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Quantum computing is a promising new paradigm that can provide viable solutions to high-
complexity problems. k-medoids algorithm is a powerful clustering method ubiquitously used in
data mining, image processing, pattern recognition, etc. The core of k-medoids is to perform cluster
assignment and centre update, which are time-consuming for large datasets. Aı̈meur et al. proposed
a quantum k-medoids algorithm [E. Aı̈meur, G. Brassard, and S. Gambs, Machine Learning 90, 261

(2013)] by quantizing the centre update. Nevertheless, it has a query complexity O(N3/2) for one
iteration, which is computationally expensive for a large N where N is the number of points. In this
paper, we propose a complete quantum algorithm for k-medoids. Specifically, in cluster assignment,
we devise a quantum subroutine to calculate the Manhattan distance between any two points and
then assign all points to the closest centre in parallel, which is faster than what is achievable
classically. In centre update, for a cluster, we use parallel amplitude estimation to calculate the
average distance of each point to all the others. It makes our algorithm polynomially faster than
Aı̈meur et al.’s algorithm whose sum of distances of each point to all the others is computed by

adding the distances one by one. Our quantum k-medoids algorithm, with time complexity Õ(N1/2),
achieves a polynomial speedup in N compared to the existing one.

I. INTRODUCTION

Quantum computing can utilize quantum resources to
process massive amounts of data both efficiently and se-
curely, which has broad application prospects in infor-
mation and computing. Tremendous progress is con-
tinuously being made both technologically and theoret-
ically in it. Technologically, quantum hardware is mak-
ing considerable advances [1–4]. Theoretically, consid-
erable quantum algorithmic work is underway, such as
cryptanalysis [5, 6], to reduce the resources needed for
implementing important classical algorithms. In recent
years, a series of quantum algorithms were designed for
machine learning problems in attempting to achieve po-
tential quantum advantages, such as classification [7–9],
clustering [10–15], linear regression [16–18], dimension-
ality reduction [19–23], matrix computation [24–26] and
anomaly detection [27]. More progress on quantum ma-
chine learning algorithms can be found in Refs. [28, 29].

Clustering is one of the most crucial unsupervised
learning tasks, which refers to separating observed data
into groups (i.e., clusters) with some quantified measure-
ments, such that objects within a cluster are similar to
each other but are dissimilar to objects in other clus-
ters [30]. One of the most popular clustering algorithms
is k-means [31] which iteratively finds the k centroids and
assigns every object to the nearest centroid. The coordi-
nate of each centroid is the mean of the coordinates of the
objects in the cluster. Nevertheless, k-means is known to
be very sensitive to outliers and noises. To avoid this
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problem, k-medoids algorithm [32] is commonly used,
where representative objects (or cluster centres) called
medoids are considered instead of centroids. The medoid
of a cluster is defined as the object within the cluster
whose average (or sum) dissimilarity to all the other ob-
jects in this cluster is minimal. Similar to k-means, the
core of k-medoids is to perform cluster assignment and
centre update. k-medoids algorithm is widely used in
such domains as data mining, image processing, and pat-
tern recognition. But it works inefficiently for a large
dataset since its time complexity is O(N2Mk) for one it-
eration, where N is the number of points in the dataset,
M is the dimension of points and k is the desired num-
ber of clusters. Therefore, it would be of great interest
to design a quantum algorithm to reduce the complexity
of the classical k-medoids algorithm.
Result. We develop a quantum k-medoids algorithm

based on the Manhattan distance, in which we design
two quantum sub-algorithms to perform cluster assign-
ment and centre update respectively. In cluster assign-
ment, we devise a quantum subroutine to compute the
Manhattan distance between any pair of points by quan-
tum arithmetic operation [34–36] and then assign every
point to the nearest centre by a circuit for finding the
minimum [33]. In centre update, for a cluster, its new
cluster centre can be found by computing for each point
inside the cluster its average (or sum) distance to all the
other points and taking the minimum. Here we use quan-
tum techniques, such as fixed-point quantum search [37]
and parallel amplitude estimation [38, 39], to calculate
the average distance of each point to all the other points
within the same cluster. Our quantum algorithm can be
summarized as the following theorem.

Theorem 1. Given the data matrix X ∈ RN×M

stored in a Quantum Random Access Memory
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TABLE I. The comparisons between our algorithm and the classical and quantum versions of the k-medoids/k-means.

algorithm input output complexityd

classical k-means [31] k, X ∈ RN×M k clusters and their centres O(kNM)
quantum k-means [12] − a quantum state corresponding O(k log(kNM))

to k clusters

quantum k-means [33] k, X stored in a QRAM, k centres Õ(kM η
δ2
κ(µ+ k η

δ
) + k2 η

1.5

δ2
kµ)

other parametersa

classical k-medoids [32] k, X k clusters and their centres O(kN2M)

quantum k-medoids [10, 11] k, a distance oracleb k clusters and their centres O(N
3/2
√
k

)

our quantum k-medoids k, X stored in a QRAM, ε k centres and a quantum state Õ(
k5/2M2N1/2 maxi,l|xil|

ε
)

corresponding to k clusters

k clusters and their centresc Õ(kNM +
k5/2M2N1/2 maxi,l|xil|

ε
)

Here X is the data matrix, ε is an error parameter, xil denotes the (i, l)-entry of X, η = maxi(‖xi‖2), xi is the ith row of X,
δ is a precision parameter, κ is the condition number of X, µ = minp∈P (‖X‖F ,

√
s2p(X)s2(1−p)(XT )), where P ⊂ [0, 1] such

that |P | = O(1) and sp(X) := maxi∈[N ] ‖xi‖pp. aThe other parameters here denote the new parameters introduced by the

quantum k-means in Ref. [33]. bSee Sec. II B for more details. cWe can get the classical k clusters by performing a classical
cluster assignment after obtaining k centres. dWe use time complexity to measure algorithm performance, except for the

quantum k-medoids in Refs. [10, 11], which uses query complexity. For simplicity, here we only consider the complexity of one

iteration. Note that with Õ we hide polylogarithmic factors.

(QRAM) [40] and the parameter ε, k > 0, the quantum k-
medoids algorithm with high probability outputs k clus-
ter centres and a quantum state corresponding to the

k clusters in time Õ(
k5/2M2N1/2 maxi,l |xil|

ε ) per iteration,
where ε is the error parameter for average distance esti-
mation in centre update and xil denotes the (i, l)-entry
of X.

In conclusion, when k,maxi,l |xil| = O(1), M = logN
and let 1

ε = O(log(NM)), the time complexity of our

quantum k-medoids algorithm is Õ(N1/2) for one iter-
ation, which achieves a polynomial speedup in N com-
pared to the existing one [10, 11] whose query complex-
ity is O(N3/2) under the same conditions. Note that our
quantum algorithm can also be generalized to perform
k-medoids clustering based on other distance measures
such as Hamming distance and Chebyshev distance.

Related work. There is some work in quantum com-
puting involving clustering problems. The quantum k-
means algorithms in Refs. [12, 33] achieve an exponential
speedup over the classical k-means. The former belongs
to the adiabatic quantum computing [41] and the latter
utilizes the QRAM. The work most similar to ours is the
quantum k-medoids algorithm proposed by Aı̈meur et
al. in Refs. [10, 11], we called it ABG algorithm. Based
on the black-box model [42], the ABG algorithm uses
a classical computer to perform cluster assignment and
then quantum techniques to perform centre update. It
outputs the k clusters and their cluster centres. In our
work, a trade-off is made between the amount of classi-
cal information obtained and the speed of the algorithm.
Our quantum k-medoids algorithm outputs the k clus-
ters centres and a quantum state corresponding to the
k clusters. Unlike the ABG algorithm, our algorithm is
an entire quantum algorithm, in which we redesign two

quantum sub-algorithms to perform cluster assignment
and centre update respectively. In centre update, the
use of parallel amplitude estimation makes our algorithm
polynomially faster than the ABG algorithm whose sum
of distances of each point to all the others is computed by
adding the distances one by one. Of course, we can also
obtain the classical information of k clusters by adding
a classical cluster assignment. No matter what informa-
tion we want to get, our quantum k-medoids algorithm
will be faster than the existing one. See TABLE I for
the comparisons between our algorithm and the classical
and quantum versions of the k-medoids/k-means in an
end-to-end setting.

The remainder of the paper is organized as follows. In
Sec. II, we review the classical k-medoids algorithm and
the ABG algorithm in Sec. II A and Sec. II B, respec-
tively. In Sec. III, we propose our quantum k-medoids
algorithm in Sec. III A and analyze its time complexity in
Sec. III B. Numerical simulations are reported in Sec. IV
to validate the performance of our algorithm in practice.
The conclusion is given in Sec. V.

II. REVIEW OF THE CLASSICAL k-MEDOIDS
ALGORITHM AND THE ABG ALGORITHM

In this section, we will briefly review the classical k-
medoids algorithm in Sec. II A, and the ABG algorithm
in Sec. II B.

A. Review of the classical k-medoids algorithm

Let X ∈ RN×M be a dataset of points xi ∈ RM for
i ∈ [N ] where [N ] denotes a index set {1, 2, . . . , N}. For
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FIG. 1. The original Iris dataset (left) and the result by k-medoids clustering (right).

a predetermined parameter k, k-medoids clustering [32]
aims to partition these points into k clusters according
to a similarity measure, e.g., the Manhattan distance
d(xi,xs) = ‖xi − xs‖1 where ‖ · ‖1 is the `1-norm of
a vector. See FIG. 1 for an example of clustering the
well-known Iris dataset. In general, the k-medoids prob-
lem is NP-hard to solve exactly for all k ≥ 2 [43]. As
such, many heuristic solutions exist. Here we consider
a Voronoi-iteration [31] k-medoids algorithm. The al-
gorithm starts by selecting k initial centres at random
among all points and then alternates between cluster as-
signment and centre update until convergence. The con-
vergence condition is that the minimum cost function is
reached or the cluster centres are stabilized (or quasista-
bilized) or the maximum number of iterations is reached.
Moreover, the k initial centres can also be selected by
an initialization subroutine [44]. At iteration t, we de-
note the k clusters by the index sets Ctj for j ∈ [k], and

the cluster centre of Ctj by the point xctj . The process of

classical k-medoids is shown in Algorithm 1.

Algorithm 1 Classical k-medoids algorithm.

Input: Data matrix X, cluster number k.
Output: The k clusters and their cluster centres.

Step 1. Initialization
Select k initial centres at random among all points (or by
an initialization subroutine).
t = 0.
repeat

Step 2. Cluster assignment
for each i ∈ [N ] do

Compute the distances between point xi and k clus-
ter centres, and then attach xi to its closest centre.

end for
Step 3. Centre update
for each j ∈ [k] do

Find the medoid of the cluster Ctj and make it its
new centre.

end for
t = t+ 1.

until convergence condition is satisfied.
return The k clusters and their cluster centres.

The time complexity of the classical k-medoids algo-
rithm is O(N2Mk) for one iteration, where N is the num-
ber of points in the dataset, M is the dimension of points
and k is the desired number of clusters. It is computa-
tionally expensive when dealing with a large number of
points. The ABG algorithm in the following subsection
gives a feasible quantum acceleration scheme.

B. Review of the ABG algorithm

In Refs. [10, 11], the authors assume that the distance
(or a similarity measure) between points of the dataset is
available solely through a black box (also called oracle)
as shown in FIG. 2. Using this oracle, they build the
quantum circuit illustrated in FIG. 3, which takes |i〉 as
input, 1 ≤ i ≤ m, and computes the sum of the distances
between xi and all the other points within the cluster
{x1,x2, . . . ,xm}. The quantum minimum-finding algo-
rithm [45] can then be used to find the minimum such
sum over all possible xi. It is possible to compute the
medoid of a cluster by using the quantum subroutine as
described above. Based on this, they use a classical com-
puter to perform cluster assignment and then quantum
techniques to find the new cluster centres. Finally, the
ABG algorithm outputs the k clusters and their centres.

| ۧ𝑖

| ۧ𝑠

| ۧ𝑏

| ۧ𝑖

| ۧ𝑠

| ۧ𝑏 + 𝑑(𝐱𝑖 , 𝐱𝑠)

𝑂

FIG. 2. Illustration of the distance oracle. The addition b +
d(xi,xs) is performed in an appropriate finite group between
the ancillary register |b〉 and the distance d(xi,xs).

For simplicity, they assume that the clusters have
roughly the same size N

k . This yields a query complex-

ity O(N
3/2
√
k

) for one iteration [10, 11]. The complexity of

ABG algorithm depends on N3/2, which makes it unsuit-
able for large datasets. In the following section, we will



4

| ۧ𝑖

| ۧ𝑏

| ۧ𝑖

| ۧ𝑏 +෍
𝑠=1

𝑚

𝑑(𝐱𝑖 , 𝐱𝑠)
𝑆

FIG. 3. Computing the sum of distances between xi and
all the other points within the cluster {x1,x2, . . . ,xm}. The
oracle S can be obtained by repeating m times the oracle O
described in FIG. 2 for s ranging from 1 to m.

introduce a new quantum k-medoids algorithm that can
significantly reduce the complexity of ABG algorithm.

III. QUANTUM k-MEDOIDS ALGORITHM

In this section, we present a quantum k-medoids al-
gorithm in Sec. III A and analyze its complexity in
Sec. III B.

Our quantum k-medoids algorithm follows the same
steps as the classical k-medoids algorithm. In Step 1, we
pick k initial centres at random among all points and then
store their indexes in a QRAM. In Step 2, we compute
the Manhattan distances between all points and the k
cluster centres, then all points are assigned to the closest
centre in superposition. In Step 3, for each cluster, we
find the point within the cluster whose average distance
to all the other points in this cluster is minimum, then we
update the above QRAM with the indexes of the k points
we found. Repeating the last two steps until convergence.
An overview of our algorithm is shown as Algorithm 2.
For convenience, we use log(·) to denote log2(·).

A. Algorithm

Assume that the data matrix X ∈ RN×M is stored in
a QRAM [40] which allows the following mapping to be
performed in time O(log(NM)):

OX : |i〉|l〉|0〉 → |i〉|l〉|xil〉, (1)

where xil denotes the (i, l)-entry of X.
In addition, at iteration t, the index vector ct :=

[ct1, c
t
2, ..., c

t
k]T is stored in a QRAM, that is the following

mapping can be performed in time O(log k):

Ot
c : |j〉|0〉 → |j〉|ctj〉, (2)

where ctj is the index of the centre of Ctj .
For ease of understanding, here we introduce two lem-

mas which are necessary for our quantum algorithm.

Lemma 1. (Manhattan distance calculation). Given
a unitary OX : |i〉|l〉|0〉 → |i〉|l〉|xil〉 which can be per-
formed in time O(log(NM)). Then, there exists a quan-
tum algorithm that performs the following mapping

Q1 : |i〉|s〉|0〉 → |i〉|s〉|d(xi,xs)〉 (3)

in time O(M log(NM)), where d(xi,xs) is the Manhat-
tan distance between two points xi and xs.

Proof. See Appendix A.

Algorithm 2 Quantum k-medoids algorithm.

Input: Data matrix X stored in a QRAM. Cluster number
k, error parameter ε for average distance estimation.

Output: The k clusters centres and a quantum state corre-
sponding to the k clusters.
Step 1. Initialization
Select k initial centres at random among all points and store
the initial index vector c0 = [c01, c

0
2, . . . , c

0
k]T in a QRAM.

t = 0.
repeat

Step 2. Cluster assignment
(2.1) Prepare the state

∑N
i=1

1√
N
|i〉
⊗k

j=1

(
|j〉|ctj〉|0〉⊗dlog qe

)
;

(2.2) Compute the distances between all points and the

k centres to get 1√
N

∑N
i=1 |i〉

⊗k
j=1(|j〉|d(xi,xctj )〉);

(2.3) Find the minimum among {d(xi,xctj )}j∈[k] to cre-

ate the superposition of all points and their cluster labels:
|φt〉 = 1√

N

∑N
i=1 |i〉|j

t(xi)〉.
Step 3. Centre update
for each j ∈ [k] do

(3.1) Perform the fixed-point quantum search al-
gorithm on the state |φt〉|0〉|φt〉 to prepare the state

1√
|Ctj |

∑
i∈Ctj
|i〉|0〉 1√

|Ctj |

∑
s∈Ctj
|s〉;

(3.2) For a given error ε, estimate the average dis-
tance of xi to all the other points within Ctj to create the

state 1√
|Ctj |

∑
i∈Ctj
|i〉|

∑
s∈Ct

j
d(xi,xs)

|Ctj |
〉;

(3.3) Find the minimum among {
∑
s∈Ct

j
d(xi,xs)

|Ctj |
}i∈Ctj

and then let ct+1
j = arg mini∈Ctj (

∑
s∈Ct

j
d(xi,xs)

|Ctj |
);

end for
(3.4) Update the QRAM for the index vector with the

new vector ct+1 = [ct+1
1 , ct+1

2 , . . . , ct+1
k ]T .

t = t+ 1.
until convergence condition is satisfied.
return The k clusters centres and a quantum state corre-
sponding to the k clusters.

Lemma 2. (Circuit for finding the minimum [33]).

Given k different log q-bit registers
⊗k

j=1 |dj〉, there is
a quantum circuit that maps

( k⊗
j=1

|dj〉
)
|0〉 →

( k⊗
j=1

|dj〉
)
| arg min

j
(dj)〉 (4)

in time O(k log q).

The above lemma can be easily generalized to the fol-
lowing quantum circuit

Umin :
( k⊗
j=1

|j〉|dj〉
)
|0〉 →

( k⊗
j=1

|j〉|dj〉
)
| arg min

j
(dj)〉.

(5)
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FIG. 4. Quantum circuit of Step 2 of our algorithm. Here the numbers 1, 2, · · · , k at the left-most denote the sequence of k
sets of registers in the tensor product state

⊗k
j=1(|j〉|0〉⊗dlogNe|0〉⊗dlog qe), (2.1), (2.2) and (2.3) denote the three steps of Step

2, “/” denotes a bundle of wires, H denotes the Hadamard gate and dtij denotes d(xi,xctj ).

Now we detail the process of our quantum k-medoids
algorithm.

Step 1. Initialization
Here we select k initial centres at random among

all points and then store the initial index vector c0 =
[c01, c

0
2, . . . , c

0
k]T in a QRAM. Moreover, the initial cluster

centres can be chosen by a quantum initialization algo-
rithm in Ref. [11].

Step 2. Cluster assignment
At iteration t, our quantum sub-algorithm for cluster

assignment consists of the following three stages. Among
them, we first carry out stages (2.1)-(2.2) to compute the
Manhattan distances between all points and the k cluster
centres, then implement stage (2.3) to assign all points to
the closest centre in superposition. At the end of cluster
assignment, we obtain the superposition of all points and
their cluster labels. The details are as follows.

(2.1) Prepare the state

N∑
i=1

1√
N
|i〉

k⊗
j=1

(
|j〉|ctj〉|0〉⊗dlog qe

)
, (6)

where q = 2M maxi,l |xil|, d·e is the ceiling function, the

tensor product state
⊗k

j=1(|j〉|ctj〉|0〉⊗dlog qe) corresponds
to the k cluster centres and will be used to select the
nearest centre for each point.

To get the above state, we first prepare the initial state

N∑
i=1

1√
N
|i〉

k⊗
j=1

(|0〉⊗dlog ke|0〉⊗dlogNe|0〉⊗dlog qe). (7)

Then, we perform the unitary I⊗dlogNe
⊗k

j=1(Cj ⊗

I⊗(dlogNe+dlog qe)) on the above state to get

N∑
i=1

1√
N
|i〉

k⊗
j=1

(|j〉|0〉⊗dlogNe|0〉⊗dlog qe), (8)

where C is a circular shift operator that performs the
mapping C : |j − 1〉 → |j〉 for j ∈ [k]. After that, the
target state can be obtained by calling Ot

c.

(2.2) Compute the Manhattan distances be-
tween all points and the k cluster centres by Q1

(Lemma 1), and then discard all |ctj〉 to get the state
1√
N

∑N
i=1 |i〉

⊗k
j=1

(
|j〉|d(xi,xctj )〉

)
.

(2.3) Invoke Umin to find the minimum distance among
{d(xi,xctj )}j∈[k] and then uncompute the redundant reg-

isters to create the superposition of all points and their
cluster labels:

|φt〉 :=
1√
N

N∑
i=1

|i〉|jt(xi)〉, (9)

where jt(xi) = arg minj∈[k](d(xi,xctj )) is the cluster label

of point xi at iteration t.

The entire quantum circuit of Step 2 is shown in
FIG. 4.

Step 3. Centre update

At iteration t, our quantum sub-algorithm for cen-
tre update consists of the following four stages. Among
them, we first carry out the stages (3.1)-(3.3) for each
j ∈ [k] to find the k medoids, then implement (3.4) to
update the QRAM for the index vector ct. The details
are as follows.
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FIG. 5. Quantum circuit of stages (3.1)-(3.3) in Step 3 of our algorithm. Here Uφt is the unitary operation for preparing the
quantum state |φt〉 and its quantum circuit is shown in FIG. 4, c = b+ dlogNe+ dlog ke and b = k(dlog ke+ dlogNe+ dlog qe).

(3.1) Prepare the state

1√
|Ctj |

∑
i∈Ctj

|i〉|0〉 1√
|Ctj |

∑
s∈Ctj

|s〉, (10)

where |Ctj | denotes the number of points in cluster Ctj .
Note that, at the end of stage (2.3) in Step 2, we get

the state |φt〉 which can be rewritten as

|φt〉 =

k∑
j=1

√
|Ctj |
N

( 1√
|Ctj |

∑
i∈Ctj

|i〉
)
|j〉. (11)

Based on this, we can first prepare the state |φt〉|0〉|φt〉.
For the target state having the same state, i.e., |j〉, as
appear in the last register of both |φt〉, we apply the fixed-
point quantum search algorithm proposed in Ref. [37] to
amplify the amplitude of it. Ideally, we get the following
state

1√
|Ctj |

∑
i∈Ctj

|i〉|j〉|0〉 1√
|Ctj |

∑
s∈Ctj

|s〉|j〉. (12)

Also, in Appendix B, we discuss the case that the above
quantum state is obtained with a certain successful prob-
ability. After that, we obtain the target state by discard-
ing the second and fifth registers.

(3.2) Estimate the average distance of xi to all the
other points in Ctj with error ε, then uncompute the re-
dundant registers to create the state

1√
|Ctj |

∑
i∈Ctj

|i〉|

∑
s∈Ctj

d(xi,xs)

|Ctj |
〉. (13)

The core of stage (3.2) is a fast quantum method for
computing the average distance via the inner product

which we couple with parallel amplitude estimation. We
first prepare a particular quantum state as shown in
Eq.(C6), where the distance information is stored as am-
plitudes of it. After that, we perform parallel amplitude
estimation on this quantum state to get the value of the

inner product

∑
s∈Ct

j
d(xi,xs)

q|Ctj |
, and then get the average

distance

∑
s∈Ct

j
d(xi,xs)

|Ctj |
through a reversible circuit. The

specific process is depicted in Appendix C.

(3.3) Invoke quantum minimum-finding algorithm to

find the minimum among the set {
∑
s∈Ct

j
d(xi,xs)

|Ctj |
}i∈Ctj [13,

45] and then let ct+1
j = arg mini∈Ctj (

∑
s∈Ct

j
d(xi,xs)

|Ctj |
).

The entire quantum circuit of stages (3.1)-(3.3) is
shown in FIG. 5.

(3.4) After performing stages (3.1)-(3.3) for each j ∈
[k], we get ct+1

1 , ct+1
2 , . . . , ct+1

k which are the indexes of the
k new cluster centres (i.e., medoids). Then we update the
QRAM for the index vector, i.e., update the index vector
with the vector ct+1 = [ct+1

1 , ct+1
2 , . . . , ct+1

k ]T and store it
in the QRAM for next iteration.

Step 2 and Step 3 alternate until the convergence
condition is satisfied. Once we obtain the stable k cen-
tres, we get the quantum state corresponding to all
points and their cluster labels by using the quantum sub-
algorithm for cluster assignment. Finally, our quantum
algorithm outputs the k centres and a quantum state
corresponding to the k clusters.

Note that if we want to obtain the classical information
of k clusters, we can perform a classical cluster assign-
ment after obtaining the stable k centres instead of using
the quantum sub-algorithm.
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B. Complexity analysis

The time complexity of our algorithm is mainly from
Step 2 and Step 3. Now we respectively analyze their
complexity and discuss the overall complexity.

In Step 2, for stage (2.1), we use dlogNe Hadamard
gates to prepare the initial state and then implement
k(k+1)

2 circular shift operators. The target state can

be obtained by calling Ot
c for k times, with a run-

time of O(log k) for each call. The total complexity is

O(dlogNe+ k(k+1)
2 + k log k). For stage (2.2), we should

invoke Q1 for k times to compute the distances between
all points and the k cluster centres, hence its complexity
is O(kM log(NM)) by Lemma 1. By Lemma 2, the cost
of finding the minimum is O(kdlog qe) in stage (2.3). In
total, the time complexity of Step 2 is O(kM log(NM)).

In Step 3, similar to the ABG algorithm, we assume
that all clusters have roughly size Θ(Nk ). For stage (3.1),
with state |φt〉|0〉|φt〉, invoking O(k) times the fixed-point
quantum search is enough to obtain the target state. For
stage (3.2), the time complexity of Hadamard gates and
controlled rotation can be neglected compared with other
subroutines. The time complexity of implementing the
Grover operator G is mainly from the unitary U which is
equal to the complexity of stages (3.1)-(3.2)(iii). Hence,
the parallel amplitude estimation has a query complexity
of O( 1

εA
(2 + 1

2η )) and each query has a time complexity

O(k2M log(NM)), where εA is the error of amplitude es-
timation and 1−η is the probability to succeed. Suppose

we wish to approximate
θtij1
π or 1 − θtij1

π to an accuracy
2−n with probability of success at least 1− η, we should
choose a = n+ dlog(2 + 1

2η )e [46]. After the parallel am-

plitude estimation, we obtain the value of
θtij1
π or 1− θtij1

π
with error εtij and then we can easily compute the average

distance

∑
s∈Ct

j
d(xi,xs)

|Ctj |
= q(1−2 sin2 θtij1) by Uf . And its

error is

2q| sin2(θtij1 + πεtij)− sin2 θtij1|
= 2q|sin(θtij1+πεtij) + sin θtij1||sin(θtij1+πεtij)− sin θtij1|
≤ 2q|2 sin θtij1 + πεtij ||πεtij | (14)

≤ 4qπ|εtij |+ 2q(πεtij)
2,

≤ 4qπ|εA|+ 2q(πεA)2,

where the first inequality holds by sin(θtij1 + πεtij) ≤
sin θtij1 + πεtij . If we want to have the average dis-
tance in the end with an absolute error ε, we can con-
trol the error of parallel amplitude estimation as ε

4qπ ,

that is εA = ε
4qπ . Therefore, the total time com-

plexity of stage (3.2) is O(
k2M2 log(NM)maxi,l|xil|

ε ). For
stage (3.3), given an oracle for preparing the state

1√
|Ctj |

∑
i∈Ctj
|i〉|

∑
s∈Ct

j
d(xi,xs)

|Ctj |
〉 with the successful proba-

bility 1−η, the expected number of queries made to find
minimum with failure probability at most δ is bounded

TABLE II. The time complexity of each step of our algorithm
in one iteration.

steps stages time complexity

Step 2 (2.1) O(dlogNe+ k(k+1)
2

+ k log k)
(2.2) O(kM log(NM))
(2.3) O(kdlog qe)

all stages O(kM log(NM))

Step 3 (3.1) O(k2M log(NM))

(3.2) O(
k2M2 log(NM)maxi,l|xil|

ε
)

(3.3) Õ(
k3/2M2N1/2 maxi,l|xil|

ε
)

all stages Õ(
k5/2M2N1/2 maxi,l|xil|

ε
)

Here we neglect the runtime of Step 1 and stage (3.4).

above by roughly 90
√
N/kd log(

81
√
N/k(log

√
N/k+γ)

δ )

2( 1
2−η)2

e, where

γ ≈ 0.5772 is Euler’s constant. Detailed complexity anal-
ysis is provided in Ref. [13]. For simplicity, here we could
simply choose δ, η = O(1), the query complexity of (3.3)

can then be reduced to Õ(
√
N/k). Note that with Õ

we hide polylogarithmic factors. Before stage (3.4), we
should perform stages (3.1)-(3.3) for each j ∈ [k], that is,
stages (3.1)-(3.3) should be repeated for k times to get
the k new cluster centres. The time complexity of (3.4)
can be omitted compared to other stages. In total, the

time complexity of Step 3 is Õ(
k5/2M2N1/2 maxi,l|xil|

ε ).
The complexity of each step of our algorithm in one

iteration is summarized as TABLE II.
As a conclusion, the overall time complexity of the our

algorithm is Õ(
k5/2M2N1/2 maxi,l|xil|

ε ) for one iteration. If

maxi,l|xil| = O(1) and let 1
ε = O(log(NM)), it can be

reduced to Õ(k5/2M2N1/2).
Assume that there exists an oracle that can be used

to query the distance between two points, the query

complexity of ABG algorithm is O(N
3/2
√
k

) for one iter-

ation [10, 11]. The time complexity of our quantum al-

gorithm is Õ(N1/2) for one iteration when k = O(1) and
M = logN , which achieves a polynomial speedup in N
over ABG algorithm whose query complexity is O(N3/2).

Note that if we want to obtain the classical informa-
tion of k clusters rather than the quantum information,
an additional classical cluster assignment is needed. The
time complexity of the classical cluster assignment is
O(kNM). In this way, our algorithm can obtain the clas-
sical information like in ABG algorithm but in a shorter
runtime.

IV. NUMERICAL SIMULATIONS

In this section, we would like to demonstrate that our
quantum k-medoids algorithm provides good clustering
results. Limited by the capabilities of existing quantum
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computers, these simulations are made with a classical
computer. Our quantum k-medoids algorithm follows the
same steps as the classical k-medoids algorithm, and only
introduces the error ε in the stage of average distance es-
timation. The complexity analysis in Sec. III B provides
theoretical evidence that the value of ε is related to the
time complexity of our algorithm and we can run the al-

gorithm long enough (roughly in time Õ(N
1
2 )) to control

it in an acceptable range. Thus, our quantum k-medoids
algorithm can be viewed as a quantum equivalent of the
classical k-medoids with noise. Based on this, we used
a classical computer to simulate the quantum steps and
introduced equivalent noise and randomness in average
distance. We ran the k-medoids and the quantum k-
medoids (i.e., k-medoids with noise) for different values
of noise on the well-known Iris dataset. Experimental
results are shown in FIG. 6.

1 2 3 4 5 6
iterations

0.70

0.75

0.80

0.85

0.90

0.95

pu
rit

y

classical
quantum ( = 0.1)
quantum ( = 0.2)
quantum ( = 0.3)

FIG. 6. Purity evolution on the Iris dataset under classical k-
medoids and quantum k-medoids (i.e., k-medoids with noise)
with different noises. We added noise on the average distance,
in which the noise is selected randomly from Gaussian noise
with a mean of 0 and a standard deviation of σ.

The Iris dataset has 3 classes, i.e. setosa, virginica, and
versicolor, of size 50 each (4 dimensions each). In this nu-
merical experiment, we used purity [47] to measure the
performance of the clustering algorithm. The purity of
clustering is similar to the accuracy of classification. All
experiments started with the same initial centres. It fol-
lows from FIG. 6 that for different values of the noise,
both k-medoids and quantum k-medoids reached a simi-
lar purity after the fourth iteration.

V. CONCLUSION

In conclusion, we have proposed the quantum k-
medoids algorithm which achieves a polynomial speedup
in the number of points over the existing quantum k-
medoids algorithm under certain conditions.

The Lemma 1 provided an efficient method to compute
the Manhattan distance between any two points, which
can be reused as a subroutine for other quantum algo-
rithms. Moreover, it can also be modified to compute
other distance measures such as the Euclidean distance,
Hamming distance, and Chebyshev distance. Finally and
most importantly, in Step 3 of our algorithm, the rea-
son we can calculate the average distance of a point to all
the other points inside the cluster by the parallel ampli-
tude estimation is that we have managed to encode the
distance information into the amplitude of the computa-
tional basis states. The parallel amplitude estimation is a
powerful tool for solving the problem whose solution can
be encoded into the amplitude of a particular quantum
state. This is the main idea of Step 3 of our algorithm.
We believe that this idea could also be applied to solve
other machine learning problems, such as density estima-
tion and data classification. We hope the techniques and
ideas we used in this paper will inspire others in the field
of quantum machine learning.
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Appendix A: Proof of Lemma 1

Here we show how to implement the unitary Q1 in
Lemma 1. Let us start with the initial state

|i〉|s〉|0〉⊗dlog qe
M⊗
l=1

(|0〉⊗dlogMe|0〉⊗(dlog q1e+1)|0〉⊗(dlog q1e+2)),

(A1)

where q = 2Mq1 and q1 = maxi∈[N ],l∈[M ] |xil|. Using

a unitary Uf : |x〉|0〉⊗dlogMe → |x〉|f(x)〉 for M times
where f(x) can be calculated efficiently in classical, we
can perform the mapping

|i〉|s〉|x〉
M⊗
l=1

(|0〉⊗dlogMe|0〉⊗(dlog q1e+1|0〉⊗(dlog q1e+2))

→ |i〉|s〉|x〉
M⊗
l=1

(|f(x)〉|0〉⊗(dlog q1e+1)|0〉⊗(dlog q1e+2))).

(A2)

Based on this, we get

|i〉|s〉|0〉⊗dlog qe
M⊗
l=1

(|l〉|0〉⊗(dlog q1e+1)|0〉⊗(dlog q1e+2)))

(A3)
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by performing Uf : |x〉|0〉⊗dlogMe → |x〉|x + l〉 on the
initial state for each l ∈ [M ], where x = 0.

Then, we query the state preparation oracle OX to get

|i〉|s〉|0〉⊗dlog qe
M⊗
l=1

(|l〉|xil〉|xsl〉). (A4)

Next, we perform quantum arithmetic operation [34–
36] on the above state to get

|i〉|s〉|0〉⊗dlog qe
M⊗
l=1

(|l〉|xil〉|xil − xsl〉). (A5)

After that, we perform QFT-based absolute value op-
eration [36] to yield

|i〉|s〉|0〉⊗dlog qe
M⊗
l=1

(|l〉|xil〉||xil − xsl|〉). (A6)

Finally, we add up |xil − xsl| in each dimension by
the quantum arithmetic operation, and store the sum in
the third register. The target state |i〉|s〉|

∑
l |xil − xsl|〉

can be obtained by discarding the redundant registers,
where

∑
l |xil−xsl| = d(xi,xs) is the Manhattan distance

between two points xi and xs.
We now analyze the time complexity and space com-

plexity of Q1. First, we should use Uf for M times. The
time complexity of Hadamard gates, quantum arithmetic
operation, and absolute value operation can be omitted
compared with other steps. The time complexity of OX

is O(log(MN)), and we should query it for 2M times to

get the state |i〉|s〉|0〉⊗dlog qe
⊗M

l=1(|l〉|xil〉|xsl〉). At the
final step, we should perform quantum arithmetic opera-
tion for M times to obtain d(xi,xs). Therefore, the total
time complexity of Q1 is O(M log(MN)).

As for the space complexity, M(dlogMe+ 2dlog q1e+
3) auxiliary qubits are required to obtain the state
|i〉|s〉|d(xi,xs)〉.

Appendix B: Detailed analysis of the amplitude
amplification in stage (3.1)

The fixed-point quantum search algorithm [37] per-
forms the sequence of the generalized Grover operator
to amplify the success probability of a target state with
an adjustable bound. It can be used as a subroutine in
any scenario where amplitude amplification or Grover’s
search is used. The obvious advantage of it is that there
is no need to hunt for the correct number of iterations as
in Ref. [38], and this consequently eliminates the need to
ever remake the initial state and restart the algorithm.

Indeed, in stage (3.1), after performing the fixed-point
quantum search algorithm, we will get the following state

√
p|Φt〉+

√
1− p2|Φt⊥〉, (B1)

where |Φt〉 = 1√
|Ctj |

∑
i∈Ctj
|i〉|j〉|0〉 1√

|Ctj |

∑
s∈Ctj
|s〉|j〉,

|Φt⊥〉 is a garbage state that is orthogonal to |Φt〉. Let
p0 be the initial probability of |Φt〉 before the amplitude
amplification. For a given σ ∈ (0, 1) and a known lower

bound pmin of p0, the condition L ≥ log(2/σ)√
pmin

can ensure

p ≥ 1− σ2, where L = 2l+ 1 and l is the number of gen-
eralized Grover iterate. See Ref. [37] for more detailed
analysis of p.

For convenience, in our quantum k-medoids algorithm,
we only consider the ideal case for p = 1 because our
algorithm still works in other cases. To see why this is
so, here we first review the following corollary in Ref. [13].

Corollary 1. Assume that for any j = 1, 2, . . . ,m, a
unitary transformation

|j〉|0〉 7→ |j〉(
√
a|yj〉+

√
1− |a||y⊥j 〉) (B2)

for 1
2 < |a0| ≤ |a| ≤ 1 can be performed using Q queries

then the expected number of queries made to find minj yj
with failure probability at most δ is bounded above by

90
√
mQd log(

81m(logm+γ)
δ )

2(|a0|− 1
2 )

2 e, where γ is Euler’s constant.

For the case p 6= 1, the probability to succeed in am-
plitude estimation in stage (3.2) will become p(1 − η).
In the fixed-point quantum search algorithm, the pmin
can be provided by using amplitude estimation. Then,
the value of p is related to the number of generalized
Grover iterate, we can perform a sufficient number of it-
erations (roughly O(k) times is enough) to ensure p ≥ 3

4 .
By Ref. [38], the successful probability of the amplitude
estimation is at least 8

π2 , that is (1− η) ≥ 8
π2 . Then

p(1− η) ≥ 6

π2
>

1

2
. (B3)

Based on the above inequality and Corollary 1,
in stage (3.3), we can use quantum minimum-
finding algorithm to find the minimum average dis-

tance among {
∑
s∈Ct

j
d(xi,xs)

|Ctj |
}i∈Ctj with failure probabil-

ity at most δ, and its query complexity is roughly

90
√
N/kd log(

81
√
N/k(log

√
N/k+γ)

δ )

2(p(1−η)− 1
2 )

2 e. By simply choosing

δ, η = O(1), it can be reduced to Õ(
√
N/k). This is

consistent with the conclusion of our main text.

Appendix C: Detailed process of stage (3.2)

The specific process of stage (3.2) is depicted as follows.
(i) We start with the initial state

1√
|Ctj |

∑
i∈Ctj

|i〉|0〉 1√
|Ctj |

∑
s∈Ctj

|s〉|0〉⊗dlog qe, (C1)

and apply a Hadamard gate to the second register, then
perform a controlled-Q1 with the first, third and fourth
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registers as the target, conditioned on the second register
|0〉. Then, we get

1√
|Ctj |

∑
i∈Ctj

|i〉 1√
2

(
|0〉 1√

|Ctj |

∑
s∈Ctj

|s〉|d(xi,xs)〉

+ |1〉 1√
|Ctj |

∑
s∈Ctj

|s〉|0〉
)
. (C2)

(ii) Add an ancillary qubit, perform |0〉〈0|2 ⊗ R4,5 +
|1〉〈1|2 ⊗ I4,5 on the second, fourth and fifth registers to
get

1√
|Ctj |

∑
i∈Ctj

|i〉 1√
2

[
|0〉 1√

|Ctj |

∑
s∈Ctj

|s〉|d(xi,xs)〉
(d(xi,xs)

q
|0〉

+

√
1− (

d(xi,xs)

q
)2|1〉

)
+|1〉 1√

|Ctj |

∑
s∈Ctj

|s〉|0〉⊗dlog qe|0〉
]
,

(C3)

where R4,5 is a controlled rotation operator which ro-

tates the ancillary qubit from |0〉 to (d(xi,xs)q |0〉 +√
1− (d(xi,xs)q )2|1〉) conditioned on |d(xi,xs)〉, I4,5 is the

identity operator acting on the fourth and fifth registers,
q = maxi,s∈[N ](d(xi,xs)) = 2M maxi∈[N ],l∈[M ] |xil|. We
now undo the controlled-Q1 to uncompute the fourth reg-
ister. Then, we obtain

1√
|Ctj |

∑
i∈Ctj

|i〉 1√
2

[
|0〉 1√

|Ctj |

∑
s∈Ctj

|s〉
(d(xi,xs)

q
|0〉

+

√
1− (

d(xi,xs)

q
)2|1〉

)
+ |1〉 1√

|Ctj |

∑
s∈Ctj

|s〉|0〉
]
. (C4)

(iii) The above state can be rewritten as

1√
|Ctj |

∑
i∈Ctj

|i〉 1√
2

(
|0〉|ϕtij〉+ |1〉|ϕtj〉

)
, (C5)

where |ϕtij〉 := 1√
|Ctj |

∑
s∈Ctj
|s〉
(d(xi,xs)

q |0〉 +√
1− (d(xi,xs)q )2|1〉

)
and |ϕtj〉 := 1√

|Ctj |

∑
s∈Ctj
|s〉|0〉.

We then perform a Hadamard gate on the second reg-
ister to get

1√
|Ctj |

∑
i∈Ctj

|i〉
[1
2
|0〉(|ϕtij〉+ |ϕtj〉) +

1

2
|1〉(|ϕtij〉 − |ϕtj〉)

]
:=

1√
|Ctj |

∑
i∈Ctj

|i〉
(

cos θtij1|Ψt
ij0〉+ sin θtij1|Ψt

ij1〉
)

:=
1√
|Ctj |

∑
i∈Ctj

|i〉|Ψt
ij〉, (C6)

where |Ψt
ij0〉 = |0〉(|ϕtij〉 + |ϕtj〉), |Ψt

ij1〉 = |1〉(|ϕtij〉 −
|ϕtj〉) and θtij1 ∈ [0, π2 ]. For a given i, if we measure

the first qubit of |Ψt
ij〉, the probability of getting 1 is

P tij1 = (sin θtij1)2 =
1−〈ϕtij |ϕ

t
j〉

2 . It is worth noting that

〈ϕtij |ϕtj〉 =

∑
s∈Ct

j
d(xi,xs)

q|Ctj |
. Once the value of 〈ϕtij |ϕtj〉 is

obtained, we can get the average distance of xi to all the
other points inside the cluster Ctj . It means that we are
able to calculate the average distance by estimating the
value of θtij1.

(iv) Based on stages (i)-(iii), we first prepare the initial
state

1√
|Ctj |

∑
i∈Ctj

|i〉|Ψt
ij〉|0〉⊗a|0〉⊗dlog qe, (C7)

where the value of a determines the accuracy of ampli-
tude estimation. We discuss it in Sec. III B.

Then, we perform parallel amplitude estimation [38,
39] with Grover operator G on it to estimate the value of
θtij1, where the quantum circuit of G is shown in FIG. 7.

| ۧ𝑖

| ൿΨ𝑖𝑗
𝑡 𝑂

𝑈† 𝑈
2 ۧ0 0ۦ ⨂( log 𝑁 +2) − 𝐼⨂( log 𝑁 +2)

FIG. 7. Quantum circuit of the Grover operator G in par-
allel amplitude estimation of our algorithm. Here O =
(2|0〉〈0| − I)⊗ I⊗(dlogNe+1) and U is a unitary that performs

the following mapping: 1√
|Ctj |

∑
i∈Ctj
|i〉|0〉⊗(dlogNe+2) →

1√
|Ctj |

∑
i∈Ctj
|i〉|Ψt

ij〉.

After parallel amplitude estimation, we obtain

1√
|Ctj |

∑
i∈Ctj

|i〉 1√
2

(
eıθ

t
ij1 |Ψt

ij+〉|
θtij1
π
〉

+ e−ıθ
t
ij1 |Ψt

ij−〉|1−
θtij1
π
〉
)
|0〉⊗dlog qe, (C8)

where |Ψt
ij±〉 = 1√

2
(|Ψt

ij0〉∓ı|Ψt
ij1〉), ı2 = −1 and |Ψt

ij〉 =

1√
2

(
eıθ

t
ij1 |Ψt

ij+〉+ e−ıθ
t
ij1 |Ψt

ij−〉
)
.

Finally, we perform a unitary Uf : |x〉|0〉⊗dlog qe →
|x〉|f(x)〉 on the last two registers to get

1√
|Ctj |

∑
i∈Ctj

|i〉 1√
2

(
eıθ

t
ij1 |Ψt

ij+〉|
θtij1
π
〉

+ e−ıθ
t
ij1 |Ψt

ij−〉|1−
θtij1
π
〉
)
|

∑
s∈Ctj

d(xi,xs)

|Ctj |
〉, (C9)

where f(x) = q(1− 2 sin2(πx)), x =
θtij1
π or 1− θtij1

π . The
target state can be obtained by discarding the redundant
registers.
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