling Limit

The parameters xi arise of course from the optical
Hamiltonian in the model. Depending on the situation,
the variance of the coupling can be small or large com-
pared to the mean level spacing. That is, the dimension-
less parameter xi can run from very small values (isolated
resonances) to very large values (overlapping resonances,
in the Ericson fluctuation regime). In any of these cases,
the effective Hamiltonian can be diagonalized to give com-
plex eigenvalues Eqn. (9).

In the very strong-coupling limit, xi ≫ 1, the energy
eigenvalues are dominated by those of the coupling ma-
trix,

−iγλ
2

≈ eig(−iπWWT ), (19)

where W is an N × No matrix, with N the total num-
ber of channels in the model. This matrix has rank No,
whereby it has N −No eigenvalues that are all zero, and
No that are of order γ ∼ 2πNν2. These latter resonances,
decaying with rates k ∼ 2πNν2/~, are denoted “prompt”
resonances, and describe extremely rapid decay of the
complex, faster than is relevant to our present purposes.

The true eigenvalues of the full Heff , including the real
parts, still haveNo prompt resonances. The rest will have
small nonzero width, however. In fact, for a given value of
x≫ 1, the imaginary parts of the non-prompt resonances
give decay rates distributed exactly as are those for 1/x
in the weak-coupling limit. That is to say, for example,
x = 0.1 and x = 10 will have decay rates with the same
statistics, provided we ignore the prompt resonances. We
will see this in the numerical examples below.
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D. Intermediate Coupling Regime

For the intermediate range, xi ≈ 1, the distribution
of decay rates is not quite so simple. Still, a simple ar-
gument suggests a way to interpolate between the two
limits. This argument exploits detailed balance, and as-
serts that the probability pi to exit in channel i is the
same as the probability of the molecules sticking in a
collision event when they are incident in channel i.
Specifically, within the statistical model, the scatter-

ing that results in sticking is described formally by the
average scattering matrix S, averaged over an energy in-
terval containing many resonances. The result, derived
elsewhere [40], is

〈Sij〉 =
1− xi
1 + xi

δij , (20)

in terms of the same dimensionless xi described above.
By virtue of detailed balance, the probability pi for flux
to leave the complex and exit via channel i, is the same as
the flux to enter the complex via the incident channel i,
that is, equal to the sticking probability, extracted from
the lack of unitarity of 〈S〉:

pi = 1− |〈Sii〉|2 =
4xi

(1 + xi)2
. (21)

This expression has the advantage of getting the right
answer in the two limits: pi ≈ 4xi for xi ≪ 1 and pi ≈
4/xi for xi ≫ 1.

The simplest version of the decay rate in transition
state theory is therefore given by setting pi to the same
value in all channels, for a suitable mean value 〈x〉 of xi:

〈k̄TST〉 =
dNo

2π~

4x̄

(1 + x̄)2
(22)

= kRRKM
4x̄

(1 + x̄)2
. (23)

That is, this rate is averaged both over a set of resonances,
and over the open channels.

V. DISTRIBUTION OF DECAY RATES

Thus the mean expected rate of complex decay, ac-
cording to transition state theory, modified by the optical
model, is governed by the mean coupling parameter x̄, as
given in (23). However, the distribution of rates about
this mean depends strongly on the number of open chan-
nels, as we show in this section.

A. The chi-squared distribution

As a preliminary, we note that the distribution of
widths that results from the optical model is a known
quantity, at least in the limit of small x. For a given

number No of open channels, the distribution of widths
γ is given by the chi-squared distribution [40, 54, 55]. We
re-cast this as a distribution of decay rates k = γ/~,

Pχ2(k) =

(

No

2k̄

)

No

2 kNo/2−1

Γ (No/2)
exp

(

−Nok

2k̄

)

. (24)

Here Γ(No/2) is the ordinary gamma function, evaluated
at No/2. In the perturbative limit, the mean of this
distribution is given by the mean coupling ν2 as (14)

k̄ =
2πν2No

~
=
dNo

2π~
(4x̄). (25)

Thus the mean decay rate would simply scale linearly
in the number of open channels, just as in the RRKM
theory. As argued above, and as will be seen in numerical
examples below, the mean rate can be approximated by
the transition-state theory result (23), thus

k̄ ≈ 〈k̄TST〉 =
dNo

2π~

4x̄

(1 + x̄)2
. (26)

It will be recalled that the bar denotes the arithmetic
average over the rates to decay into the open channels i.
The difference between large and small No in deciding

the width distribution is critical to the theory of the de-
cay, and forms the key observation of the paper. In the
limit of large No, the distribution (24) becomes strongly
peaked around k = k̄, in which case the mean decay rate
becomes a good guide as to what to expect in the decay
from a given resonance.
Vice versa, in the limit of a single open channel, No =

1, the chi-squared distribution strongly favors low values
of k, that is, slow decays. We may think of this situ-
ation somewhat intuitively by considering the perturba-
tive limit. In the case of a single open channel, i = 1, the
coupling matrix elements Wµi are drawn from a normal
distribution with zero mean and variance ν2. Denoting
the random variable as w =Wµi, the distribution of cou-
pling matrix elements is normal by definition,

Pcouplings(w) ∝ exp

(

− w2

2ν2

)

, (27)

where we do not require the normalization for our present
purposes.
Each resonance with coupling w decays at a rate k =

2πw2/~. The distribution of rates is therefore given by
the distribution of the squares of the random variable
w. By the usual change of variable rules, this gives the
distribution

Prates(k) = Pcouplings(w)

(

dk

dw

)

−1

∝ exp

(

− w2

2ν2

)

~

4πw

∝ exp

(

− ~k

4πν2

)

1√
k
, (28)
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which is of course the functional form when No = 1 in
Eq. (24). The point is that the coupling matrix elements
are clustered around zero. Since the values of w/ν are
predominantly less than unity, then their squares must be
clustered even closer around zero. This is expressed in
the 1/

√
k divergence in the width distribution. From this

perspective, it is perfectly natural that the single channel
case is dominated by short widths and long lifetimes.
Within the transition state theory, it is assumed that

the mean rate is representative of the distribution of rates.
However, the chi-squared distribution shows that this is
not the case. In particular, when there is only one open
channel, the most likely rate is in fact zero. This effect
was ignored in early work that attempted to describe
complex lifetimes using the simpler RRKM theory [20,
21].

B. Numerical examples

To illustrate this effect we employ a generic numerical
model. We compute a bound state spectrum consisting
of Nc = 1200 bound states, where “Nc” denotes “num-
ber of closed channels.” These energies are chosen from
a Gaussian orthogonal ensemble, in the spirit of the op-
tical model above. The mean energy spacing d, is taken
to define the unit of energy. This schema is justified, as
we intend to compare ratios of decay rates rather than
absolute rates. Further, we define a sticking coefficient
x̄ that defines the mean coupling strength ν2 = (d/π2)x̄.
Finally—and crucially—we define the number of open
channels No. We then construct the optical model Hamil-
tonian Eq. (6) and find its eigenvalues Eq. (9). This
process defines an ensemble of resonance widths γλ and
decay rates kλ = γλ/~.
We explore the adequacy of this distribution in the

following two figures. Figure 1 shows illustrative results
for a modest number of open channels, No = 10. The
columns correspond to different values of the mean cou-
pling constant, x̄ = 0.1, 1, and 10 from left to right,
representing the weak, intermediate, and strong coupling
regimes. In each case the upper panel shows the eigen-
spectrum, plotting Eλ in units of mean spacing d on the
horizontal axis; and the decay rate kλ, in units of the
RRKM rate, on the vertical axis. In each panel the red
dot is set at a height corresponding to kTST. It is there-
fore at 4x̄/(1+ x̄)2 ∼ 0.33 for x̄ = 0.1 or x̄ = 10, and = 1
for x̄ = 1.
For x̄ = 0.1 (upper left), kTST seems, by eye, to repre-

sent the mean rate quite well. The same is true for x̄ = 10
(upper right), disregarding the prompt resonances which
are clustered near the top of the figure. As for the opti-
mal coupling case x̄ = 1 (upper middle), the decay rates
seem more diffusely distributed.
The lower row of the figure plots histograms of the

rates in the three cases, also in units of kRRKM. (for
x̄ = 10, this histogram disregards the prompt rates.)
The distributions are compared to the chi-squared dis-

FIG. 1: Simulated spectra for Nc = 1200 closed channels and
No = 10 open channels. The top row shows the spectrum
from Eqn. (9). This representation presents the real parts of
the eigenergies Eλ, normalized by the mean spacing d, on the
horizontal axis; and the decay rate kλ = γλ/~, normalized by
the RRKM rate, on the vertical axis. Bottom row: histograms
of the rates kλ, compared to the chi-squared distribution (red
line). The three columns are computed for the dimensionless
couplings x = 0.1, 1, and 10, from left to right.

FIG. 2: Same as Fig.1, but for a single open channel, No = 1.

tribution (red lines), where in each case the mean is set
to k̄ = kTST. We note that the chi-squared distribution
is a good fit to the weak- and strong coupling cases, some-
what less so for the optimal coupling x̄ = 1. The point,
though, is that, even in the effective, non-Hermitian
Hamiltonian model, the mean rate is adequately repre-
sented by the simple formula of transition state theory,
kRRKM(4x̄)/(1+ x̄)2. And because of this, in general the
mean decay rate is less than the RRKM rate.
A second point is that the situation changes dramati-

cally when there is only a single open channel. This is
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shown in Figure 2, which plots the same information as
in Figure 1, but with No = 1. As before, the transition-
state rate (red dot) is a reasonable stand-in for the mean
value of the rates. The novelty lies in the distribution
of these widths (lower panels), which are now sharply
peaked at small rates. This qualitative difference is be-
cause the chi-squared distribution, for N0 = 1, becomes

Pχ2 =
π

2

(

1

2k̄k

)1/2

e−k/(2k̄), (29)

which diverges as k−1/2 for small k. Thus a decay rate
chosen at random is likely to be far less than the mean
decay rate, slowing down the whole process.

C. Rates versus coupling strength

The preponderance of small k’s in the No = 1 limit has
serious consequences for the time dependent decay. To
see this, we evaluate the sum in Eq. (11). The details of
this decay depend on course on the presumed distribu-
tion of coefficients cλ at some putative time t = 0, and
therefore would require a detailed time-dependent model
of complex formation, which we do not attempt here.
Rather, we simply assume the population |cλ| of each
resonance is proportional to the probability Pχ2(kλ) that
the corresponding ratee kλ occurs. In this case, Eq. (11)
can be re-interpreted as the integral

P (t) ≈
∫

∞

0

dkPχ2(k) exp(−kt)

=

(

1 +
2k̄t

No

)−
No

2

. (30)

In the limit No → ∞, this expression gives the expo-
nential decay law at the mean rate γ̄,

P (t) → e−k̄t, (31)

which corresponds to the case of reactive molecules such
as KRb which should therefore exhibit an exponential
decay.
However, in the single channel case the expression be-

comes

P (t) =
1

√

2k̄t+ 1
, (32)

representing an algebraic, rather than exponential, decay.
It agrees with the exponential decay at short times, but
at time scales ≈ 1/k̄ the decay begins to slow down.
Using this result we can illustrate decay rates as a func-

tion of the mean coupling x̄. To do so, we would like to
plot a decay rate versus x. This is somewhat problematic,
since, by its very nature the decay is non-exponential,
hence not easily characterized by a number keff in an ex-
pression exp(−kefft). To circumvent this difficulty, we
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FIG. 3: Effective decay rates keffas defined by Eq. (33), nor-
malized by the RRKM rate, versus mean sticking coefficient
x̄, for various numbers of open channels No = 100 (circles),
10 (squares), 1 (diamonds). Solid line: transition state theory
rate kTST.

somewhat arbitrarily fit the population P (t) to a single
decay rate over the time interval over which P drops to
1/e2 of its initial value. The linear fit

lnP (t) = −kefft+ b (33)

over this time interval then identifies an approximate,
effective decay rate keff that at least sets the scale of the
observed decay.

Defined in this way, the effective decay rates are plot-
ted versus x in Figure 3, for the three different numbers
of open channels No = 100, 10, 1. Also reproduced for
reference is the transition state theory rate kTST, pre-
sented as a solid line. It is immediately clear that for a
large number of open channelsNo = 100, the rate derived
from the optical model nearly reproduces that from tran-
sition state theory, thus validating the use of this theory
in cases such as KRb+KRb scattering where the number
of open channels is indeed large.

The decay rate may be expected to decrease linearly in
the number of open channels, as implied by the RRKM
formula in Eq. (3). Recall that in Figure 3 this depen-
dence is already accounted for, as keff is normalized to
kRRKM. Thus the figure illustrates an extremely rapid
additional reduction in keff as No decreases. Strikingly,
this suppression below kTST appears to be a similar fac-
tor for all values of x. For x in a range something like
0.1 < x < 10, and for a single open channel, a suppres-
sion of decay rates by 3–4 orders of magnitude is not
unreasonable. This is intriguing news for observations
of collision complexes in NaK+NaK, NaRb+NaRb, or
Rb+KRb collisions, where such orders of magnitude in-
crease in apparent lifetimes have been observed.
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VI. CONCLUSIONS

It will be remembered that our overall goal here is to ex-
plore what the statistical theory might have to say about
complexes forming and subsequently decaying in ultra-
cold alkali dimer collisions. This we do in spite of doubts
about the very applicability of such a theory, given the
paucity of states within the ∼ kBT energy range avail-
able. Nevertheless, the existence of the complexes, their
essential randomness, and their utility in thinking about
the problem apear no longer in doubt, as we have out-
lined in Sec. II.
In this article we have added to the qualitative inter-

pretive power of statistical models, namely, to account
for the apparently anomalously long lifetimes of the com-
plex, as compared to the simple standard reference af-
forded by the RRKM decay rate. The RRKM rate sets
a characteristic scale for the decay rate, which is an up-
per bound on the true decay rate. More properly, actual
mean decay rates are subject to fluctuations inherent in

the statistical nature of the complexes, which notes that
for small numbers of open channels No, the rate is not
simply proportional to No, as in the RRKM theory, but
becomes far slower than this scaling, dramatically so for
No = 1. This slowing down is intimately tied to a pre-
ponderance of unusually long-lived resonant states in the
optical model, as codified in the chi-squared distribution,
and that is characteristic of a chaotic system.
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