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In this work, we show how the resource theory of non-stabilizerness quantifies the hardness of
direct fidelity estimation protocols. In particular, the resources needed for a direct fidelity estimation
conducted on generic states, such as Pauli fidelity estimation and shadow fidelity estimation protocols,
grow exponentially with the stabilizer Rényi entropy[1]. Remarkably, these protocols are shown to be
feasible only for those states that are useless to attain any quantum speedup or advantage. This result
suggests the impossibility of estimating efficiently fidelity for generic states and, at the same time,
leaves the window open to those protocols specialized at directly estimating the fidelity of particular
states. We then extend our results to quantum evolutions, showing that the resources needed to certify
the quality of the implementation of a given unitary U are governed by the non-stabilizerness in the
Choi state associated withU, which is shown to possess a profound connection with out-of-time order
correlators.

I. INTRODUCTION

Quantum computers promise efficient solutions to
problems that are otherwise intractable on classical
computers[2–7]. In order to fully harness the over-
whelming computational advantage of quantum pro-
cessors, it is first necessary to ensure their correct func-
tioning. Unsurprisingly, the technology best suited
for this task would be another quantum computer[8–
11]. Until reliable quantum technology can be realized,
one must use classical resources to implement meth-
ods of quantum certification. In the last decade, there
have been many attempts in tackling this problem,
with a large landscape of different protocols, ranging
from benchmarking[12–25], quantum state[26–40] and
process[41–50] learning, to blind computation[51–58]
and quantum supremacy[7, 59, 60] approaches. For
a panoramic overview of the approaches within the
field of quantum certification see e.g.[61–65].

A quantum certificate guarantees the correct appli-
cation of a given quantum process or the correct prepa-
ration of a desired quantum state. This is commonly
done in terms of a measure of quality, i.e. a measure
of distance having the interpretation of worst-case dis-
tinguishability. Specifically, certifications of quantum
states are phrased in terms of the fidelity between
the target state |ψ〉 and the actual state ψ̃ prepared
from the machine; while the quality of quantum gates
U is commonly expressed in terms of average gate
fidelity[19, 66–68].

The bottleneck of any quantum certification proto-
col is the efficiency in terms of resources. They are con-
ventionally quantified by (i) the sample complexity[61,
62, 65], i.e. the minimal number of experiments and

resulting samples that need to be prepared for a proto-
col to be successful and (ii) the classical post-processing

complexity, i.e. the number of classical resources spent
for post-processing data. In particular, a protocol is
said to be efficient if its total complexity scales polyno-
mially in the number of qubitsn; conversely, a protocol
is inefficient if its complexity scales exponentially in
n.

In this paper, we point out a very striking fact:
the complexity of direct fidelity estimation protocols
aimed at certifying generic quantum states is exactly
quantified by the amount of non-stabilizerness in the
state. Non-stabilizerness is an expensive, but funda-
mental fuel for quantum computation[1, 44, 69–81]:
without non-stabilizerness, a quantum computer can
do nothing more than a classical computer. While
simulations of stabilizer states (stabilizer resources)
and Clifford circuits (stabilizer operations) are efficient
on classical computers, the injection of t non-Clifford
gates makes the simulation exponentially harder in
t, thus unlocking quantum advantage. Resource the-
ory of non-stabilizerness has been widely studied and
found copious applications in the broad field of fault-
tolerant quantum computation[82–85], as well as clas-
sical algorithms for simulations of quantum comput-
ing architectures[86–91].

In this paper, we prove that the complexity of direct
verification protocols scales exponentially with the
non-stabilizerness, and thus exponentially in the num-
ber of non-Clifford gates needed for the state prepara-
tion. This result implies that the certification protocol
is efficient only as long as the amount of non-Clifford
gates used is O(logn). Remarkably, this is the same
threshold for a quantum state to be efficiently simu-



lated classically[89]. As a consequence, when quan-
tum computation is able to unlock quantum speedup
then for this process direct fidelity estimation proto-
cols are not feasible. In other words, the same com-
plexity that makes quantum technology powerful is
the one that inhibits its certification. This is the main
conceptual contribution of this work.

Along these lines, we extend our results to the certi-
fication of quantum processes via direct average gate
fidelity estimation. We show that the sample complex-
ity, i.e. the number of uses of a given U, is quantified
by multi-points out-of-time-order correlators (OTOCs)
associated with the target unitary operatorU. OTOCs
are conventionally employed to probe quantum chaos:
a quantum evolution is commonly considered to be
chaotic in terms of attaining the Haar value for gen-
eral OTOCs[91–94], that is, the value that would be
reached by a random unitary operator. We claim the
closer these correlators are to the Haar value, the more
chaotic the evolution[91], and the more inefficient the
quantum verification. Quantum chaos is quantum –
it requires an extensive quantity O(n) of non-Clifford
resources – and therefore it hinders quantum certifica-
tion.

The paper proceeds in the following way: in Sec. II
we give an overview of the problem and informally in-
troduce the main result of the paper. Sec. III is devoted
to the introduction of the main tools used throughout
the paper. In particular, in Sec. III A, we introduce
the resource theory of stabilizer Rényi entropy, which
turns out to have a deep connection to quantum fi-
delity estimation protocols. In Sec. III B, we present
the algorithm for classical simulations of Clifford cir-
cuit containing a finite number of non-Clifford gates,
useful in proving the main result of the paper later
presented in Sec. IV. In particular, in Sec. IV A, we
introduce the Pauli fidelity estimation protocol and
bound its complexity with the stabilizer entropy, while
in Sec. IV B, we turn to analyze the shadow fidelity es-
timation protocol and show how its complexity scale
exponentially with the number of non-Clifford gates,
and thus with the non-stabilizerness of a given state
|ψ〉. Finally, in our conclusion, we summarize the
main findings of the paper and sketch ideas for future
directions.

II. FIDELITY ESTIMATION AS A QUANTUM
CERTIFICATE: STATEMENT OF THE MAIN RESULT

Let ψ ≡ |ψ〉〈ψ| the state one wants to prepare on
a quantum processor, and let ψ̃ the state actually pre-

pared by the quantum processor. The question behind
the whole theory of quantum certification is: how can
one certify to what extent ψ̃ ∼ ψ and how costly cer-
tification is? One of, if not the, most intuitive way
to quantify the quality of the realization of the pre-
pared state is to measure the probability that ψ̃ isψ, i.e.
measure the fidelity between ψ̃ and ψ, defined as

F(|ψ〉 , ψ̃) := tr(ψψ̃) . (1)

Operationally, the fidelity F quantifies the probabil-
ity that ψ̃ 7→ |ψ〉〈ψ|, and F(|ψ〉 , ψ̃) = 1 if and only
if ψ̃ = |ψ〉〈ψ|. In this work, we refer to direct fidelity

estimation as a protocol aimed to directly measure the
fidelityF within an additive error ǫ (indeed a ǫ = O(1)

error is sufficient for a quantum certification scope
since we want F ≃ 1). The most direct method to
measure the fidelity is to measure the state ψ̃ in the
basis in which |ψ〉 is diagonal. In other words, one
can access F by measuring the Positive Operator Val-
ued Measurement (POVM) given by the following set
Sψ = {|ψ〉〈ψ| , 1l − |ψ〉〈ψ|}. Unfortunately, for generic
states measuring the set Sψ is as much difficult, and
noisy, as preparing the state |ψ〉. One, maybe appeal-
ing, alternative is provided by the swap test[8, 9], i.e.
a quantum algorithm aimed to measure the fidelity
between two states, say |ψ〉 and ψ̃. The algorithm uses
a ancillary qubit in the state ∝ |0〉 + |1〉 as the qubit-
control of a swap operator T acting between |ψ〉 and ψ̃,
and then measured in the basis |0〉± |1〉. The described
protocol is efficient in terms of resources: a user must
prepare the states |ψ〉 and ψ̃ a O(ǫ−2) number of times
to access the fidelity within an error ǫ. As the reader
might be already aware, the problem of such proto-
col is not the efficiency in terms of resources, but the
fact that a verifier should be able to perfectly prepare
the state |ψ〉 on another quantum processor. This is
to say: a quantum computer is certainly able to cer-
tify the correct functioning of another noisy quantum
computer.

Unfortunately, until the advent of a completely fault-
tolerant quantum technology, one must opt for other
strategies. For direct fidelity estimation protocols, the
rules of the game are: (i) the state |ψ〉 is a theoretical
state, efficiently saved in a classical memory; (ii) a veri-
fier must measure the fidelity in Eq. (1) of the state ψ̃by
having access to Nψ̃ state preparations of ψ̃ and (iii)

by using Ncl resources for classical post-processing
on each ψ̃. We define the number of resources N – i.e.
the total complexity of the protocol – necessary to esti-
mate the fidelity within an error ǫ as the product of
the, so-called, sample complexityNψ and the classical
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post-processing complexity Ncl, i.e.

N = Nψ ×Ncl (2)

and we define a protocol to be efficient iff N =

O(poly(n)). In this work, we discuss two protocols
aimed to certify the correct state preparation by di-
rectly measuring the fidelity in Eq. (1), i.e. Pauli

fidelity estimation[30, 31] and shadow fidelity estima-

tion[33, 39, 61]. These two protocols are the only two
protocols introduced in the literature, beside quantum
state tomography, that have the advantage to do not
rely on any assumption on the state |ψ〉, and general
enough to work for every state. Let us briefly and
informally summarize the main steps.

Definition 1 (Pauli fidelity estimation). Let Ξψ be a

state-dependent probability distribution on the space of a

complete set of local observables. An unbiased estimator F̃

forF is built in the following way: (i) draw k observablesOi
according to Ξψ, (ii) estimate the expectation value 〈Oi〉ψ̃
on ψ̃, (iii) sum them up and define F̃ := k−1

∑
i 〈Oi〉ψ̃.

Note thatNcl = O(1), while the sample complexityNψ̃ ≃
k × maxi ci, where ci is the number of shot measurement

employed to estimate 〈Oi〉ψ.

Definition 2 (Shadow fidelity estimation). Let |ψ〉 a

quantum state, ψ̃ its noisy realization on a quantum hard-

ware and {|x〉} the computational basis. (i) Draw k in-

dependent Clifford circuits Ci uniformly at random, (ii)

apply them on the prepared state: ψ̃i = Ciψ̃C
†
i ; (iii)

measure the resulting state in the computational basis and

record the result x̄i; (iv) run a classical estimation al-

gorithm to compute the outcome probability |〈x̄i|Ci|ψ〉|2
for x̄i the measurement result. (v) finally define F̃ :=

k−1
∑
i[(d + 1)|〈x̄i|Ci|ψ〉|2 − 1]. Note that, Ncl counts

the number of resources necessary to compute |〈x̄i|Ci|ψ〉|2
for each i, while the sample complexity Nψ̃ ≃ k, i.e. the

number of Clifford circuits sampled.

Now we are in the position to state the main result
of the paper:

Theorem 1 (Informal). The number of resources N for

both Pauli fidelity and shadow fidelity estimation protocols

scales exponentially with the stabilizer Rényi entropy and

thus with the number of non-Clifford gates used to prepare

the state. In particular, these protocols are feasible only for

those states that can be efficiently simulable on a classical

computer.

In the next section, we introduce the main tools used
to prove the above statement.

III. TOOLS, DEFINITIONS AND TECHNIQUES

A. Stabilizer Rényi entropy

The stabilizer Rényi entropy is a recently introduced
non-stabilizerness monotone[1], which possesses the
nice property to be experimentally measurable[80]. In
this section, we briefly review some useful properties
to allow easy access to the main results of the paper.
We also discuss the stabilizer Rényi entropy associ-
ated with a unitary evolution U, through the Choi-
Jamiolkowski isomorphism, and establish a nontrivial
connection with out-of-time-order correlators, which
is a result of independent interest.

Let ρ be a quantum state, let P(n) be the Pauli
group on n qubits, C(n) the Clifford group, and
d ≡ 2n the dimension of the Hilbert space. The
state ρ can be written in the Pauli basis as ρ =
1
d

∑
P∈P tr(Pρ)P, and we can associate a probabil-

ity distribution to the coefficients of such expan-
sion, Ξρ := {Pur−1(ρ)d−1 tr2(Pρ) |P ∈ P(n)}, where
Pur(ρ) := tr ρ2. Note that Ξρ(P) > 0 and sum to one.
The α-Stabilizer Rényi entropy is defined as[1]:

Mα(ρ) := Sα(Ξρ) + S2(ρ) − logd (3)

where Sα(Ξρ) is theα-Rényi entropy of the probability
distribution Ξρ and S2(ρ) := − log Pur(ρ) is the quan-
tum 2-Rényi entropy of ρ. Mα(ρ) has the following
properties: (i) it follows a hierarchyMα(ρ) >Mα′(ρ)

for α′ < α; (ii) it is faithful, i.e. Mα(ρ) = 0 iff
ρ = 1

d

∑
P∈G φPP, where G ⊂ P(n) is a commuting

subset of P(n) and φP = ±1; (iii) is invariant un-
der Clifford rotations C, Mα(ρ) = Mα(CρC

†); (iv)

it is additive: Mα(ρ ⊗ σ) = Mα(ρ) +Mα(σ); (v) it
is bounded Mα(|ψ〉) 6 logd. We denote the stabi-
lizer Rényi entropy for a pure state |ψ〉 as Mα(|ψ〉);
for pure states only, we have thatMα(|ψ〉) 6 ν(|ψ〉)[1],
where ν(|ψ〉) is the stabilizer nullity[95] of |ψ〉, defined
as ν(|ψ〉) = logd − log s(|ψ〉) where s(|ψ〉) := |{P :

| tr(P |ψ〉〈ψ|)| = 1}|. Additionally, thanks to the bound
proven in [96], one has Mα(|ψ〉) 6 t, where t is the
number of T -gates spent in the circuit that prepares
|ψ〉 from |0n〉.

The stabilizer Rényi entropy is defined on states,
so it is natural to compute the Stabilizer Rényi en-
tropy of the Choi state |U〉 ∈ H⊗2 associated with
a unitary operator U, as |U〉 := (1l ⊗ U) |I〉, where
|I〉 := 1√

d

∑
i |i〉 ⊗ |i〉. Let ΞU be a probability distribu-

tion whose elements are ΞU(P, P′) := d−4 tr2(PUP′U†)

for P, P′ ∈ P(n), then the following lemma holds:
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Lemma 1. The stabilizer Rényi entropy for |U〉 reads:

Mα(|U〉) = Sα(ΞU) − 2 logd (4)

See App. A for the proof. Now we are ready to state
one of the main results of the paper, which build a
tight connection between the non-stabilizerness of the
Choi state |U〉 and OTOCs:

Lemma 2. The α-stabilizer Rényi entropy of |U〉, for 1 <

α ∈ N, equals the 2α-points out-of-time order correlator

Mα(|U〉) =
1

1− α
logOTOC2α(U) (5)

where OTOC2α := 1
d2

∑
P,P′ otoc2α(P, P

′), where d ×
otoc2α(P, P

′) := tr[〈P2α
∏2α
i=1 P

(U)P′Pi−1Pi〉] with

P0 ≡ 1l and 〈·〉 is the average over P1, . . . , P2α.

For a proof, see App. A. The above lemma tells the
meaning of the non-stabilizerness possessed by Choi
states associated with unitary evolutions: the more
the non-stabilizerness Mα(|U〉), the more chaotic is
the evolution generated by U[91]. Lastly, we show a
bound with a non-stabilizerness monotone defined by
unitary operators, useful in proving the main results
of the paper. Let ν(U) be the unitary stabilizer nullity
defined in [96] as ν(U) := 2 logd − log s(U), where
s(U) := |{P1, P2 : | tr(P1UP2U†)| = 1}|, i.e. s(U) counts
the elements of a subset of the Pauli group normalized
by the adjoint action of U. We have the following
bound:

Lemma 3. For any 0 6 α <∞, we have

Mα(|U〉) 6 ν(U) (6)

The lemma easily follows from Lemma 1 and the
bound proven in [1], i.e. Mα(|ψ〉) 6 ν(|ψ〉) for any
α. The lemma also shows that the unitary stabilizer
nullity ν(U) is nothing but the stabilizer nullity of the
Choi state associated with U, i.e. ν(|U〉) = ν(U).

B. Strong classical simulation of states beyond
Stabilizer states

In this section, we present a brief and simplified
review of the classical simulation method for states
beyond stabilizer states, that will be useful in proving
Theorem 3.

Imagine we are given the quantum circuit Ut, as a
Clifford circuit plus a number t of T -gates circuit, that
build a state |ψ〉 ≡ Ut |0

n〉 starting from a reference
state |0n〉. Throughout the paper, we refer to “strong

simulation“ as the ability to (exactly) compute the out-
come probability | 〈x|ψ〉 |2 for somen-bit string |x〉. The
following simulation algorithm is not a state of the art

kind of algorithm. We describe it to illustrate why and
how the strong simulation of Clifford+T circuits scales
exponentially in t, keeping the technicalities as simple
as possible. See e.g. [89, 91, 97–99] for state-of-the-
art simulation algorithms. We anticipate and remark
that any simulation algorithm aimed to simulate Clif-
ford + T circuits scales exponentially in the number of
T -gates.

First of all, thanks to the Gottesman-Knill the-
orem, one can compute the overlap between any
two n-qubit stabilizer states |ω1〉 , |ω2〉 as 〈ω1|ω2〉 =
b2−p/2eiπm/4, for some b = {0, 1}, integer p ∈ [1, n]

and m ∈ Z8 with an algorithm having runtime
O(n3) [87]. Conversely, if one is provided with the de-
composition of |ψ〉 into elementary gates of Clifford+T
circuits, the simulation cost scales exponentially in the
number of T -gates, as shown below.

The algorithm starts from the following simple ob-
servation. Define the T -gadget as the following state
|T〉 ∝ |0〉 + eiπ/4 |1〉. The T -gadget, together with a
Control-Not – here denoted as CXi,j where i is the
control and j the target – and measurement in the Z
basis, can be spent to apply a T gate. The protocol is the
following. Let |ψ〉 n qubit state on which one wants to
apply a T gate on the i-th qubit for i ∈ {1, n}. Let n+ 1

be the labeling of the ancillary qubit corresponding to
|T〉. The first thing to do is to append the T -gadget
as |ψ〉 7→ |ψ〉 |T〉; then apply a CX, having control on
i and target on n + 1 as |ψ〉 |T〉 7→ CXi,n+1(|ψ〉 |T〉);
and then measure the n + 1 qubit in the {|0〉 , |1〉} ba-
sis. If the measurement leads to the outcome ′0′, then
|0〉〈0|Ci,n+1(|ψ〉 |T〉) ∝ Ti |ψ〉 |0〉; while, if it leads to the
outcome ′1′, then |1〉〈1|Ci,n+1(|ψ〉 |T〉) ∝ S

†
iTi |ψ〉 |1〉.

Thus, adapting the application of a S gate, i.e. S ≡
diag(1, i), on the i-th qubit conditioned to the measure-
ment result, leads to the application of a T gate on the
i-th qubit. For a generic n-qubit t-doped Clifford cir-
cuitUt := CtTitCt−1Tit−1 · · ·C1Ti1C0, i.e. Clifford cir-
cuits interleaved with the application of t non-Clifford
gates, we can define the following (n + t)-qubit Clif-
ford circuit

CUt = CtCXit,n+1Ct−1CXit−1,n+2 · · ·C1CXi1,n+tC0 ,
(7)

i.e. we replace all the Tik gates with CX-gates
CXik,n+k controlling on the ik-th qubit and acting on
the k-th auxiliary qubit for k ∈ {n + 1, n + t}. CUt is
called the gadgetized version of Ut. Thanks to the ob-
servation described above, one can write the outcome
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probability as

| 〈x|Ut|0n〉 |2 = 2t| 〈x, 0t|CUt |0n, T⊗t〉 |2 , (8)

i.e. the probability that then-qubit circuitUt acting on
|0n〉 leads to |x〉 is proportional the probability that the
gadgetized version CUt (Eq. (7)) acting on |0n〉 ⊗ |T〉⊗t
leads to |x〉 ⊗ |0t〉. The proportionality factor 2t is
due to post-selection [89]. Next, observe that one can
write |T〉⊗t =

∑
y∈{0,1}t e

iπ
4
hw(y) |y〉, where hw(y) is

the hamming weight of the t-bit string y ∈ {0, 1}t. In
words, one can write t copies of the T -gadget as a
combination of 2t computational basis states. We can
thus estimate the outcome probability | 〈x|Ut|0n〉 |2 as

| 〈x|Ut|0n〉 |2 = 2t
∣

∣

∣

∣

∣

∣

∑

y∈{0,1}t

ei
π
4
hw(y) 〈x, 0t|CUt |0n, y〉

∣

∣

∣

∣

∣

∣

2

,

(9)
i.e. by evaluating the overlaps between CUt |0

n, y〉
and |x, 0t〉 via the Gottesman-Knill theorem for every
y ∈ {0, 1}t and then sum them up. The above method,
for the exact computation of the outcome probability,
leads to a classical simulation costO(2t(n+t)3), where
the exponential scaling in t comes from the fact that
there are exponentially many t-bit strings y in the sum
of Eq. (9), while the factor (n+t)3 comes directly from
the Gottesman-Knill theorem.

Now we are ready to discuss the main contribu-
tions of the paper, showing that the efficiency of di-
rect fidelity estimation protocols is governed by non-
stabilizerness.

IV. STABILIZER RÉNYI ENTROPY AND FIDELITY
ESTIMATION: FORMAL RESULTS

The following section is devoted to the presentation
of the main theorems of the paper in a formal fashion.
Specifically, in Sec. IV A, we first describe Pauli fidelity
estimation protocol, first introduced by [30, 31], and
bound the number of resources N with the stabilizer
entropy. In Sec. IV B, we describe the shadow esti-
mation protocol introduced in [33, 39] and show that
the total complexity scale exponentially with the num-
ber of non-Clifford gates spent to prepare the state.
Finally in Sec. IV C, we show that Pauli fidelity estima-
tion performs better than shadow fidelity estimation
in terms of resources. The analyzed protocols have the
advantage to be problem-agnostic protocols, i.e. they
do not rely on any additional assumption and work
for generic states. We will demonstrate that, while
these protocols have wide applicability, they are only

feasible and scalable for the class of states that do not
provide a quantum computational advantage.

A. Pauli fidelity estimation

Here we show that the stabilizer Rényi entropy di-
rectly quantifies the resources needed to estimate the
fidelity, the distance in 2-norm – for pure states and
mixed states – up to an accuracy ǫ and success proba-
bility lower bounded by 1− δ. In particular, we prove
that the stabilizer Rényi entropy quantifies the number
of resources required for a direct fidelity estimation,
conducted via Monte Carlo sampling: Pauli fidelity es-
timation. This protocol was first introduced in [30, 31]
to directly access the fidelity of a state preparation ψ̃,
and then experimentally employed in[100, 101].

The protocol proceeds as follows. Let |ψ〉be the pure
state one aims to prepare on a quantum processor and
let ψ̃ be the state (in general mixed) actually prepared
by the quantum processor. As discussed in Sec. II, a
measure of quality of ψ̃ is provided by the fidelity F

between the theoretical state |ψ〉 and ψ̃, i.e.

F(|ψ〉 , ψ̃) := tr(ψψ̃) (10)

where ψ := |ψ〉〈ψ|. One can rewrite Eq. (10) in the
Pauli basis P(n) as F(|ψ〉 , ψ̃) = 1

d

∑
P tr(Pψ) tr(Pψ̃)

and define XP :=
tr(Pψ̃)

tr(Pψ)
; note Ξψ := {Ξψ(P) ≡

d−1 tr2(Pψ) |P ∈ P(n)} is the probability distribution
introduced in Sec. III A for ψ being a pure state. Thus
we can write the fidelity as an expectation value over
Ξψ:

F(|ψ〉 , ψ̃) =
∑

P

XPΞψ(P) ≡ 〈XP〉Ξψ (11)

i.e. the fidelity between the theoretical pure state ψ
and the prepared state ψ̃ can be recast as an average
of measurable numbers XP on the probability distri-
bution Ξψ. Following[30, 61], we use the following
protocol to estimate the average in Eq. (11): (i) extract
k Pauli operators P1, . . . , Pk ∈ K according to the state-
dependent probability distribution Ξψ; (ii) for each
extraction P ∈ K of the Pauli observable P construct
cP(ψ̃) copies of the state ψ̃ to estimate the expectation
value tr(Pψ̃); (iii) compute the unbiased estimator of
the fidelity F(|ψ〉 , ψ̃) given by F̃ = 1

k

∑
P∈K X̃P where

X̃P = tr−1(Pψ)cP(ψ̃)−1
∑cP(ψ̃)

j=1 PPj(ψ̃) and PPj(ψ̃) is
the outcome of a one-shot measurement of the observ-
able P on the j-th copy of ψ̃. We quantify the resources
needed for the estimation – up to an accuracy ǫ and
failure probability 6 δ – as the number of copies of ψ̃
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to be prepared on the machine:

Nψ̃ :=
∑

P∈K

cP(ψ̃) (12)

Surprisingly, the total resourcesNψ̃ are exactly quanti-
fied by the non-stabilizerness of |ψ〉, measured via the
stabilizer Rényi entropyMα(|ψ〉) as the next theorem
states.

Theorem 2. The sample complexityNψ̃ needed to measure

the fidelity F with accuracy ǫ and success probability 1− δ

is bounded:

2

ǫ2
ln(2/δ) exp[M2(|ψ〉)]6 Nψ̃6

64

ǫ4
ln(2/δ) exp[M0(|ψ〉)],

(13)
whereM2(|ψ〉) andM0(|ψ〉) are the 2 and the 0-stabilizer

Rényi entropy respectively. Then, since Ncl = Θ(1), one

has that the number of resources obeys NP = Θ(Nψ̃)

see App. B 1 for a proof. The above theorem tells us
that the more the non-stabilizerness of the quantum
state one aims to prepare on the quantum machine, the
harder is the verification through Pauli fidelity estima-
tion protocol. Let us use the theorem to determine the
scaling of Nψ̃ for an important class of states, i.e. the
t-doped stabilizer states. A t-doped stabilizer state,de-
noted as |ψt〉, is the output state of a circuit composed
by Clifford gates doped with a finite amount t of non-
Clifford resources. The best classical algorithm able
to simulate such states scales as O(poly(n) exp[t])[89],
providing an insightful threshold for the onset of quan-
tum advantage: as long as t = O(logn), such states
can be efficiently simulated classically and therefore
cannot provide any quantum speedup. We have the
following result:

Corollary 1. The (average) number of resources to verify a

t-doped Stabilizer state ψt grows exponentially in t:

Ω(exp[t log 4/3]) 6 〈Nψt〉 6 Ω(exp[t]) 6 Ω(d) (14)

see App. B 2 for a proof. Two comments are in order
here: first, the hardness of the verification of t-doped
stabilizer states quickly saturates the bound, growing
exponentially in t. Second, this is telling us that the
above protocol is efficient only for those states with t
at most O(logn), useless for quantum computation.

Let us now extend the above results to mixed states.
Suppose one aims to prepare a mixed stateρ on a quan-
tum processor. Let ρ̃ be the actual state prepared from
the quantum machine. One way to check whether the
preparation is faithful is to evaluate the difference in
2-norm between ρ and ρ̃[102]:

‖ρ− ρ̃‖2 =
√

Pur(ρ)

√

1+
Pur(ρ̃)
Pur(ρ)

− 2Φ(ρ, ρ̃) (15)

where we defined Φ(ρ, ρ̃) :=
tr(ρρ̃)
Pur(ρ) as the overlap be-

tween ρ and ρ̃. In order to evaluate the above, one
needs to measure both Φ(ρ, ρ̃) and Pur(ρ̃). Nonethe-
less, here we are only concerned with the overlap
Φ(ρ, ρ̃), because it is the only quantity involving a di-
rect comparison between the theoretical stateρ and the
actual state ρ̃. Note that, the purity Pur(ρ̃) can be esti-
mated efficiently by employing the standard technique
of the swap test[8, 9]. Writing Φ(ρ, ρ̃) in the Pauli ba-
sis, one can recast it in terms of the expectation value,
Φ(ρ, ρ̃) = 〈XP(ρ)〉Ξρ , of XP(ρ) :=

tr(Pρ̃)
tr(Pρ) , on the prob-

ability distribution Ξρ associated to the mixed state ρ,
Ξρ = {d−1 Pur−1(ρ) tr2(Pρ) |P ∈ P(n)}. Thus, follow-
ing the protocol described above, we can estimate the
above average by an importance sampling of the prob-
ability distribution Ξρ, and construct an unbiased es-
timator Φ̃(ρ, ρ̃) = 1

k

∑
P∈K

1
tr(Pρ)

1
cP(ρ)

∑cP(ρ)
j=1 PPj(ρ̃),

where cP(ρ) are the number of copies of ρ̃ needed
to estimate tr(Pρ̃), and PPj(ρ̃) is the outcome of the
measurement of P on the j-th copy of ρ̃. The num-
ber of resources needed to access the overlap Φ(ρ, ρ̃)

is given again by the total number of copies of ρ̃, i.e.
Nρ̃ = 1

k

∑
P∈K cP(ρ̃). We are now ready to bound

Nρ̃ in terms of the stabilizer Rényi entropy for mixed
states.

Corollary 2. The number of resources Nρ̃ needed to mea-

sure the overlap Φ(ρ, ρ̃) with an accuracy ǫ and success

probability > 1− δ is bounded

2

ǫ2
ln(2/δ) exp[M2(ρ)] 6 Nρ 6

64

ǫ4
ln(2/δ) exp[M0(ρ)]

(16)

For mixed states also, the number of resources
needed to measure the overlap between ρ and ρ̃ is ex-
actly quantified by the stabilizer Rényi entropyMα(ρ).

We remark once again that the Pauli fidelity estima-
tion protocol described above is state-agnostic, i.e. it
does not make any assumption on the nature of the
state |ψ〉 and, consequently, it works for every state.
Nevertheless, there is a rich literature of examples in
which one can efficiently certify the preparation of a
particular set of states. See for example hypergraph
states[35, 103–106], i.e. states built from (|0〉 + |1〉)⊗n
with the application of CCZ gates, and bipartite pure
states[34, 36, 107–110].

In what follows, we describe an extension of the
Pauli fidelity estimation protocol for state-aware ver-
ifiers. Suppose a one wants to prepare the state
|ψ〉 and, beside knowing the quantum circuit able to
prepare |ψ〉 from a reference state |0n〉, one knows
a complete set of stabilizer observables O1, . . . , Od,
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i.e. hermitian operators such that Oi |ψ〉 = ± |ψ〉 and
[Oi, Oj] = 0∀i, j = 1, . . . , d. Note that every state |ψ〉
possesses one. Let O be a complete basis of opera-
tors such that O1, . . . , Od ∈ O and define the state-
dependent probability distribution ΞOψ, in the same
fashion of Ξψ defined in Sec. III A, as

ΞOψ := {d−1 tr2(Oiψ), Oi ∈ O} . (17)

Following the protocol described at the beginning of
the section and replacing Ξψ 7→ ΞOψ and Pi 7→ Oi,
one can estimate the fidelity F(|ψ〉 , ψ̃) as F(|ψ〉 , ψ̃) =
∑
Oi

tr(ψ̃Oi)
tr(ψOi)

ΞOψ(Oi). At this point, one can define a en-

tropy S(ΞOψ) for the probability distribution ΞOψ, simi-
larly to the definition of stabilizer entropy in Sec. III A.
Since O1, . . . , Od ∈ O, it is straightforward to verify
that S(ΞOψ) = n. At this point, the following corollary
readily descends from Theorem 2.

Corollary 3. Given the knowledge of a complete set of stabi-

lizers O1, . . . , Od for a state |ψ〉 and the ability to perform

measurements in the basis of operators O ∋ O1, . . . , Od,

the number of resources NP to estimate the fidelity, via the

generalized Pauli fidelity estimation protocol, between the

state |ψ〉 and its noisy realization ψ̃ within an error ǫ and

with failure probability δ is given by

N
O
P = Ω(ǫ−2 ln 2/δ) (18)

Before moving on to the next section, a couple of
remarks are in order. The above corollary tells us that
it is sufficient to know a set of stabilizer operators to
certify any state |ψ〉 in the Hilbert space. However, the
complete knowledge of a complete set of stabilizer ob-
servables is an assumption way stronger than one may
think and, in practice, can be fulfilled for a restricted
set of simple states. In general, a complete set of sta-
bilizer observables requires exhaustive search in an
exponentially large space to be found, being such op-
erators highly non-local. Moreover, even if, for some
reason, a verifier knows a complete set of stabilizer
observables, measurements in such a basis require,
in general, an exponential space in classical memory
to be performed. At least, the above corollary gives
a simple recipe for direct fidelity estimation protocol
for those states whose stabilizers can be easily found.
Let us make a clarifying example: consider a single
qubit state |φ〉 and the n-fold tensor product |φ〉⊗n.
Let o1, o2 two single qubit hermitian operators such
that o1 |φ〉 = o2 |φ〉 = |φ〉. The set {o1, o2}n (i) is a
complete set of stabilizer observables for |φ〉⊗n; (ii)
can be efficiently found by exhaustive search in the
space of one qubit; (iii) measurements in such basis

can be easily performed being a tensor product basis
of operators. The same conclusions can be reached for
hypergraph states, whose stabilizers are well-known
and easily implemented being hermitian Clifford op-
erators (see [103, 104]). In particular, for hypergraph
states, Corollary 3 constitutes a simple and alternative
proof of their efficient certification.

To conclude, one could argue about the validity of
the main statement of the paper: is non-stabilizerness
really playing a role in the efficiency of direct fidelity
estimation? The answer is ‘yes’ because, in general,
for state-agnostic verifiers, the best thing that one can
do is to perform measurements in the Pauli basis, i.e.
the native logic basis of operators, which turns out to
be much more feasible than an exhaustive search in an
exponentially large space.

B. Shadow Fidelity estimation

In this section, we prove that the resources needed
to estimate the fidelity via the shadow estimation pro-
tocol scale with the number of non-Clifford gates used
for the state preparation. Let |ψ〉 be the state to be pre-
pared on a quantum computer and ψ̃ its noisy realiza-
tion prepared by the hardware. The protocol proceeds
in the following steps: (i) draw C1, . . . , Ck ∈ C(n)

independent Clifford unitary operators; (ii) for each
Ci ∈ C(n), apply ψ̃i ≡ C

†
iψ̃Ci, measure ψ̃i in the

computational basis {|x〉 | x ∈ {0, 1}n}, and record the
outcome x̄i. (iii) Perform a classical estimation of the
outcome probability |〈x̄i|Ci|ψ〉|2. An unbiased estima-
tor for the fidelity is then given by

F̃ =
1

k

∑

i

[(d + 1)|〈x̄i|Ci|ψ〉|2 − 1] , (19)

i.e. if pi[x̄] ≡ tr[ψ̃i |x̄〉〈x̄|] is the probability that
a measurement of ψ̃i gives the string x̄, then
∑
x̄∈{0,1}n 〈pi[x̄]F̃〉Ci∈C = tr(ψψ̃). A complete and

detailed derivation of Eq. (19) is to be found in [39, 61].
Before stating the result of this section, let us focus
on step (iii) of the protocol. Shadow fidelity esti-
mation protocol explicitly asks for the demanding re-
quirement of the classical estimation of the outcome
probability |〈x̄i|Ci|ψ〉|2. Let us see how strong is
such a requirement. Call p(i)ǫa the classical estima-
tion of |〈x̄i|Ci|ψ〉|2 within an additive error ǫa, then
|k−1

∑
i[(d + 1)p

(i)
ǫa − 1] − F̃| 6 ǫa(d + 1), i.e. to en-

sure a small additive error on the estimation of the
unbiased estimator in Eq. (19), one should require
ǫa ∼ d−1, which rules out the sampling method used
in Sec. IV A leading to an exponential scaling in n
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for any state. Instead, if q(i)ǫr is the classical estima-
tion of |〈x̄i|Ci|ψ〉|2 with a small relative error ǫr, then
|k−1

∑
i[(d+1)q

(i)
ǫr −1]− F̃| 6 (F̃+1)ǫr 6 2ǫr (almost

surely). In other words, only if one is able to estimate
the outcome probability within a small relative error,
then a shadow fidelity estimation protocol is possible.
Note that the ability to compute all the outcome prob-
abilities of |ψ〉, as well as the marginals, within a small
relative error leads to the ability of sampling from the
outcome distribution, see [89], for ψ and, therefore,
quantum computation conducted by such states is en-
tirely classical.

In what follows, we use the classical simulation
method introduced in Sec. III A that is able to esti-
mate |〈x̄i|Ci|ψ〉|2 with no error. As explained below,
this choice does not feature a loss of generality for the
purpose of the paper.

Repeating steps (i), (ii) and (iii) for l times, and
defining F := median{Fs | s = 1, . . . , l}, we have the
following theorem:

Theorem 3. Let |ψ〉 a state prepared by a circuit containing

a number t of T -gates. Let Nψ̃ the number of times one

needs to prepare ψ̃ on a quantum hardware, and letNcl the

number of classical resources for the classical estimation of

the output probabilities. The number of resources necessary

to estimate F(|ψ〉 , ψ̃) within a error ǫ, given by NS =

Nρ̃ ×NCl is

NS = Ω(2tǫ−2 ln δ−1(n + t)3) (20)

In particular, the sample complexity is Nρ̃ ≡ k × l =

Ω(ǫ−2 ln δ−1) where l = 8 ln 2δ−1, while the number of

classical resources Ncl = Ω(2t(n + t)3).

Proof. The sample complexity bounded as Nρ̃ ≡ k ×
l = Ω(ǫ−2 ln δ−1) is to be found in [61], while the
scaling of the classical post-processing complexity is
derived in Sec. III B, then the total complexity NS is
given by the product, cfr. 2.

Let us make a couple of remarks about the theorem.

Remark 1. One could argue about the existence of other

simulation methods beyond the stabilizer formalism as Ma-

trix Product decompositions (tensor network) or Match-

gates circuits. The question is: can these methods provide

better scalings for the resources in Theorem 3? The answer

is ‘no’ because the entire protocol relies on the extraction of

a random Clifford circuit drawn uniformly at random ac-

cording to the Haar measure over the Clifford group C(n)

(see step (i)); a state evolved by a random Clifford circuit C

is, with overwhelming probability, far beyond being easily

encodable via tensor network decomposition; in other words,

C |0n〉 features a large bond dimension. On the other hand,

a random Clifford circuit is far beyond being a match-gate

circuit, because CX gates are not matchgates. We conclude

that shadow fidelity estimation protocol implicitly requires

a simulation method within the stabilizer formalism that, as

shown in Sec. III B, scale exponentially in the number of

non-Clifford gates in the circuit.

Remark 2. As anticipated, we used the simulation method

for Clifford+T circuits described in Sec. III A, which is def-

initely not a state of the art method. We opted for this

pedagogical choice for sake of simplicity. Indeed, the best-

known simulations method approximates outcome probabil-

ities within a small relative error gaining only a square

root advantage with respect to the exponential scaling in t.

The best known simulation algorithms are able to estimate

|〈x̄i|Ci|ψ〉|2 within a relative error ǫr and a failure proba-

bility pf in timeΩ(2βtt3ǫ−2r lnp−1f ), where 0 < β 6 1/2

(see [89]). In other words, we have no loss of generality in

concluding that Theorem 3 tells us that a shadow fidelity

protocol is possible as long as the number of T -gates is

t = O(logn), i.e. the same threshold that makes quantum

computation by |ψ〉 entirely classical.

In the next section, we are going to make some com-
parison between the above introduced protocols.

C. Pauli fidelity estimation versus shadow fidelity
estimation

In this section, we compare the two protocols dis-
cussed in this paper and highlight their differences
in resource utilization. It is important to note that
both protocols are inefficient and this inefficiency is
governed by non-stabilizerness. However, they differ
in the way they use resources. One key difference is
that the sampling complexity of shadow fidelity esti-
mation is independent of the size of the Hilbert space,
unlike Pauli fidelity estimation. However, it should be
noted that in order to achieve efficient classical post-
processing, shadow fidelity estimation requires strong
classical simulation for states to be certified. Addition-
ally, it is worth noting that shadow fidelity estima-
tion and Pauli fidelity estimation use different types
of measurement data; while shadow fidelity estima-
tion uses randomly selected bases for measurement,
Pauli fidelity estimation uses the expectation values
of observables. Correspondingly, they differ in their
setups for experimental implementations. Let us con-
clude the section with the following remark. Recall
the (bound on) the number of resources for the two
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protocols, to certify a given state ψ ≡ |ψ〉〈ψ|, to ensure
a small error and a high success probability are

NP = O(expM0(ψ)), Pauli fidelity estimation ,

NS = O(exp t), shadow fidelity estimation , (21)

where we neglected the dependency from ǫ and δ
displayed in Eqs. (16) and (20) respectively. By a closer
look to the scaling of the resources, one realize that, for
generic states, Pauli fidelity estimation performs better
than shadow fidelity estimation. Indeed, as shown in
Sec. III A, one has M0(ψ) 6 ν(ψ), for ν(ψ) being the
stabilizer nullity, and thus

M0(ψ) 6 t , (22)

for t being the number of non-Clifford gates used
to prepare ψ. Note that the above inequality be-
comes strict in many cases. One trivial example is
provided by the sequential application of T gates, be-
cause T2 = S: while the zero-stabilizer entropy does
not change, being invariant under Clifford operations,
the number of T -gates does; only using a compilation
procedure aimed to reduce the T-count, as the one em-
ployed in [111], one can get rid of additional useless
T -gates.

Let us conclude the paper with the extensions of the
above results to the certification of quantum processes.

D. Quantum processes

In this section, we show that the Stabilizer Rényi
entropy of the Choi state |U〉 bounds the resources
needed to perform a quantum process verification.
Suppose one wants to characterize the quality of the
application of a given unitary operatorU. This task oc-
curs in many quantum algorithms, and the quantum
Fourier transform provides a nice example. Let U be
the quantum map (in general non-unitary) applied by
the quantum processor. One way to certify the quality
ofU is through the average gate fidelity[19, 30, 61, 112]:

Favg(U) :=

∫

dψF(U |ψ〉 ,U(ψ)) (23)

i.e. the average fidelity between the application of
the target unitary on |ψ〉 and the quantum map on
ψ ≡ |ψ〉〈ψ|, according to the Haar measure dψ. One
can easily show, via a Kraus operator expansion, see
App. C, that Favg(U) = FU + O(d−1), where

FU :=
1

d4

∑

µν

tr(PµUPνU†) tr(PµU(Pν)) (24)

is the entanglement fidelity between U and the quan-
tum map U(·)[61]. Let us use the same trick
as before: define a probability distribution ΞU :=

{tr2(PµUPνU†)/d4 |µ, ν = 1, . . . , d2}, and rewrite FU

as the average of Xµν := tr(PµU(Pν))/ tr(PµUPνU†)

on the probability distribution ΞU, i.e. FU =

〈Xµν〉ΞU . FU can thus be estimated via Monte
Carlo methods by sampling k pairs of Pauli operators
(P1, P

′
1), . . . , (Pk, P

′
k) according to the probability dis-

tributionΞU. We quantify the resources as the number
of uses NU of the channel U. Note that, from Lemma
1, the probability distribution ΞU coincides with the
probability distribution associated with the Choi state
|U〉. The following theorem provides bounds for the
number of resources needed to estimate FU in terms
of the stabilizer Rényi entropyMα(|U〉).

Theorem 4. The number of resources NU to estimate FU

with accuracy ǫ and success probability 1− δ is bounded

2

ǫ2
ln(2/δ) exp[M2(|U〉)] 6 NU 6

64

ǫ4
ln(2/δ) exp[M0(|U〉)]

(25)

See App. C for the proof. We found that the non-
stabilizerness of the Choi state |U〉 is a direct quantifier
of the hardness in verifying the correct application of a
target unitaryU. The result presented in Lemma 2 tells
the meaning of the stabilizer Rényi entropyMα(|U〉):

Corollary 4. The resources NU are bounded:

Ω(OTOC8(U)
−1) 6 NU 6 Ω(exp[ν(U)]) (26)

where OTOC8(U) is defined in Lemma 2 and ν(U) is the

unitary stabilizer nullity.

Therefore, the more chaotic is the evolution gen-
erated by U, the smaller are the out-of-time-order
correlators[91] and the harder is the certification via
direct fidelity estimation.

In the same fashion of doped stabilizer states, the
doped Clifford circuits provide an important class of
circuits to look at. A t-doped Clifford circuits[94, 113]
consists of global layers of Clifford gates interleaved
by single qubit T -gates. Bravyi and Gosset[89] proved
that the classical simulations of such circuits scale ex-
ponentially with the number of T gates, while in [94]
we proved that to mimic quantum chaotic evolution, a
quantum circuit should contain at least O(n) T -gates,
showing the impossibility to simulate quantum chaos
classically. In this scenario, we ask the question of
whether quantum chaos can be effectively certified by
the above fidelity estimation protocol. The following
theorem determines the scaling of NU with the num-
ber t of T -gates.
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Corollary 5. Let 〈NCt〉 be the average number of resources

to verify a t-doped Clifford circuit Ct; then it increase expo-

nentially with t:

Ω(exp[t log 4/3]) 6 〈NCt〉 6 Ω(exp[t]) 6 Ω(d2)

(27)

The answer is no: quantum chaos cannot be ef-
ficiently certified, as the protocol is efficient up to
O(logn) T -gates injected in a Clifford circuit. See
App. C for the proof. Let us now briefly comment
on the scalings of the bounds in Eq. (27). First, note
that such scalings are the same as those in Corollary
1: while for states the resources are upper bounded by
Ω(d) and the bound is saturated after the injection of
“only” n non-Clifford gates, for unitary operators the
injection of more than n non-Clifford resources makes
the verification even harder.

V. SUMMARY AND DISCUSSION

In this paper, we showed the tight connection un-
derlying quantum certification via direct fidelity es-
timation, non-stabilizerness, and chaos. We showed
that the complexity of Pauli fidelity estimation and
shadow fidelity estimation scales exponentially with
the number of non-Clifford gates and thus with the
non-stabilizerness M(|ψ〉). This fact implies the im-
possibility of such protocols to certify all the states |ψ〉
beyond the efficiency threshold M(|ψ〉) = O(logn).
Remarkably, the protocol fails to certify all those
states which turn out to be useful to achieve quantum
speedups. In other words, there is no free-lunch: any
quantum certification protocol aimed to directly esti-
mate the fidelity between the theoretical state and the
actual state becomes inefficient, and this inefficiency
is governed by non-stabilizerness, the resource which
makes quantum technology truly quantum. However,
we note that the inefficiency is due to the wide appli-
cability of such protocols: there exist other protocols
aimed to certify particular sets of states that, although
possessing a high amount of non-stabilizerness, can
be efficiently certified. One prominent example is the
set of hypergraph states. Such states feature an exten-
sive amount of non-stabilizerness, making both Pauli
fidelity estimation and shadow fidelity estimation un-
feasible, but possess efficiently encodable stabilizer op-
erators that make their certification possible, as shown
in Sec. IV A (see Corollary 3). The scope of this work
is to rule out the use of general and wide-applicable
protocols for direct fidelity estimation and, at the same
time, to leave the window open for state-aware proto-

cols aimed to certify certain specific classes of states.
After all, the class of quantum states that are truly
useful for a quantum computational speed-up is of
measure zero in the Hilbert space [114] and, therefore,
there is no need for a general protocol able to certify
every quantum state.
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APPENDIX

Appendix A: Stabilizer Rényi entropy

Proof of Lemma 1

In this section, we prove that the non-stabilizerness of the Choi–Jamiołkowski isomorphism can be measured
as the Rényi entropy of the probability distribution ΞU whose elements are:

ΞU(P, P
′) =

tr2(PUP′U†)

d4
(A1)

Recall that the Choi isomorphism is a map from the space of operator B(H) to state vectors in H⊗2. Let U be a
unitary operator, its Choi isomorphism |U〉 ∈ H⊗2 is defined as

|U〉 := (1l ⊗U) |I〉 , |I〉 = 1√
d

∑

i

|i〉 ⊗ |i〉 (A2)

Let us compute the stabilizer Rényi entropy of |U〉. Since now we are working with states of H⊗2, the Pauli
group is P(2n) = P(n)⊗ P(n) and the coefficients of the probability distribution for |U〉 read

ΞU(P ⊗ P′) = 1

d2
tr2(P ⊗ P′ |U〉〈U|), P, P′ ∈ P(n) (A3)

the stabilizer Rényi entropy reads:

Mα(|U〉) =
1

1− α
log

∑

P,P′

|ΞU(P ⊗ P′)|α − 2 logd (A4)

let us prove that the coefficients tr(P⊗ P′ |U〉〈U|) ∝ 1
d

tr(PUP′U†) up to a global phase ±1. First, it is well-known
that the trace is invariant under partial transpose: letA,B ∈ B(H) two operators on H, then the partial transpose
is defined as (A⊗ B)T2 := A⊗ BT , where BT is the transpose of B.

tr(P ⊗ P′ |U〉〈U|) = tr(P ⊗ P′ |U〉〈U|)T2 = ± tr(P ⊗ P′ |U〉〈U|T2) (A5)

where the ± comes from the fact that P′T ∝ P′ up to a sign (because YT = −Y, XT = X, ZT = Z). Now:

|U〉〈U|T2 = (1l ⊗UT ) |I〉〈I|T2 (1l ⊗U∗) = (1l ⊗UT ) Ŝ
d
(1l ⊗U∗) =

Ŝ

d
(UT ⊗U∗) (A6)

where Ŝ is the swap operator. The fact that |I〉〈I|T2 = Ŝ
d

can be checked straightforwardly, then

tr(P ⊗ P′ |U〉〈U|) = ±1
d

tr(PUTP′U∗) =
±1
d

tr(P′UPU†) (A7)

Thus we obtain that the elements of the probability distribution ΞU read

ΞU(P, P
′) =

1

d2
tr2(P ⊗ P′ |U〉〈U|) = 1

d4
tr2(P′UPU†) (A8)

and the lemma follows straightforwardly.
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Proof of Lemma 2

From Lemma 1, we have that:

Mα(|U〉) =
1

1− α
log

∑

P,P′

tr2α(PUP′U†)

d4α
− logd2 =

1

1− α
log

1

d2

∑

P,P′

tr2α(PUP′U†)

d2α
(A9)

To prove the Lemma, we recall the following identity:

Ŝ =
1

d

∑

P

P⊗2 (A10)

where Ŝ is the swap operator. Note that:

tr(PUP′U†)

d

tr(PUP′U†)

d
=
1

d2

∑

P1

tr(PUP′U†P1PUP
′U†P1)

d
≡ tr(〈PUP′U†P1PUP

′U†P1〉P1)
d

(A11)

We thus can recursively use the above identity and arrive to

tr2α(PUP′U†)

d2α
= d−1 tr[〈P2α

2α∏

i=1

UPU†P′Pi−1Pi〉] = otoc2α(P, P′) (A12)

where 〈·〉 ≡ d−2
∑
Pi∈P(n) for all i = 1, . . . , 2α, while P0 ≡ 1l. Let us write the above explicitly for α = 2:

tr4(PUP′U†)

d4
= d−1 tr(〈P4P(U)P′P1P

(U)P′P1P2P
(U)P′P2P3P

(U)P′P3P4〉P1,...,P4)

= d−1 tr(〈P(U)P′P1P
(U)P′P1P2P

(U)P′P2P3P
(U)P′P3〉P1,...,P4) = otoc8(P, P′) (A13)

Note that the above holds for any integer α > 1.

Appendix B: Quantum states certification

1. Proof of Theorem 2

In this section, we give proof of the main theorem in the manuscript. Some parts of the proof are inspired by
the work of Flammia et. al [30], see also [61]. We prove the two bounds separately.

• Lower bound: Here we need to lower bound the necessary resources such that the estimator F̃ =
1
k

∑
P∈K X̃P , defined in the main text, obeys to:

Pr(|F − F̃| 6 ǫ) > 1− δ (B1)

To prove it, define m := minP | tr(Pψ)| and note that |X̃P | 6 m−1. Using Hoeffding’s inequality[115], one
can bound the probability:

Pr(|F − F̃| 6 ǫ) > 1− 2 exp
[

−
kǫ2

2m−2

]

(B2)

to have the probability lower bounded by 1− δ, the number of samples kmust be:

k =
2

ǫ2m2
ln(2/δ) (B3)

setting the number of copies cP(ψ̃) of the state ψ̃ to determine each sampled P to be one (one-shot
measurements), i.e. cP(ψ̃) = 1 ∀P, one has that Nψ̃ ≡ k. Let us lower bound the number of resources Nψ̃.
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Let P ∈ P(n), then the average of | tr(Pψ)| over the state dependent probability distribution Ξψ is upper
bounded by

〈| tr(Pψ)|〉Ξψ 6

√

〈

tr2(Pψ)
〉

Ξψ
=

√

exp[−M2(|ψ〉)] (B4)

then since m = minP | tr(Pψ)|, then one trivially has m 6 〈| tr(Pψ)|〉Ξψ and thus m 6
√

exp[−M2(|ψ〉)].
Thus, the number of resourcesNψ̃ is lower bounded

Nψ̃ >
2

ǫ2
ln(2/δ) exp[M2(|ψ〉)] (B5)

• Upper bound:

Let ψ = |ψ〉〈ψ| be the state we want to verify. Let us define the following operator (in the Pauli basis
fashion):

tr(Pψcut) :=

{
tr(Pψ), if | tr(Pψ)| > ǫ

2
√
2

√

exp[−M0(ψ)]

0, otherwise
(B6)

and its normalized version ψ′ := ψcut/‖ψcut‖2. Define Q := {P ∈ P(n) | | tr(Pψ)| >

ǫ/2/
√
2
√

exp[−M0(ψ)]} so that ψ′ in the Pauli basis reads:

ψ′ =
1

√

1
d

∑
P∈Q tr2(Pψ)

1

d

∑

P∈Q

tr(Pψ)P (B7)

let us evaluate the difference between F′(ψ′, ψ̃) := tr(ψ′ψ̃) and the true fidelity F(|ψ〉 , ψ̃):

|F′ − F| 6 ‖ψ′ −ψ‖2 =
√

2(1− tr(ψψ′)) (B8)

in the above we used tr(ψ′2) = 1. Let us evaluate tr(ψψ′), writing it in the Pauli basis:

tr(ψψ′) =
1

‖ψcut‖2
1

d

∑

P∈Q

tr2(Pψ) =

√

1

d

∑

P∈Q

tr2(Pψ) =

√

√

√

√1−
1

d

∑

P∈Q̄

tr2(Pψ) >

√

1−
ǫ2 exp[−M0(ψ)]|Q|

8d
(B9)

where Q̄ is the complement set of Q. Note that |Q̄| = card(ψ) − |Q| – where card(ψ) := |{P | tr(Pψ) 6= 0}| –
and that card(ψ)/d = exp[M0(ψ)]. We obtain tr(ψψ′) >

√

1− ǫ2/8 > 1− ǫ2/8 and thus:

|F′ − F| 6
ǫ

2
(B10)

Note that F′ can be estimated in a same fashion of F:

F′ =
1

d

∑

P

tr(Pψ̃) tr(Pψ′) = 〈X′
P〉Ξψ′

(B11)

where the average is taken over the probability distribution Ξψ′ whose elements are:

Ξψ′(P) =






tr2(ψP)
∑
P∈Q tr2(Pψ)

, P ∈ Q

0, otherwise
(B12)

and X′
P :=

tr(Pψ̃)

tr(Pψ′)
. Thus, define F̃′ the estimator of F′ obtained by sampling the probability distribution

Ξψ′ and by experimentally measuring X′
P ∈ K′:

F̃′ =
1

k

∑

P∈K′

X̃′
P (B13)
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where X̃′
P = 1

tr(ψ′P)
1

cP(ψ̃)

∑cP(ψ̃)

j=1 PPj(ψ̃), cP(ψ̃) the number of copies ψ̃ used to estimate P ∈ K and PPj(ψ̃)

the outcome of a one-shot measurement of P.

Let us prove that, setting Nψ̃ 6
64
ǫ4

ln(2/δ) exp[M0(ψ)], we have:

Pr(|F − F̃′| 6 ǫ) > 1− δ (B14)

First:

|F − F̃′| 6 |F − F′|+ |F′ − F̃′| 6
ǫ

2
+ |F′ − F̃′| (B15)

then note that Pr(|F − F̃′| 6 ǫ) = Pr(|F′ − F̃′| 6 ǫ/2). Since E(F̃′) = F′, i.e. F̃′ is an unbiased estimator for
F′, we can use the Hoeffding’s inequality:

Pr(|F′ − F̃′| 6 ǫ/2) = 1− 2 exp
[

km′2ǫ2

8

]

(B16)

where m′ := minP | tr(ψ′P)| and thus |X̃′
P | 6 m−1. To have that the probability is lower bounded by 1− δ,

we impose that cP(ψ̃) = 1 for any P ∈ Q and:

Nψ̃ = k =
8

ǫ2m′2 ln(2/δ) (B17)

To prove the upper bound to the number of resources Nψ̃ is sufficient to note that:

m′ = min
P∈Q

| tr(Pψ)|
√

1
d

∑
P∈Q tr2(Pψ)

> min
P∈Q

| tr(Pψ)| >
ǫ

2
√
2

√

exp[−M0(ψ)] (B18)

where we exploited once again the fact that
√

1
d

∑
P∈Q tr2(Pψ) 6 1. We finally obtain:

Nψ̃ 6
64

ǫ4
ln(2/δ) exp[M0(ψ)] (B19)

which concludes the proof.

2. Proof of Corollary 1

From the main theorem, we have that:

2

ǫ2
ln(2/δ) 〈exp[M2(ψt)]〉 6

〈

Nψ̃t
〉

6
64

ǫ4
ln(2/δ) 〈exp[M0(ψt)]〉 (B20)

the average of the left-hand side for states can be lower bounded through the Jensen inequality and we obtain:

〈

Nψ̃t
〉

>
2

ǫ2
ln(2/δ) 〈exp[M2(ψt)]〉 >

2

ǫ2
ln(2/δ)

1
〈

tr (Qψ⊗4
t )
〉 (B21)

where Q = 1
d2

∑
P∈Pn

P⊗4. Then the average over t-doped stabilizer states |ψt〉 can be computed using the
techniques in[1, 116]. The result is shown in Eq. (13) of [1]:

〈exp[M2(ψt)]〉 >
d + 3

4+ (d − 1)ft+
= Ω(exp[t log 4/3]) (B22)

where f+ = 3d2−3d−4
4(d2−1)

and this concludes the proof.
The r.h.s can be upper bounded using the stabilizer nullity. Recall that:

exp[M0(ψt)] 6 exp[ν(|ψt〉)] (B23)

17



where ν(|ψt〉) is the stabilizer nullity of the t-doped Stabilizer state. We can write such a state as |ψt〉 = Ct |0〉⊗n
where Ct is a doped Clifford circuit, i.e. layers of Clifford operators interleaved by the action of single qubit
T -gates. Then[96] we have the following chain of inequality:

ν(|ψt〉) = ν(Ct |0〉⊗n) 6 ν(Ct) 6 t (B24)

where ν(Ct) is the unitary stabilizer nullity, introduced in[96], which lower bounds the number of non-Clifford
resources injected in a Clifford unitary operator. Therefore we obtain

exp[M0(ψt)] 6 exp[t] (B25)

lastly note that sinceM0(ψt) 6 logd, we have 〈Nψt〉 6 d.

Appendix C: Unitary operators

Entanglement fidelity

In this section we prove that Favg = FU+O(d−1), i.e. the average gate fidelity Favg is the entanglement fidelity
FU up to a error scaling as O(d−1). Let us start with the definition of average gate fidelity given in the main text:

Favg(U) :=

∫

dψ tr(UψU†U(ψ)) (C1)

By expanding U in terms of Kraus operator Aα one can write the above as

Favg =
∑

α

∫

dψ tr(UψU†AαψA
†
α) (C2)

by the well-known identity[117]
∫

dψψ⊗2 = [d(d + 1)]−1(1l + Ŝ), one has:

Favg =
1
d

∑
α tr(U† ⊗UAα ⊗A†

α) + 1

d + 1
(C3)

multiplying by 1l⊗2 ≡ ŜŜ and by expanding both ŜU⊗U† and ŜAi ⊗A†
i in terms of the Pauli operators on H⊗2,

we have:

tr(U† ⊗UAα ⊗A†
α) =

1

d2

∑

µν

tr(PµUPνU†) tr(PµAαPνA†
α) (C4)

Finally Favg = FU + O(d−1), where we defined:

FU :=
1

d4

∑

µν

tr(PµUPνU†) tr(PµU(Pν)). (C5)

Proof of Theorem 4

In this section, we prove Theorem 4. We give the proof for the lower and the upper bound separately.

• Lower bound:

Let (P1, P′1), . . . , (Pk, P
′
k) be k pairs of Pauli operators sampled at random according to the probability

distribution ΞU and labeled by i = 1, . . . , k. Let F̃U = 1
k

∑k
i=1 X̃i be an estimator for FU, i.e. E[F̃U] = FU,

where

Xi =
1

tr(UPiU†P′i)

1

ci(U)

ci(U)∑

j=1

Pij(U) (C6)
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wherePij(U) is the j-th measurements of tr(U(Pi)P′i) and ci(U) are the number of copies needed to estimate
a given pair (Pi, P′i) for i = 1, . . . , k. Following the proof of Theorem 2, definemU := minP,P′ | tr(U†PUP′)|/d

and note that |X̃i| 6m−1
U . Using the Hoeffding’s inequality we have that:

Pr(|F̃U − FU| 6 ǫ) > 1− 2 exp
[

−
kǫ2

2m−2
U

]

(C7)

thus, by imposing the probability to be lower bounded by 1 − δ and by setting ci(U) = 1 for any i (i.e.
one-shot measurements) one gets:

NU =
2

ǫ2m2U
ln(2/δ) (C8)

to prove the lower bound is sufficient to note that:

mU := min
P,P′

| tr(U†PUP′)|/d 6
〈

d−1| tr(U†PUP′)|
〉

ΞU
6 d−1

√

√

√

√

∑

P,P′

tr4(U†PUP′)

d4
≡
√

exp[−M2(|U〉)] (C9)

whereM2(|U〉) is the Stabilizer Rényi entropy of the Choi state |U〉, cfr. Lemma 1.

• Upper bound:

To prove the upper bound let us define an auxiliary operatorUcut with a similar technique of the one used
for pure states. Define the following coefficients:

tr(U†
cutPUcutP

′) :=

{
tr(U†PUP′), if | tr(U†PUP′)|/d > θ

√

exp[−M0(|U〉)]
0, otherwise

(C10)

and QU := {P, P′ | tr(U†
cutPUcutP

′) 6= 0}. Now define the operator U′ such that:

ŜU′† ⊗U′ =
1

√∑
P,P′∈QU

tr2(U†PUP′)

∑

P,P′∈QU

tr(U†PUP′)P ⊗ P′ (C11)

Let us evaluate the difference between FU′ := 1
d2

∑
α tr(U′†⊗U′Aα⊗A†

α) and FU defined in the main text:

|FU′ − FU| 6
1

d2
‖
∑

α

Aα ⊗A†
α‖2‖U′† ⊗U′ −U† ⊗U‖2 6

1

d
‖U′† ⊗U′ −U† ⊗U‖2 (C12)

Now evaluate ‖U′† ⊗U′ −U† ⊗U‖2 recalling that tr(U′† ⊗U′U′ ⊗U′†) = d2:

1

d
‖U′† ⊗U′ −U† ⊗U‖2 =

√

2

(

1−
1

d2
tr(U′† ⊗U′U⊗U†)

)

(C13)

1

d2
tr(U′†⊗U′U⊗U†) =

1

d2
tr(Ŝ(U′†⊗U′)Ŝ(U†⊗U)) = 1

d2
1

√∑
P,P′∈QU

tr2(U†PUP′)

∑

P,P′∈QU

tr2(U†PUP′) (C14)

we are just left to the following series of inequalities:

∑

P,P′∈QU

tr2(U†PUP′) = d4 −
∑

P,P′∈Q̄U

tr2(U†PUP′) > d4 −
θ2d4|Q̄U|

card(U)
> d4(1− θ2) (C15)

where we used the fact that tr2(U†PUP′) < θ
√

exp[M0(|U〉)] iff P ∈ Q̄U, where Q̄U is the complement set
of QU. Moreover, note that |Q̄U| = card(U) − QU < card(U) where card(U) := |{P, P′ | tr(PUP′U†) 6= 0}|

andM0(|U〉) = log card(U)

d2
. We finally obtain that

|FU′ − FU| 6
1

d
‖U′† ⊗U′ −U† ⊗U‖2 6

√
2θ (C16)
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Now, FU′ can be estimated in a similar fashion to FU via Monte Carlo sampling, indeed:

FU′ =
1

d2

∑

α

tr(U′† ⊗U′Aα ⊗A†
α) =

1

d4

∑

µ,ν

tr(PµU(Pν)) tr(PµU′PνU
′†) =

〈

X′
µν

〉

ΞU′
(C17)

where X′
µν := tr(PµU(Pν))/ tr(PµU′PνU

′†) and ΞU′ is a probability distribution whose elements are:

ΞU′(Pµ, Pν) =






tr2(PµUPνU†)
∑
P,P′∈QU

tr2(PUP′U†)
, Pµ, Pν ∈ QU

0, otherwise
(C18)

We can now define the estimator F̃U′ of FU′ in the usual way:

F̃U′ =
1

k

∑

i

X̃i
′

(C19)

where X̃′
i =

1
tr(PiU′P′

i
U′†)

1
ci(U)

∑ci(U)

j=1 Pij(U). We are ready to bound the probability to measure FU with
accuracy ǫ and find an upper bound to the resourcesNU:

Pr(|FU − F̃U′ | 6 ǫ) > 1− δ (C20)

first |FU−F̃U′ | 6 |FU−FU′ |+|FU′−F̃U′ | 6
√
2θ+|FU′−F̃U′ |. Then, definingm′

U := minP | tr(PiU′PjU
′†)|/d,

since EF̃U′ = FU′ we can use Hoeffding’s inequality to bound the probability as:

Pr(|FU′ − F̃U′ | 6 ǫ/2) 6 1− 2 exp
[

−
kǫ2m′2

U

8

]

(C21)

setting the probability to be greater than 1− δ, we find the necessary resources to be:

NU =
8

ǫ2m′2
U

ln(2/δ) (C22)

Setting θ
√
2 = ǫ/2, we find Pr(|FU − F̃U′ | 6 ǫ) > 1 − δ. To complete the proof, it is necessary to lower

boundm′
U:

m′
U >

ǫ

2
√
2

√

exp[−M0(|U〉)] (C23)

which follows from Eq. (C10). This concludes the proof.

Proof of Corollary 5

In this section, we prove Corollary 5. Let us start with the lower bound of the number of resources needed for
a Doped Clifford circuit Ct – with associated Choi state |Ct〉 – to be certified. From Theorem 4 we have:

NCt >
2

ǫ2
ln(2/δ) exp[M2(|Ct〉)] (C24)

To proceed we look at the average behavior of exp[M2(|Ct〉)]:

〈(exp[M2(|Ct〉)])〉Ct =
〈(

d6
∑
P1,P2

tr4(P1UP2U†)

)〉

Ct

>
d2

〈[tr(QU⊗4QU†⊗4)]〉Ct
(C25)

where Q := 1
d2

∑
P∈Pn

P⊗4, and we used the Jensen inequality to bound the average of 〈(exp[M2(|Ct〉)])〉Ct . To
compute the average over Doped Clifford circuits we use the techniques introduced in [94, 116], and obtain:

〈[

tr(QU⊗4QU†⊗4)
]〉

Ct
=







4(6 − d2 + d4)

d2(d2 − 9)
+ (d2 − 1)







(d + 2)(d + 4)ft+
6d(d + 3)

+
(d − 2)(d − 4)ft−

6d(d − 3)
+

(d2 − 4)
(

(f++f−)

2

)t

3d2













−1

(C26)
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where f± = 3d2∓3d−4
4(d2−1)

. One easily shows that
〈[

tr(QU⊗4QU†⊗4)
]〉

Ct
= Ω(exp[t log 4/3]), and thus the number

of resources is lower bounded by:

NCt > Ω(exp[t log 4/3]) (C27)

To prove the upper bound to the number of resources we use the upper bound in Theorem 4.

NCt 6
64

ǫ4
ln(2/δ) exp[ν(U)] (C28)

As proven in [96] the unitary stabilizer nullity can be upper bounded with the T-count t(U), which corresponds
to the minimum number of T gates required to implement the unitary U. Eq. (C28) can be upper-bounded via
the T-count as:

NCt 6
64

ǫ4
ln(2/δ) exp[ν(U)] 6

64

ǫ4
ln(2/δ) exp[t] ≃ Ω(exp[t]) (C29)

where we used that for Doped Clifford circuits t(U) = t. This concludes the proof.

Appendix D: Shadow fidelity estimation

Let Nρ̃ the number of physical preparation of ρ. Let Nψ̃ = k × l, where k is the number of Clifford circuits
drawn uniformly at random from the Clifford group and l is the number of realizations of the experiment. For
a single experiment, we have

Fs =
1

k

∑

Ci∈Cs

[(d + 1) 〈x̄i|C†
iρCi|x̄i〉− 1] (D1)

defining F = median{Fs | s = 1, . . . , l}, we already know that [61]

Pr[|F(ρ, ρ̃) − F| 6 ǫ] > 1− δ (D2)

for Nρ̃ >
160
ǫ2

ln δ−1 and k = 8 ln 8δ−1. Now, let ρx̄i be the classical estimation of the outcome probability
〈x̄i|C†

iρCi|x̄i〉. LetNcl be the classical resources necessary for ensure

Pr[|ρx̄i − 〈x̄i|C†
iρCi|x̄i〉 | 6 ǫ] > 1− δ (D3)

then, defining

F̃s =
1

k

∑

Ci∈Cs

[(d + 1)ρx̄i − 1] (D4)

one has

Pr[|F̃s − Fs| 6 (d+ 1)ǫ] > 1− δ (D5)

Appendix E: Simulation method

Here we are going to describe a simplified method that leads to strong simulation of Clifford+T circuits. Note
that the method does not aim for the overcoming of all the others simulation method, but rather to simply
illustrate why and how the strong simulation of Clifford+T circuits scale exponentially with the T count. First
of all, let us define the T -gadget as the following state |T〉 ∝ |0〉 + eiπ/4 |1〉. Note that, the T -gadget can be used
to apply a T gate. The protocol is the following. Let |ψ〉 n qubit state on which one wants to apply a T gate on
the i-th qubit, where i ∈ {1, n}. Let n + 1 the qubit corresponding to |T〉:

|ψ〉 |T〉 7→ Ci,n+1(|ψ〉 |T〉) (E1)
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then one measures the n + 1 qubit. If the measurement leads to the outcome ′0′ then |0〉〈0|Ci,n+1(|ψ〉 |T〉) ∝
Ti |ψ〉 |0〉; while, if it leads to the outcome ′1′, then |1〉〈1|Ci,n+1(|ψ〉 |T〉) ∝ S

†
iTi |ψ〉 |1〉. Thus, by adapting an

application of a S gate on the i-th qubit, after having read the measurement result, leads to the application of a T
gate on the i-th qubit. For a generic t-doped Clifford circuit Ut := CtTitCt−1Tit−1 · · ·C1Ti1C0 on the reference
state |0n〉, we define the following Clifford circuit acting o n + t qubits

CUt = CtCXit,n+tCt−1CXit−1,n+t−1 · · ·C1CXi1,n+1C0 (E2)

where we have replace the T gates with CX gates. We can write down the probability

| 〈x|Ut|0n〉 |2 = | 〈x, 0t|CUt |0n, T⊗t〉 |2 (E3)

Noting that one can write

|T〉⊗t =
∑

y

ei
π
4
hw(y) |y〉 (E4)

where hw(y) is the hamming weight of the t-bit string y, one has

| 〈x|Ut|0n〉 |2 =
∣

∣

∣

∣

∣

∑

y

ei
π
4
hw(y) 〈x, 0t|CUt |0n, y〉

∣

∣

∣

∣

∣

2

(E5)

thus, in order to compute the outcome probability, it is sufficient to compute 2t amplitudes 〈x, 0t|CUt |0n, y〉.
Note that, thanks to the Gottesman-Knill theorem one computes the amplitude 〈x, 0t|CUt |0n, y〉 for each y in
time O((n + t)3) and the result

〈x, 0t|CUt |0n, y〉 = b2−p/2eiπm/4 (E6)

for some b = {0, 1}, integer p ∈ [1, n] andm ∈ Z8.
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