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O. Băzăvan1,∗, S. Saner1,∗, M. Minder1, A. C. Hughes1, R. T. Sutherland2, D. M. Lucas1, R. Srinivas1, C. J. Ballance1,3

1Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK
2Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, Texas 78249, USA

3Oxford Ionics, Oxford, OX5 1PF
∗These authors contributed equally.

Email: oana.bazavan@physics.ox.ac.uk, sebastian.saner@physics.ox.ac.uk
(Dated: December 13, 2022)

A single bichromatic field near-resonant to a qubit transition is typically used for σ̂x or σ̂y Mølmer-Sørensen
type interactions in trapped ion systems. Using this field configuration, it is also possible to synthesize a σ̂z
spin-dependent force by merely adjusting the beat-note frequency. Here, we expand on previous work and
present a comprehensive theoretical and experimental investigation of this scheme with a laser near-resonant to
a quadrupole transition in 88Sr+. Further, we characterise its robustness to optical phase and qubit frequency
offsets, and demonstrate its versatility by entangling optical, metastable, and ground state qubits.

Trapped ion systems are used for quantum computation [1–
3], quantum simulation [4], metrology, and sensing [5, 6].
These applications typically require coupling of the internal
spin states of the ions to their shared motion via a spin-
dependent force (SDF) [7]. These SDFs can arise from the
intensity gradient of applied lasers, or from magnetic field
gradients [3, 8–11]. The basis of the SDF, the specific Pauli
spin-operator that it corresponds to, depends on its particular
physical implementation. For example, time-varying ac Stark
shifts can be used to implement σ̂z-type interactions [12–14],
while a bichromatic field near-resonant to the qubit transition
can be used to implement σ̂x or σ̂y Mølmer-Sørensen (MS)
type interactions [15–19]. The basis of the SDF determines
the fields required, the applicability of the interaction to dif-
ferent qubit types, and its sensitivity to errors.

The σ̂z-type interaction can be made insensitive to errors
from qubit frequency offsets or dephasing, which commute
with the interaction [13], using spin-echo sequences [20, 21].
This interaction typically requires fields off-resonant from the
qubit transition and is intrinsically insensitive to phase fluc-
tuations of the driving field. Conventional implementations
relying on dipole transitions are incompatible with magnetic-
field insensitive ‘clock’ qubits [22], desirable for their long co-
herence times [23, 24]. Nevertheless, recent experiments have
used quadrupole transitions with ground state qubits [25, 26]
or dipole transitions with optical qubits [27, 28] that enable the
interaction to be applied to clock qubits. On the other hand, the
MS-type interaction requires near-qubit frequency fields. This
interaction is readily applicable to clock qubits, but is sensi-
tive to the phase of the driving field [22, 29]. Additionally,
the same fields that drive the MS interaction can be tuned to
perform single-qubit rotations.

Using near-qubit frequency fields to implement a σ̂z-type
interaction minimises the number of required fields and im-
proves its robustness to errors commuting with the z-basis.
Moreover, it enables a wider range of interactions, relevant
for applications such as quantum simulation [30, 31]. Another
important consideration is the applicability of a given scheme
to a variety of qubit encodings, for example in the ‘omg’-type
architecture which requires control of optical, metastable, and
ground state qubits [32, 33]. Finally, the wavelengths of the re-

quired fields also form an important practical criterion. For in-
stance, the wavelengths of quadrupole transitions are usually
in the red, which are more favorable for current integrated op-
tics technologies [34, 35] and to reduce trap charging effects
[36].

In this work, we investigate a technique for implement-
ing a laser-based σ̂z SDF using a bichromatic field on a
quadrupole transition, proposed in Ref. [37] and inspired by
recent work in Refs. [38, 39] for laser-free interactions. This
SDF-mechanism was proposed and previously demonstrated
using low SDF amplitudes in Refs. [40–42]. We present a
comprehensive theory treatment of the interaction as well as
in-depth experimental characterisation of the SDF for both
low and high SDF amplitudes. Moreover, we demonstrate the
versatility of the SDF created by using it to entangle optical,
metastable, and ground state qubits.

To understand this technique, let us first consider a collec-
tion of n spins coupled to a motional mode by a bichromatic
field [37]. The field is composed of two tones which are sym-
metrically detuned from the optical qubit frequency, ω0, by
δ , as shown in Fig. 1(a). These fields give rise to an interac-
tion [16]

Ĥ = h̄ΩŜφ−π/2 cos(δ t)

+ h̄Ωη Ŝφ cos(δ t)(âe−iωzt + â†eiωzt),
(1)

where Ω denotes the Rabi frequency for each tone and η the
Lamb Dicke factor [3]. The spin operator for n ions is defined
as Ŝφ = ∑

n
i=1 σ̂

(i)
φ

with σ̂
(i)
φ

= cosφσ̂
(i)
x + sinφσ̂

(i)
y , [43] and

â†(â) denotes the creation (annihilation) operator of the mo-
tional mode. The phase φ =(φBD+φRD)/2 is the mean optical
phase between the red (RD) and the blue (BD) detuned tones.
The above expression is in the interaction picture with respect
to the qubit frequency ω0, and the motional mode frequency
ωz, where we applied the rotating wave approximation with
respect to ω0. The first term drives spin flips (carrier term)
and the second term couples the spins to the motional mode
(sideband term). Crucially, these two terms do not commute.
The resulting dynamics can be simplified by moving into the
interaction picture with respect to the carrier term, details are
in Appendix ??. Following the derivation in Refs. [37, 38], we
obtain
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FIG. 1: (a) Frequency configuration of the bichromatic laser
field. We apply two 674 nm tones (RD and BD) that are
symmetrically detuned from the optical qubit transition
frequency, ω0, by δ . To implement the Ŝz interaction, we set
δ = (ωz−δg)/2, where δg corresponds to the detuning of the
effective spin-dependent interaction, and ωz is the motional
mode frequency. (b) Overview of the relevant atomic
structure for 88Sr+. Using the same bichromatic field on the
674 nm transition, we implement this scheme on the optical,
(|↓o〉 ↔ |↑o〉), metastable (|↓m〉 ↔ |↑m〉), and ground state
(|↓g〉 ↔ |↑g〉) qubits. (c) Pulse sequence for entangling
operations. The single-qubit operations (π-pulses and
π/2-pulses) are performed with a 674 nm laser for the optical
qubit and with a radiofrequency field from an antenna for the
ground and metastable state qubits. The phase of the π-pulse
is orthogonal to that of the π/2-pulses.

ĤI = h̄ηΩ(âe−iωzt + â†eiωzt)×[
Ŝφ

∞

∑
n=0

(
J2n(2Ω/δ )+ J2n+2(2Ω/δ )

)
cos((2n+1)δ t)

− Ŝz

∞

∑
n=1

(
J2n−1(2Ω/δ )+ J2n+1(2Ω/δ )

)
sin(2nδ t)

]
,

(2)

where Ŝz =∑
n
i=1 σ̂

(i)
z and Jn are the Bessel functions of the first

kind. Equation 2 reveals an infinite series of resonances which
can be selectively driven. In contrast to Ref. [38], here both the
carrier and the sideband term oscillate at the same frequency

δ , as they originate from the same source. Different choices of
δ will drive different interactions; when δ ≈ ωz/(2n+1) we
drive MS-type interactions, while δ ≈ ωz/(2n) corresponds
to Ŝz-type interactions. For δ ≈ ωz, we obtain the conven-
tional MS interaction with coupling strength modulated by
J0 + J2 and a spin-dependent force in the Ŝφ basis. However,
by choosing δ ≈ ωz/2, the near-resonant term

ĤI =− h̄ηΩ(J1(2Ω/δ )+ J3(2Ω/δ ))×
sin(2δ t)Ŝz(âe−iωzt + â†eiωzt),

(3)

drives an Ŝz interaction [37] with a coupling strength mod-
ulated by J1 + J3. The effective coupling strength is then
Ωeff = ηΩ(J1(2Ω/δ )+ J3(2Ω/δ )). Importantly, this interac-
tion is insensitive to the mean optical phase φ of the bichro-
matic laser field, in contrast to the MS-interaction Ŝφ . This
SDF can be employed for creating entanglement between
qubits using standard techniques. Moreover, as this effective
Ŝz force is derived from an interaction that couples directly
to the qubit levels, it could also be used with field-insensitive
‘clock’ qubits. In the regime where Ω� δ , Eq. 3 reproduces
the effective Hamiltonian described in Ref. [40], which was
experimentally demonstrated in Ref. [41, 42].

We experimentally demonstrate this interaction on trapped
88Sr+ ions in a 3D radiofrequency Paul trap [44, 45]. We use
a single 674 nm beam with two tones symmetrically detuned
from the |5S1/2, m j =− 1

2 〉 ↔ |4D5/2, m j =− 3
2 〉 quadrupole

transition at a 146 G magnetic field. For both the single- and
two-ion experiments, we choose to drive the axial in-phase
mode with ωz/2π ≈ 1.2 MHz. We obtain carrier Rabi frequen-
cies of Ω/2π = 0.14− 1.17 MHz using a beam waist radius
of 20 µm and laser powers between 0.5 and 35 mW. To gener-
ate the SDF acting in the Ŝz basis, we set δ = (ωz− δg)/2 as
shown in Fig. 1(a), where δg is the detuning of the σ̂z interac-
tion from resonance. Unless stated otherwise, the pulses gen-
erating the Ŝz interaction are embedded in a spin-echo Ram-
sey sequence [20, 21] (see Fig. 1(c)). We set the phase of the
SDF in the second pulse to match the phase of the SDF at the
beginning of the first pulse relative to the ion motion. To tran-
sition smoothly into the bichromatic interaction picture, we
ramp the bichromatic field on and off with a sin2 ramp shape.
The ramp duration should be long compared to 1/δ , which is
approximately 2 µs. We use ramp durations of 5 or 10 µs.

We experimentally verify two important charac-
teristics of the SDF using the optical qubit states
|↓o〉 ≡ |5S1/2, m j =− 1

2 〉 and |↑o〉 ≡ |4D5/2, m j =− 3
2 〉,

on a single ion. Firstly, we show that the SDF magni-
tude follows the predicted Bessel function dependence,
J1(2Ω/δ ) + J3(2Ω/δ ) (see Fig. 2). For each data point,
we apply the sequence shown in Fig. 1(c) to a single qubit
and measure the single-ion population as a function of the
SDF pulse duration t. We fit these dynamics to an effective
SDF model with magnitude, Ωeff, normalised by Ω and the
Lamb Dicke factor, η ≈ 0.054, which are independently
determined ??. We repeat the experiment for different values
of 2Ω/δ by changing both the Rabi frequency Ω and detuning
δ . We also perform numerical simulations of Eq. 1, assuming
the experimental parameters and applying the same method
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FIG. 2: Spin-dependent force strength, Ωeff, normalised by
Ωη (see text), versus 2Ω/δ , as measured on a single ion,
with δ ≈ ωz/2. We show the experimental data (magenta
triangles) extracted from measuring the spin-dependent force
amplitude by applying the interaction for variable durations
and fitting the dynamics ??. The error bars are inferred from
the fits, showing the 68% confidence intervals. The data
agree with the theory, |J1(2Ω/δ )+ J3(2Ω/δ )| (black line).
To validate the approximations in Eq. 3 we perform
numerical simulations of Eq. 1 (blue crosses), using the
experimental parameters, and we follow the same extraction
procedure for Ωeff as for the measured data.

for extracting Ωeff. For larger values of 2Ω/δ the numerical
simulation deviates from the theory curve, which does not
include any dynamics during the ramp.

Secondly, we verify that the SDF acts in the Ŝz-basis and
compare it to the MS case. We embed the SDF in a se-
quence similar to Fig. 1(c), applied to a single qubit, but omit
the π-pulse, and the second SDF pulse. Then, we scan the
phase φ0 of both the π/2-pulses relative to the SDF drive
(Fig. 3). Changing φ0 modifies the initial superposition of
the spin states; the SDF acting on its eigenstate will effect
no spin-dependent displacement. We map the generated spin-
dependent displacement onto the spin state and measure the
population p↑ in |↑o〉. We set the detuning and duration of
the SDF to generate a large enough spin-dependent displace-
ment such that p↑ ≈ 0.5. For this scheme, p↑ is independent
of φ0. Hence, the SDF basis is orthogonal to the Ŝx− Ŝy plane
and corresponds to Ŝz. In contrast, for the MS-type interac-
tion, which acts in the Ŝφ basis, the spin-dependent displace-
ment depends on whether the superposition state after the first
π/2-pulse is aligned or orthogonal to the SDF basis. In these
experiments, we switch the basis of the force by setting the
detuning to δ ≈ ωz/2 or δ ≈ ωz for the Ŝz or Ŝφ interactions,
respectively.

Another important aspect of this Ŝz force is its suitability to
any qubit encoding where one or both qubit levels are part of
the quadrupole transition used to generate the SDF, as these
states are all eigenstates of the interaction. This property does
not hold for the Ŝφ case. We demonstrate the versatility of this
SDF by implementing a geometric-phase two-qubit Ŝz entan-
gling gate on the optical, metastable, and ground state qubits
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FIG. 3: Verification of the spin-dependent force (SDF) basis.
We scan the phase φ0 of the π/2-pulses relative to the SDF.
We map the spin-dependent displacement generated by both
Ŝz (magenta triangles) and Ŝφ (blue circles) forces onto |↑o〉
and measure the population p↑ (see text). As expected, the
signal for the Ŝz SDF has no dependence on φ0, while the Ŝφ

SDF does. The solid lines are a guide to the eye of the
expected dependence. Error bars indicate 68% confidence
intervals.

following the pulse sequence in Fig. 1(c). The experimental
parameters for Ω and δ for all three demonstrations corre-
spond to 2Ω/δ ≈ 1.6, the argument of the Bessel function in
Fig. 2. The quoted gate durations correspond to 4π/δg. The
total duration of the SDF pulses includes an additional 20 µs
for the ramps. For each of the qubit types, we create the en-
tangled state 1√

2
(|↓↓〉+ |↑↑〉). We infer the fidelity of the cre-

ated Bell state by measuring the populations and the parity,
1− 2(p↑↓+ p↓↑). For the parity measurement, we add a π/2
analysis pulse with a variable phase [17] after the pulse se-
quence in Fig. 1(c). We report the fidelity F without correct-
ing for any state preparation and measurement (SPAM) error
ε̄ , which we report separately [46].

Optical qubit: We start with the optical qubit, where the
SDF couples to both qubit states |↓o〉 and |↑o〉. We obtain a
Bell-state fidelity of F = 0.930(3) for a gate duration of ≈70
µs at 9.1 mW. The SPAM error is ε̄ = 0.0016(2). An example
parity scan is shown in Fig. 4. In contrast to MS-gate imple-
mentations, the phase of the entangled state is fixed and does
not depend on the average phase of the two bichromatic field
tones. The SDF pulses and the single-qubit rotations were im-
plemented using the same 674 nm laser.

To demonstrate the robustness of the gate mechanism to σ̂z-
type errors, we measure the Bell-state fidelity as a function of
an applied qubit frequency offset, where we shift both tones
by the same offset, during the gate pulses (Fig. 5). From−150
to 150 kHz, the Bell-state fidelity values are statistically con-
sistent with each other and stay above 0.9.

Metastable qubit: We next entangle the
metastable qubit states |↓m〉 ≡ |4D5/2, m j =− 5

2 〉 and
|↑m〉 ≡ |4D5/2, m j =− 3

2 〉, split by ≈245 MHz (see Fig. 1(b)).
We obtain a Bell-state fidelity of F = 0.859(5) for a gate
duration of ≈140 µs at 9.5 mW laser power. The SPAM
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FIG. 4: Example parity scans for two-qubit entangled states
created in the optical (magenta triangles), metastable (green
squares) and ground (black circles) state qubits. We scan the
π/2 analysis pulse phase and measure the parity (see text).
Error bars indicate 68% confidence intervals, and lines are
fits to the data.

error is ε̄ = 0.0164(7). As the SDF only couples to the |↑m〉
state, the differential force between the qubit states is half
that of the optical qubit. Hence, the gate duration is about
twice as long as for the optical qubit case using similar laser
power. The single-qubit rotations for the metastable qubit are
performed with a radiofrequency (rf) antenna; crucially we
require no defined phase relationship between the rf source
and the 674 nm laser for the SDF.

As the Zeeman splitting between neighbouring 4D5/2 states
is almost identical, the qubit states need to be isolated to pre-
vent population leakage during the single-qubit rotations. To
break the degeneracy, we light-shift the |↑m〉 level by apply-
ing a 674 nm beam blue detuned from the optical quadrupole
transition (|↓o〉 ↔ |↑o〉 = |↑m〉) during the single-qubit rota-
tions. Using a detuning of 2.8 MHz and power of 20 mW, we
shift the qubit transition by ≈ 145 kHz from the neighbouring
transition. We attribute most of the additional infidelity com-
pared to the optical qubit case to imperfect state initialisation
and single-qubit rotations. We show a sample parity scan for
the metastable qubit in Fig. 4. The detuned 674 nm field used
during the single-qubit operations also induces a phase shift
on the entangled state which results in a phase offset in the
parity scan.

Ground state qubit: Finally, we demonstrate a two-
qubit entangling gate using the ground state qubits
|↓g〉 ≡ |5S1/2, m j =− 1

2 〉 and |↑g〉 ≡ |5S1/2, m j =
1
2 〉, split by

409 MHz (see Fig. 1(b)). We obtain a Bell-state fidelity of
F = 0.949(4) for a gate duration of ≈140 µs at 9 mW
laser power. The SPAM error is ε̄ = 0.0036(4). Similarly,
the single-qubit rotations are implemented via the rf antenna.
Again, the gate duration is doubled compared to the optical
qubit case as the SDF only couples to |↓g〉.

We have shown that the technique is applicable to three
different qubit types using the exact same bichromatic field.
Within the context of omg architectures, this simplifies the
technical requirements as it enables the manipulation of all
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FIG. 5: Bell-state fidelity F versus the applied qubit
frequency offset for the optical qubit. The Bell-state fidelity
remains unchanged above 0.9 over a range of ±150 kHz.
Fidelity values below 0.5 indicate a change in the phase of
the created Bell state.

three qubit encodings using a single quadrupole laser. How-
ever, there might be additional considerations for multi-ion
chains. For example, a global laser beam would couple ions
whose qubits are either in the ground or metastable mani-
fold. Single-ion addressing of the gate drive preserves orthog-
onality in qubit sub-space. However, most omg-applications
would require single-ion addressing which would mitigate this
issue. In addition, auxiliary states in either manifold that do
not couple to the bichromatic field can be used to shelve quan-
tum states temporarily. Another application of this scheme,
not explored in this paper, is entangling ions that use different
qubits e.g. metastable-ground state, optical-ground state.

In terms of the errors associated with the entangling opera-
tions using this SDF scheme, we are able to achieve Bell-state
fidelities comparable to those achieved by the MS-interaction
in the same system. We believe the main sources of infidelity
are phase noise from the 674 nm laser and excitation of other
motional mode resonances. The phase of the entangled state,
and hence the fidelity, is insensitive to slow drifts in the optical
phase for the Ŝz interaction. However, similar to the MS inter-
action, it is still sensitive to phase noise that is fast compared
to the duration of an entangling gate. Additionally, single-
qubit rotations on the optical qubit can also induce errors.
We observed a loss in contrast from the spin-echo Ramsey se-
quences, Fig. 1(c) without any SDF pulses, at delays close to
the durations used for the entangling gates. The contrast loss
on the two-ion population p↑↓+ p↓↑ was 0.035(3) for the op-
tical qubit encoding. This indicates the presence of coloured
phase noise on the 674 nm laser which could significantly af-
fect the gate dynamics. For the ground state and the metastable
qubit, the contrast loss was dominated by SPAM errors. Fur-
thermore, there are additional resonances close to δ ≈ ωz/2
as the laser couples to all the motional modes of the ions ??.
We observed that sideband cooling of the additional motional
modes corresponding to these nearby resonances mitigates
this error contribution.

In conclusion, we present an in-depth investigation of a
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spin-dependent force in the σ̂z-basis created using a bichro-
matic laser-field near-resonant with a quadrupole transition.
By only changing the beat-note frequency of the near-qubit
tones, we can toggle the interaction basis from the typical σ̂φ

to σ̂z. We characterise this interaction and investigate its ro-
bustness to σ̂z-type errors, such as qubit frequency offsets,
and show that the basis of the SDF does not depend on the
optical phase of the driving field. This SDF is well suited to
manipulate a variety of qubit states. We use the same laser
configuration to entangle optical, metastable, and ground state
qubits, which is important for recently proposed trapped-ion
architectures [32, 33]. While demonstrated for field-sensitive

transitions (there are no clock qubits in 88Sr+), this method
could be extended to field-insensitive clock qubits. Moving
beyond quadrupole transitions, this method can also be used
with two-photon Raman and magnetic dipole transitions in
other trapped ion systems.
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