
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Kernel-based quantum regressor models learning non-
Markovianity

Diego Tancara, Hossein T. Dinani, Ariel Norambuena, Felipe F. Fanchini, and Raúl Coto
Phys. Rev. A 107, 022402 — Published 3 February 2023

DOI: 10.1103/PhysRevA.107.022402

https://dx.doi.org/10.1103/PhysRevA.107.022402

Kernel-based quantum regressor models learn non-Markovianity

Diego Tancara,1 Hossein T. Dinani,2 Ariel Norambuena,1 Felipe F. Fanchini,3 and Raúl Coto4, 5, ∗

1Centro de Óptica e Información Cuántica, Universidad Mayor, Santiago, Chile
2Escuela Data Science, Facultad de Ciencias, Ingeneŕıa y Tecnoloǵıa, Universidad Mayor, Santiago, Chile

3Faculdade de Ciências, UNESP - Universidade Estadual Paulista, Bauru, SP, 17033-360, Brazil
4Department of Physics, Florida International University, Miami, Florida 33199, USA

5Universidad Bernardo O Higgins, Santiago de Chile, Chile

(Dated: January 25, 2023)

Quantum machine learning is a growing research field that aims to perform machine learning tasks
assisted by a quantum computer. Kernel-based quantum machine learning models are paradigmatic
examples where the kernel involves quantum states, and the Gram matrix is calculated from the
overlap between these states. With the kernel at hand, a regular machine learning model is used
for the learning process. In this paper we investigate the quantum support vector machine and
quantum kernel ridge models to predict the degree of non-Markovianity of a quantum system. We
perform digital quantum simulation of amplitude damping and phase damping channels to create our
quantum dataset. We elaborate on different kernel functions to map the data and kernel circuits to
compute the overlap between quantum states. We show that our models deliver accurate predictions
that are comparable with the fully classical models.

I. INTRODUCTION.

During the last decades we have witnessed the rapidly
growing fields of Artificial Intelligence (AI) and Quan-
tum Computing (QC). The basis for AI and QC were
developed in the past century. However, it is now that
this knowledge is widely available for research, business,
health, among others. AI aims to provide machines with
human-like intelligence. From the very beginning, AI has
been conceived in different ways, leading to the develop-
ment of different branches, known as Machine Learning
(ML)[1–3], Deep Learning [4] and Reinforcement Learn-
ing [5]. ML is based on statistical learning, where the
machine learns from data that has already been labelled
(Supervised learning) or from unlabelled data (Unsuper-
vised learning). In recent years, Supervised learning has
undoubtedly impacted on physics [2, 3, 6]. In particular,
it is known for unravelling patterns from datasets that
yield quantum phase transitions [7, 8].
Quantum computing is also at the forefront of cur-

rent technologies. Nowadays, research groups have de-
livered highly functional and fault-tolerant quantum al-
gorithms encompassing a wide variety of systems includ-
ing: superconducting qubits [9, 10], trapped ions [11],
cold atoms [12], photonics [13, 14] and color centers in
diamond [15]. In the last years, quantum computers
have pushed further the boundaries of physics, chem-
istry, biology, and computing itself, with groundbreaking
achievements in the simulation of novel materials [16],
molecules [9, 13, 17, 18], in designing algorithms towards
quantum supremacy [10, 19] and quantum machine learn-
ing [20–40].
Among the main obstacles to be overcome in the de-

velopment of quantum technologies is the interaction of

∗ raul.coto@protonmail.com

the quantum system with the environment. This inter-
action disturbs the quantum state and, in general, can
be divided into two types of processes: Markovian and
non-Markovian [41]. Non-Markovian processes are those
in which memory effects are taken into account and their
importance can be noted in several processes and proto-
cols such as state teleportation [42], quantum metrology
[43] and even in current quantum computers [44]. In this
paper we use quantum machine learning to determine the
degree of non-Markovianity of a two-times quantum pro-
cess [45], i.e., a quantum channel. We focus on kernel-
based machine learning models to learn from quantum
states. Our results shows that the quantum computer
can create the dataset, but also treat and learn from it,
providing feedback on the very process in which it is in-
volved.

The paper is organized as follows. In Sec. II we in-
troduce two quantum machine learning models based on
kernels, namely: Quantum Support Vector Machine and
Quantum Kernel Ridge models. The goal of these mod-
els is to estimate the degree of non-Markovianity from a
dataset made of quantum states. Furthermore, we elab-
orate on the performance of the models based on three
different kernel functions and four different kernel circuits
to measure the overlap between two quantum states. All
these possible combinations yield different Gram matri-
ces. In Sec. III, we introduce the Digital Quantum Simu-
lation approach that we followed to describe the evolution
of the system in Amplitude Damping and Phase Damping
channels. In Sec. IV, we show our main results regard-
ing the prediction of the degree of non-Markovianity. In
Sec. V we deliver the final remarks of this work.

mailto:raul.coto@protonmail.com

2

II. KERNEL-BASED MACHINE LEARNING

MODELS.

Quantum machine learning aims to perform machine
learning tasks assisted by a quantum computer. In recent
years, different implementations have been addressed,
including Variational Quantum Circuits [46–48], quan-
tum Nearest-Neighbor methods [21] and quantum Ker-
nel Methods [20, 23, 35]. The latter, naturally appears
in models that support a kernel function to represent the
data into a feature space. Two well-understood examples
are the Support Vector Machine (SVM) and the Kernel
Ridge Regressor (KRR) models. Their extension to the
quantum domain via a precomputed kernel is straight-
forward. Then, one could think the kernel as a function
(that in our case results from a quantum circuit) that we
pass to the ML model to improve the learning process.
Next, we describe the SVM and KRR models and their
connection with the kernel.

A. Support Vector Machine

One of the most broadly used models in ML is Sup-
port Vector Machines (SVM) [49]. This model can be
used for classification [50, 51] and regression [49, 52, 53]
tasks. The former, gives rise to an intuitive representa-
tion that relies on a hyperplane that splits the dataset
into different classes. Therefore, predicting the label of
unknown data only depends on where the data samples
fall regarding the hyperplane. In general, other mod-
els also use a hyperplane. However, the SVM sets the
maximum-margin, i.e. maximizing the distance between
the hyperplane and some of the boundary training data,
which are the data samples close to the edge of the class.
These particular samples are known as support vectors
(SVs). Since SVs are a subset of the training dataset,
this model is suitable for situations where the number
of training data samples is small compared to the fea-
ture vector’s dimension. Once the model has fitted the
training dataset, it can be used as a decision function
that predicts new samples, without holding the training
dataset (eager learning algorithm) in memory. In this
work we will focus on a regression task, which predicts
a real number rather than a class. In what follows, we
briefly describe the mathematical formulation of the opti-
mization problem. More details can be found in Ref. [54].
SVM delivers the tools for finding a function f(~x) that

fits the training dataset {~xi, yi}, where ~xi ∈ R
d are the

feature vectors with dimension d, and yi ∈ R are the cor-
responding labels. Note that i runs over the number of
training samples (i = 1, 2, . . . , l). We begin with the lin-
ear function f(~x) = ~w·~x+b, with ~w ∈ R

d and b ∈ R being
fitting parameters. We shall discuss the case of nonlin-
ear separable data later on. For ǫ-SVM [49], deviations
of f(~x) from the labeled data (yi) must be smaller than ǫ,
i.e. |f(~x)−yi| ≤ ǫ. Moreover, we must address the model

complexity as given by the l2-norm ‖~w‖2, and the toler-

ance for deviations ξi, ξ
∗
i (slack variables) larger than ǫ,

that are weighted by C > 0. Therefore, the optimization
problem can be stated as [1, 49, 53],

minimize 1
2 ‖~w‖

2
+ C

∑

i (ξi + ξ∗i)

subjected to







yi − ~w · ~xi − b ≤ ǫ+ ξi
~w · ~xi + b− yi ≤ ǫ+ ξ∗i
ξi, ξ

∗
i ≥ 0

(1)

One can solve this problem introducing the Lagrange
multipliers αi, α

∗
i , ηi, η

∗
i ≥ 0, with the Lagrangian defined

as [49, 52, 53],

L =
1

2
‖~w‖2 + C

∑

i

(ξi + ξ∗i)−
∑

i

(ηiξi + η∗i ξ
∗
i)

−
∑

i

αi(ǫ + ξi − yi + ~w · ~xi + b)

−
∑

i

α∗
i (ǫ + ξ∗i + yi − ~w · ~xi − b). (2)

From the vanishing partial derivatives ∂bL, ∂wL, ∂ξL
and ∂ξ∗L the optimization problem can be recast as,

maximize

{

− 1
2

∑

i,j(αi − α∗
i)(αj − α∗

j)〈xi, xj〉
−ǫ∑i(αi + α∗

i) +
∑

i yi(αi − α∗
i)

subjected to

{
∑

i(αi − α∗
i) = 0

αi, α
∗
i ∈ [0, C]

(3)

For convenience, we have written the dot product as an
inner product, 〈xi, xj〉 = ~xi · ~xj . From ∂wL = 0 we find
~w =

∑

i(αi − α∗
i)~xi, that leads to the decision function

f(~x) =
∑

i

(αi − α∗
i)〈xi, x〉+ b, (4)

that depends on the inner product between the unla-
beled data (~x) and the training data (~xi). We can recover
b from the Karush-Kuhn-Tucker (KKT) condition, which
states that at the solution point of the Lagrangian, the
product between the Lagrange multipliers and the condi-
tions vanishes. We remark that this calculation is com-
puted internally in scikit-learn library [1]. We would like
to stress that the decision function in Eq. (4) has a sparse
representation in terms of αi, α

∗
i . Only a small subset of

the training dataset (support vectors) contributes to the
decision function. In Appendix A, we show the argu-
ments for the sparsity and the calculation of b.
We have introduced so far a linear decision function

that can handle linearly separated data. For nonlinearly
separated data, it is possible to define a clever kernel
function k(xi, x) that generalizes 〈xi, x〉 by taking the
samples to a higher dimensional space, where they are
linearly separable. We elaborate further on this idea later
on.

B. Kernel Ridge Regressor

Kernel Ridge Regressor (KRR) is another important
nonlinear machine learning model. It has been suc-

3

cessfully used to predict the evolution of quantum sys-
tems [55]. It combines Ridge Regression with the ker-
nel trick [1, 56]. The former, provides a linear solu-
tion based on least squares with l2 regularization that
penalizes large coefficients. Like in SVM, the l2-norm
prevents model complexity, while the kernel allows the
model to learn a nonlinear function in the original space.
This model offers a straightforward optimization problem
stated by [1]

minimize

N
∑

i=1

‖~w · ~xi − yi‖2 + α ‖~w‖ . (5)

The above problem can be written in an equivalent
way as [56],

minimize
N
∑

i=1

(yi − ~w · ~xi − b)2 ,

subjected to ‖~w‖2 ≤ αd, (6)

where there is a one-to-one correspondence between
the hyperparameters α and αd. Introducing the Lagrange
multipliers as in the previous subsection, the decision
function can be found as,

f(~x) =
∑

i

βik(xi, x) + b, (7)

with βi and b being fitting parameters.
It is worth noting that SVM and KRR are similar in

terms of the l2 regularization and that both use the ker-
nel trick, but the loss function is different. While SVM
relies on a linear ǫ-insensitive loss, KRR uses squared er-
ror loss. The former implies that all the training points
that result in errors that fall inside the ǫ-tube do not
contribute in the solution, which originates sparseness.
In contrast, KRR considers all the training points. This
yields differences in the performance of these models.
Machine learning algorithms have greatly profited from

kernel functions [6, 28, 35]. Therefore, we now introduce
a generalization of the decision function to learn from
nonlinear data. The kernel can be understood as a mea-
sure of similarities between two vectors, and it supports
representations ranging from polynomial to exponential
functions [1]. Along this paper we consider three dif-
ferent functions for the kernel k(xi, xj), namely: linear

〈xi, xj〉 + c, polynomial (〈xi, xj〉+ c)d, and exponential

exp(−σ
√

1− 〈xi, xj〉).
We have so far addressed the classical part (optimiza-

tion problem) of this hybrid quantum machine learning
approach. In the next subsection we will focus on imple-
menting the kernel through a quantum circuit.

C. Quantum Kernels

We have noted that the kernel provides efficient sepa-
rability in nonlinear regions. The main idea behind the

kernel is that it allows to map the data to a higher-
dimensional space, termed as “featured space” [54]. In
general lines, let’s consider a feature map φ : x ∈ χ →
φ(x) ∈ H that encodes information from a certain do-
main χ (commonly χ ∈ Rn) to a feature space H . The
advantages of using the map rely on the “kernel trick” [6],
which allows us to set the decision function without the
explicit calculation of φ(x). This idea has encouraged re-
searchers to bridge classical and quantum machine learn-
ing [25, 26, 35]. Let’s consider a Hilbert space H that
contains the states of a quantum system. Now, instead
of encoding the information of χ in a feature space given
by functions φ(x), with x ∈ χ, the information is encoded
in quantum states |φ(x)〉 ∈ H [35, 57, 58], which is known
as quantum embedding. Quantum embedding is a crucial
step in the process and, in some cases, may lead to a dis-
advantage against classical models— for instance because
of the noise in the embedding ansatz. To overcome this,
we resorted to perform digital quantum simulation of the
quantum dynamics rather than classical simulation [54],
which allows us to handle quantum states to build up
the kernel. We use the kernel to calculate a symmetric
and semi-positive definite matrix (Gram matrix) over all
possible combinations in the training dataset and we use
it to train our model.
A natural choice to obtain the kernel from the train-

ing samples ρi is the pairwise trace distance between the
quantum states (Tr[ρiρj]), that is commonly carried by
the Swap test [59, 60]. In what follows we describe the
circuit implementation. First, we encode the information
into two different qubits. Each of these qubits undergoes
a NM evolution (induced by independent ancilla qubits).
Then the overlap between states ρi and ρj yields the
matrix element k(θi, θj) = Tr[ρiρj], where θi is the pa-
rameter that control the NM evolution. We note that for
the case of pure states, ρi = |ψi〉〈ψi| and ρj = |ψj〉〈ψj |,
the kernel simply reduces to |〈ψi|ψj〉|2.
We describe next different implementations for the

overlapping.

1. Swap test

The Swap test is a high level sequence of quantum
operations that involves two system qubits, an ancilla
qubit, two-qubits gates (CNOT), one-qubit gates and a
final measurement on the ancilla [59], see Fig. 1. By
measuring the probability of finding the ancilla in state
|0〉 (P0), one obtains the state overlapping by computing
Tr[ρiρj] = 2P0 − 1.

2. Inversion test

Our second kernel considers the quantum state of a
closed system (unitary evolution), that encompasses the
system qubit and the environment ancilla qubit [61]. It
begins with two different quantum states driven by uni-

4

Swap test

Inversion test

Ancilla-based algorithm

Bell-basis algorithm

•

• •

•

FIG. 1. Quantum circuits compute the overlap between two quantum states in the kernel function to calculate the Gram
matrix. For the inversion test U represents either the amplitude damping or phase damping channel depicted in Fig. 2. For
the ancilla-based algorithm (ABA) U = T †H [60].

tary evolution U(θ), such that |Ψθ〉 = U(θ)|00〉, with
|00〉 = |0〉s ⊗ |0〉a. The kernel is defined as the prob-
ability to reach the initial state after two subsequent
evolutions— assuming that the inverse evolution U †(θi)
can be implemented. The matrix elements reads,

k(θi, θj) = | 〈Ψθi |Ψθj〉|2 = | 〈00|U †(θi)U(θj) |00〉 |2

= | 〈00|Θ〉|2, (8)

where |Θ〉 = U †(θi)U(θj) |00〉. In contrast to the
Swap test kernel, this one requires two measurements,
which allows us to decrease the number of quantum reg-
isters (Fig. 1). We remark that this kernel is not ex-
perimentally feasible for the particular goal of detect-
ing non-Markovianity. In general, one has no access to
perform measurements upon the environment. In ad-
dition, it requieres reverse unitary interactions of the
system-environment dynamics. Nevertheless, we con-
sider it because it may be applied to other machine learn-
ing tasks [61] and it delivers the best accuracy we found
in this paper.

3. Ancilla-based algorithm

The Ancilla-based algorithm (ABA) is a variation of
the Swap test that conveniently reduces the number of
gates. It was first discovered in the context of quantum
optics [62], and rediscovered later with assistance of a
neural network and introduced for quantum circuits [60].
The circuit is depicted in Fig. 1, and it is composed by
two-qubits CNOT gates and single-qubit U = T †H gates.
T introduces a π/4 rotation around the z-axis, and H is
the Hadamard gate. Similar to the Swap test, the final
outcome is computed as 2P0 − 1.

4. Bell-basis algorithm

The Bell-basis algorithm (BBA) considers less re-
sources than the previous one (ABA), but demands Bell-
basis measurements on all the system qubits [60]. The

circuit is depicted in Fig. 1, and it only requires a CNOT
gate and a Hadamard gate. However, the post-processing
is more involved and demands computing all outcomes as
P00 + P01 + P10 − P11.
In this paper we do not intent to explicitly compare

the accuracy of all these approaches for estimating the
overlapping (for a comparison between Swap test, ABA
and BBA see [60]). We will compare them in terms of
the accuracy of the decision function.
In the next section we describe the quantum circuits

that account for the interaction between the system qubit
with the environment ancilla qubit that ultimately yields
non-Markovianity.

III. DIGITAL QUANTUM SIMULATION OF

NON-MARKOVIAN CHANNELS

The main purpose of this paper is to determine the
degree of non-Markovianity of a quantum process us-
ing a quantum machine learning algorithm. We be-
gin with simulating two non-Markovian channels, am-
plitude damping and phase damping, whose degree of
non-Markovianity can be controlled. For this purpose we
simulate the processes using usual circuit routines, tak-
ing auxiliary qubits to represent the environment. In this
section, we show how the degree of non-Markovianity is
calculated and present how the non-Markovian amplitude
damping and phase damping processes can be simulated
using a quantum circuit.

A. Calculating the degree of non-Markovianity

There are different ways to measure the degree of non-
Markovianity. The most popular measures are based on
the trace distance dynamics [63], the dynamics of en-
tanglement [64, 65], and mutual information [66], among
others [45]. In this paper we consider the measure based
on entanglement dynamics of a bipartite quantum state
that encompasses the system that interacts with the envi-
ronment and an ancilla qubit that is isolated from it [65].

5

Worthwhile noticing that this ancilla only serves the pur-
pose of quantifying non-Markovianity and it is not imple-
mented in the quantum circuits, in contrast to the ancilla
used to simulate the effect of the environment for the am-
plitude damping and phase damping processes.
A monotonic decrease in the entanglement of the bi-

partite system implies that the dynamics is Markovian.
An increase in the entanglement during the evolution is
a result of memory effects and thus non-Markovian. The
measure can be calculated as

N = max

∫

dE(t)/dt>0

dE(t)

dt
dt, (9)

where the maximization is done over all possible initial
states and E is the measure of entanglement. It has
been found that the maximization is achieved for Bell
states [67]. Therefore, we consider a bipartite system in
a Bell state and use the Concurrence as the measure of
entanglement [68].

B. Amplitude Damping

For the amplitude damping (AD) channel, we consider
a qubit interacting with a bath of harmonic oscillators,
given by the Hamiltonian (~ = 1) [69, 70]

H = ω0σ+σ− +
∑

k

ωka
†
kak

+
∑

k

(g∗kσ+ak + gkσ−a
†
k). (10)

Here, σ+ = σ†
− = |1〉〈0| with |1〉 (|0〉) corresponding to

the excited (ground) state of the qubit with transition

frequency ω0, ak(a
†
k) is the annihilation (creation) oper-

ator of the k-th mode of the bath with frequency ωk, and
gk is the coupling between the qubit and the k-th mode.
We assume that the bath has a Lorentzian spectral den-
sity

J(ω) =
1

2π

γ0λ
2

(ω0 − ω)2 + λ2
, (11)

where λ ≈ 1/τr with τr being the environment correlation
time, γ0 ≈ 1/τs where τs is the typical time scale of the
system.
The dynamics of the qubit that is coupled resonantly

with the environment can be expressed as

ρ(t) =

1
∑

i=0

Mi(t)ρ(0)M
†
i (t), (12)

where the Kraus operators are given by [71] [72]

M0(t) = |0〉〈0|+
√

p(t)|1〉〈1|, (13)

M1(t) =
√

1− p(t)|0〉〈1|, (14)

in which

p(t) = e−λt

[

λ

d
sinh(dt/2) + cosh(dt/2)

]2

, (15)

with d =
√

λ2 − 2γ0λ. The dynamics is known to be
non-Markovian in the strong coupling regime λ < 2γ0
(τs < 2τr) [73]. We have scaled our AD simulations with
γ0 = 1, and considered λ in the range [0.1, 3].

Amplitude damping (AD)

Phase damping (PD)

FIG. 2. Quantum circuits for simulating AD and PD chan-
nels.

The AD process can be simulated for a general scenario
with a quantum circuit via an ancilla qubit [71, 72]. Af-
ter tracing out the ancilla qubit we obtain the desired
mixed state. Figure 2 shows the quantum circuit. The
Hadamard gate prepares the qubit in the superposition
state (|0〉+ |1〉) /

√
2 while the controlled rotation and

CNOT gates simulate the interaction of the qubit with
the environment. In this circuit, the angle θa is given by
[71, 72]

θa = 2 arccos
(

√

p(t)
)

, (16)

where p(t) is given in Eq. (15).

C. Phase Damping

For the phase damping (PD) channel, following
Ref. [74], we consider a qubit undergoing decoherence
induced by a colored noise given by the time dependent
Hamiltonian (~ = 1)

H(t) = Γ(t)σz . (17)

Here, Γ(t) is a random variable which obeys the statistics
of a random telegraph signal defined as Γ(t) = α(−1)n(t),
where α is the coupling between the qubit and the ex-
ternal influences, n(t) is a random variable with Poisson
distribution with mean t/(2τ), and σz is the Pauli z op-
erator. In this case, the dynamics of the qubit is given

6

FIG. 3. Expectations values delivered by the noisy qasm simulator exhibit small dispersion after 8000 shots, in contrast to the
ideal statevector simulator. We only observe correlations in the plane defined by 〈σx〉 and 〈σz〉.

by the following Kraus operators [74]

M0(t) =

√

1 + Λ(t)

2
I, (18)

M1(t) =

√

1− Λ(t)

2
σz , (19)

where

Λ(t) = e−t/(2τ)

[

cos(
µt

2τ
) +

1

µ
sin(

µt

2τ
)

]

, (20)

with µ =
√

(4ατ)2 − 1, and I being the identity matrix.
For ατ > 1/4 the dynamics is non-Markovian, while

for ατ < 1/4 it is Markovian. We have scaled our PD
simulations with α = 1, and considered τ in the range
[0.1, 0.75]. The PD channel can be simulated using a
quantum circuit, shown in Fig. 2 [71]. In this circuit,
the Hadamard gate prepares the qubit into the super-
position state and the controlled rotation simulates the
interaction with the environment. The angle θp is given
by

θp = 2 arccos (Λ(t)) , (21)

where Λ(t) is given in Eq. (20).

IV. RESULTS

We perform our simulations with the statevec-

tor simulator and qasm simulator, integrated in the
Aer’s package from IBM qiskit [75]. For comparison,
we also run simulations using Pennylane library [76], ob-
taining similar outcomes. The statevector simulator is

an ideal simulator that considers the evolution of the
wavefunction. In contrast, the qasm simulator mimics
the open dynamics of the IBM quantum computer. This
means that it considers losses and shot-noise. However,
it allows us to set all qubits equal and fully connected—
without relying on a specific quantum hardware.
It is well-known that the quantum state of a qubit

can be represented as a point in a sphere of radius one
(Bloch’s sphere). A generic state can be represented in
the Bloch’s sphere in terms of the expectations values as

ρ =
1

2



I+
∑

i=x,y,z

〈σi〉σi



 , (22)

where I is the 2× 2 identity matrix.
For illustration we firstly focus on the amplitude

damping channel. In Fig. 3 we show the expectation
values calculated using the statevector simulator and
qasm simulator. The former, provides outcomes with
no dispersion (top), as expected from the ideal simula-
tion. On the other hand, qasm simulator delivers more
realistic results that include dispersion (bottom). This
dispersion will be important for selecting the best algo-
rithm that computes the overlap. In contrast, statevec-
tor simulator brings no significant difference in the pre-
diction. Therefore, it can be misleading when selecting a
machine learning model, and thus, hereafter we restrict
our analysis to qasm simulator.
In Fig. 4 we show the degree of NM for the ampli-

tude damping channel as a function of the parameter θ
(rotation angle that controls NM introduced in subsec-
tion III B). For the calculations, we used qasm simulator

with the exponential kernel function —that yields the

7

FIG. 4. QSVM prediction of non-Markovianity as a func-
tion of the rotation angle θ for different kernel circuits. The
inversion test outperforms the others. We considered the am-
plitude damping channel, the exponential kernel function and
the hyperparameters {C = 0.5, ǫ = 0.01}.

best accuracy as shown in Appendix B. For exploration
of the algorithms we only focus on QSVM. We manually
seek optimal hyperparameters and report the prediction
on the training dataset. A more robust analysis will be
given later on. We can observe that the inversion test
leads to a feature space that allows better prediction of
the degree of NM. We note that the BBA algorithm can
be improved for a different set of parameters, but it still
underperforms.
We now compare the performance between QSVM

and QKRR. Hereafter, we focus on simulations on the
qasm simulator for the inversion test with exponential
function. To prevent overfitting, we use two steps for
cross-validation. First, we use the train test split func-
tion in scikit-learn [1] to randomly split the training set
from the test set. Then, we use the GridSearchCV func-
tion to explore the best fitting hyperparameters for each
model, and we use a five-fold cross-validation. Thus,
GridSearchCV provides the best estimator for the range
of given parameters averaged over five different sampling
of the training set. Finally, we used these estimators
to predict the test set, which contains the data that the
model has not seen. In Fig. 5 we show our predictions for
amplitude damping and phase damping. One can observe
that both models succeeded in predicting the degree of
non-Markovianity, besides small differences in the score
(mean squared error). However, there are important as-
pects that might be taken into account before selecting
one over the other. First, we remark that QSVM requires
less training data to deliver good fittings. This is known,

FIG. 5. Both QSVM and QKRR deliver accurate predictions
of the degree of non-Markovianity, based on the mean squared
error score. For a small training dataset QSVM performs
better (not shown here). For a sufficiently large number of
points QKRR provides a smaller mean squared error.

and it results from the sparseness in the training sam-
ples (only SVs contribute). Therefore, QSVM provides a
major advantage given that the most time consuming op-
eration is the calculation of the Gram matrix. Thus, less
training samples reduces the overall computation time.
In contrast, we observe that as the number of data sam-
ples increases, QKRR improves.

For comparison, we estimate the degree of non-
Markovianity using a classical kernel, i.e. the radial ba-
sis function (RBF). We follow the procedure reported in
Ref. [54], where the training is carried out with the expec-
tation values 〈σx〉, 〈σy〉 and 〈σz〉. Thus, instead of using
quantum states to build up a kernel, we resort to use
classical data, i.e. measurement outcomes. However, the
process to obtain the states to be measured is the same
we outlined in section III— in Ref.[54] the authors used
a master equation approach instead of digital quantum
simulation.

In Table I we show the mean squared errors for each
model for the amplitude damping (AD) and phase damp-
ing (PD) channels. We remark that the quantum ver-
sions, where the kernel is calculate from the overlap be-
tween quantum states, deliver accurate predictions that
are comparable with the classical models, albeit we found

8

TABLE I. The Table shows the accuracy of the quantum and
classical versions of the studied machine learning models. The
hyperparameters for AD (PD) are, QSVM: C = 4× 10−1(2×
10−1), ǫ = 10−2; QKRR: α = 10−1(2 × 10−1); SVM: C =
102, ǫ = 10−3; KRR: α = 10−4(10−5).

QSVM QKRR SVM KRR

AD 6.0× 10−5 2.7 × 10−5 2.6× 10−6 1.4 × 10−5

PD 3.3× 10−4 1.6 × 10−4 5.9× 10−5 1.8 × 10−4

that SVM with a RBF kernel provides the best accuracy,
as evidenced in terms of the mean squared error and the
coefficient of determination R2 (not shown here). This
particular problem illustrates that extending the kernel
to be quantum provides interesting insights and con-
tributes to concatenate quantum blocks of operations.
It not necessarily outperforms a fully classical training
process but delivers useful outcomes.

V. CONCLUSIONS

In this paper we have thoroughly studied kernel-based
quantum machine learning models to predict the de-
gree of non-Markovianity using quantum data (quantum
states). Each state is obtained through digital quantum
simulation, where an ancilla qubit originates the non-
Markovian behavior. We focus on two different decoher-
ence channels, amplitude damping and phase damping.
These quantum states are mapped to a Gram matrix by
calculating its overlap. We investigate different kernel
functions, say: linear, polynomial and exponential, and
different kernel circuits to compute the overlap, say: in-
version test, bell-basis algorithm, ancilla-based algorithm
and the Swap test. We found that the inversion test with
the exponential function delivers the best results. We
draw our attention to two well-known kernel based ma-
chine learning models, Support Vector Machine (SVM)
and Kernel Ridge (KRR). When the models are trained
with precomputed quantum kernels we dubbed them as
quantum SVM (QSVM) and quantum KRR (QKRR),
respectively. By optimizing the learning process through
cross-validation steps and grid search we found a good
accuracy in our models. We found QSVM to be slightly
better than QKRR, not only in the prediction’s accuracy,
but also in requiring less training samples.

Finally, we compare our results with their classical
counterpart, i.e. when using classical data (expectation
values) to train the models. While there are not sig-
nificant differences, we observe that SVM with an RBF
kernel delivers the best performance. This means that
in this particular case it is better to measure upon the
system and then process the measurement outcomes with
machine learning techniques.

VI. ACKNOWLEDGMENTS

D.T. acknowledges support from Universidad Mayor
through the Doctoral fellowship. A.N. acknowledges fi-
nancial support from Fondecyt Iniciación No. 11220266.

Appendix A: Lagrangian calculations with SVM

We begin with the Lagrangian in Eq. (2),

L =
1

2
‖~w‖2 + C

∑

i

(ξi + ξ∗i)−
∑

i

(ηiξi + η∗i ξ
∗
i)

−
∑

i

αi(ǫ + ξi − yi + ~w · ~xi + b)

−
∑

i

α∗
i (ǫ + ξ∗i + yi − ~w · ~xi − b). (A1)

Taking the partial derivatives with respect to the pri-
mal variables (b, w, ξi, ξ

∗
i) yields,

∂bL =
∑

i

(α∗
i − αi) = 0, (A2)

∂wL = w −
∑

i

(αi − α∗
i)xi = 0, (A3)

∂ξ = C − αi − ηi = 0, (A4)

∂ξ∗ = C − α∗
i − η∗i = 0. (A5)

First, from the KKT condition we obtain ηiξi = 0.
Multiplying Eq. (A4) by ξi, we deduce the relation as,

(C − αi)ξi = 0. (A6)

This means that only samples with αi = C lie out-
side the ǫ-tube (ξi 6= 0). We now consider the second
constraint,

αi(ǫ + ξi − yi + ~w · ~xi + b) = 0. (A7)

Note that all samples inside the ǫ-tube (|f(~xi)−yi| < ǫ)
have a vanishing Lagrange multiplier αi, which leads to
the sparse representation of f(~x) in Eq. (4). A similar
procedure can be followed for ξ∗i , η

∗
i , α

∗
i , which allows to

approach the value for b [53].

Appendix B: Kernel functions performance

We now compare three different functions for the
kernel k(xi, xj), say: linear 〈xi, xj〉, polynomial

(〈xi, xj〉+ 0.1)
3
, and exponential exp(−3

√

1− 〈xi, xj〉).
Figure 6 shows that the exponential kernel function pro-
vides the best fitting. The polynomial function is only
considered for completeness, since a more thorough ex-
ploration of the parameters may lead to a better fitting.

9

FIG. 6. Exponential kernel function delivers the best predic-
tion of non-Markovianity.

[1] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, Jake Vanderplas, Alexandre Passos, David
Cournapeau, Matthieu Brucher, Matthieu Perrot, and
Édouard Duchesnay. Scikit-learn: Machine learning
in python. Journal of Machine Learning Research,
12(85):2825–2830, 2011.

[2] Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Lau-
rent Daudet, Maria Schuld, Naftali Tishby, Leslie Vogt-
Maranto, and Lenka Zdeborová. Machine learning and
the physical sciences. Rev. Mod. Phys., 91:045002, Dec
2019.

[3] Pankaj Mehta, Marin Bukov, Ching-Hao Wang, Alexan-
dre G.R. Day, Clint Richardson, Charles K. Fisher, and
David J. Schwab. A high-bias, low-variance introduc-
tion to machine learning for physicists. Physics Reports,
810:1 – 124, 2019. A high-bias, low-variance introduction
to Machine Learning for physicists.

[4] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer.
Automatic differentiation in pytorch. NIPS-W, 2017.

[5] R. S. Sutton and A. G. Barto. Introduction to reinforce-
ment learning. MIT Press 1st edn, 1998.

[6] Vedran Dunjko and Hans J Briegel. Machine learning
& artificial intelligence in the quantum domain: a re-
view of recent progress. Reports on Progress in Physics,
81(7):074001, jun 2018.

[7] Juan Carrasquilla and Roger G. Melko. Machine learning
phases of matter. Nature Physics, 13(5):431–434, 2017.

[8] Askery Canabarro, Felipe Fernandes Fanchini,
André Luiz Malvezzi, Rodrigo Pereira, and Rafael
Chaves. Unveiling phase transitions with machine
learning. Phys. Rev. B, 100:045129, Jul 2019.

[9] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme,
Maika Takita, Markus Brink, Jerry M. Chow, and
Jay M. Gambetta. Hardware-efficient variational quan-
tum eigensolver for small molecules and quantum mag-
nets. Nature, 549(7671):242–246, 2017.

[10] Frank Arute, Kunal Arya, Ryan Babbush, Dave Ba-
con, Joseph C. Bardin et al. Quantum supremacy us-
ing a programmable superconducting processor. Nature,
574(7779):505–510, 2019.

[11] K. Wright, K. M. Beck, S. Debnath, J. M. Amini,
Y. Nam, N. Grzesiak, J. S. Chen, N. C. Pisenti,
M. Chmielewski, C. Collins, K. M. Hudek, J. Mizrahi,
J. D. Wong-Campos, S. Allen, J. Apisdorf, P. Solomon,
M. Williams, A. M. Ducore, A. Blinov, S. M. Kreike-
meier, V. Chaplin, M. Keesan, C. Monroe, and J. Kim.
Benchmarking an 11-qubit quantum computer. Nature
Communications, 10(1):5464, 2019.

[12] T. M. Graham, Y. Song, J. Scott, C. Poole, L. Phutti-
tarn, K. Jooya, P. Eichler, X. Jiang, A. Marra, B. Grinke-
meyer, M. Kwon, M. Ebert, J. Cherek, M. T. Licht-
man, M. Gillette, J. Gilbert, D. Bowman, T. Ballance,
C. Campbell, E. D. Dahl, O. Crawford, N. S. Blunt,
B. Rogers, T. Noel, and M. Saffman. Multi-qubit en-
tanglement and algorithms on a neutral-atom quantum
computer. Nature, 604(7906):457–462, 2022.

[13] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-
Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-
Guzik, and Jeremy L. O’Brien. A variational eigen-
value solver on a photonic quantum processor. Nature
Communications, 5(1):4213, 2014.

[14] Juan Miguel Arrazola, Thomas R Bromley, Josh Izaac,
Casey R Myers, Kamil Brádler, and Nathan Killoran.
Machine learning method for state preparation and gate
synthesis on photonic quantum computers. Quantum
Science and Technology, 4(2):024004, jan 2019.

[15] M. H. Abobeih, Y. Wang, J. Randall, S. J. H. Loenen,
C. E. Bradley, M. Markham, D. J. Twitchen, B. M. Ter-
hal, and T. H. Taminiau. Fault-tolerant operation of a
logical qubit in a diamond quantum processor. Nature,
2022.

[16] R. Babbush, N. Wiebe, J. McClean, J. McClain,
H. Neven, and G. K.-L. Chan. Low-depth quantum sim-
ulation of materials. Phys. Rev. X, 8:011044, 2018.

[17] P. J. J. O’Malley, R. Babbush, I. D. Kivlichan,
J. Romero, J. R. McClean, R. Barends, J. Kelly,

10

P. Roushan, A. Tranter, N. Ding, B. Campbell, Y. Chen,
Z. Chen, B. Chiaro, A. Dunsworth, A. G. Fowler, E. Jef-
frey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley,
C. Neill, C. Quintana, D. Sank, A. Vainsencher, J. Wen-
ner, T. C. White, P. V. Coveney, P. J. Love, H. Neven,
A. Aspuru-Guzik, and J. M. Martinis. Scalable quantum
simulation of molecular energies. Phys. Rev. X, 6:031007,
Jul 2016.

[18] K. M. Nakanishi, K. Mitarai, and K. Fujii. Subspace-
search variational quantum eigensolver for excited states.
Phys. Rev. Research, 1:033062, 2019.

[19] X. Peng, Z. Liao, N. Xu, G. Qin, X. Zhou, D. Suter, and
J. Du. Quantum adiabatic algorithm for factorization
and its experimental implementation. Phys. Rev. Lett.,
101:220405, 2008.

[20] M. Rebentrost, P. andMohseni and S. Lloyd. Quantum
support vector machine for big data classification. Phys.
Rev. Lett., 113:130503, 2014.

[21] Nathan Wiebe, Ashish Kapoor, and Krysta M. Svore.
Quantum algorithms for nearest-neighbor methods for
supervised and unsupervised learning. Quantum
Information & Computation, 15(3-4):0318–0358, 2015.

[22] X.-D. Cai, D. Wu, Z.-E. Su, M.-C. Chen, X.-L. Wang,
L. Li, N.-L. Liu, C.-Y. Lu, and J.-W. Pan. Entanglement-
based machine learning on a quantum computer. Phys.
Rev. Lett., 114:110504, 2015.

[23] Z. Li, X. Liu, N. Xu, and J. Du. Experimental realization
of a quantum support vector machine. Phys. Rev. Lett.,
114:140504, 2015.

[24] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick
Rebentrost, Nathan Wiebe, and Seth Lloyd. Quantum
machine learning. Nature, 549(7671):195–202, 2017.

[25] Vojtěch Havĺıček, Antonio D. Córcoles, Kristan Temme,
AramW. Harrow, Abhinav Kandala, Jerry M. Chow, and
Jay M. Gambetta. Supervised learning with quantum-
enhanced feature spaces. Nature, 567(7747):209–212,
2019.

[26] Maria Schuld and Nathan Killoran. Quantum machine
learning in feature hilbert spaces. Phys. Rev. Lett.,
122:040504, Feb 2019.

[27] Z. He, L. Li, S. Zheng, X. Zou, and H. Situ. Quan-
tum speedup for pool-based active learning. Quantum
Inf Process, 18:345, 2019.

[28] R. Mengoni and A. Di Pierro. Kernel methods in quan-
tum machine learning. Quantum Mach. Intell., 1:65,
2019.

[29] Karol Bartkiewicz, Clemens Gneiting, Antońın Černoch,
Kateřina Jiráková, Karel Lemr, and Franco Nori. Exper-
imental kernel-based quantum machine learning in finite
feature space. Scientific Reports, 10(1):12356, 2020.

[30] Sonika Johri, Shantanu Debnath, Avinash Mocherla,
Alexandros SINGK, Anupam Prakash, Jungsang Kim,
and Iordanis Kerenidis. Nearest centroid classification
on a trapped ion quantum computer. npj Quantum
Information, 7(1):122, 2021.

[31] D. Willsch, M. Willsch, H. De Raedt, and K. Michielsen.
Support vector machines on the d-wave quantum an-
nealer. Computer Physics Communications, 248:107006,
2020.

[32] Yao Zhang and Qiang Ni. Recent advances in quantum
machine learning. Quantum Engineering, 2(1):e34, 2020.

[33] D. K. Park, C. Blank, and F. Petruccione. The theory
of the quantum kernel-based binary classifier. Physics
Letters A, 384:126422, 2020.

[34] Tariq M. Khan and Antonio Robles-Kelly. Machine learn-
ing: Quantum vs classical. IEEE Access, 8:219275–
219294, 2020.

[35] Maria Schuld. Quantum machine learning models are
kernel methods. arXiv:2101.11020v2, 2021.

[36] Takahiro Goto, Quoc Hoan Tran, and Kohei Nakajima.
Universal Approximation Property of Quantum Machine
Learning Models in Quantum-Enhanced Feature Spaces.
Physical Review Letters, 127(9):090506, August 2021.

[37] Xinbiao Wang, Yuxuan Du, Yong Luo, and Dacheng Tao.
Towards understanding the power of quantum kernels in
the NISQ era. Quantum, 5:531, August 2021.

[38] Casper Gyurik, Dyon van Vreumingen, and Vedran Dun-
jko. Structural risk minimization for quantum linear clas-
sifiers, 2021.

[39] Seyran Saeedi, Aliakbar Panahi, and Tom Arodz. Quan-
tum semi-supervised kernel learning. Quantum Machine
Intelligence, 3(2):24, 2021.

[40] Chen Ding, Tian-Yi Bao, and He-Liang Huang.
Quantum-inspired support vector machine. IEEE
Transactions on Neural Networks and Learning Systems,
pages 1–13, 2021.

[41] H.-P. Breuer and F. Petruccione. The Theory of Open
Quantum Systems, 2007.

[42] Elsi-Mari Laine, Heinz-Peter Breuer, and Jyrki Piilo.
Nonlocal memory effects allow perfect teleportation with
mixed states. Scientific Reports, 4(1):4620, 2014.

[43] Alex W. Chin, Susana F. Huelga, and Martin B. Ple-
nio. Quantum metrology in non-markovian environ-
ments. Phys. Rev. Lett., 109:233601, Dec 2012.

[44] G. A. L. White, C. D. Hill, F. A. Pollock, L. C. L. Hol-
lenberg, and K. Modi. Demonstration of non-markovian
process characterisation and control on a quantum pro-
cessor. Nature Communications, 11(1):6301, 2020.

[45] Felix A. Pollock, César Rodŕıguez-Rosario, Thomas
Frauenheim, Mauro Paternostro, and Kavan Modi. Op-
erational markov condition for quantum processes. Phys.
Rev. Lett., 120:040405, Jan 2018.

[46] Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mat-
tia Fiorentini. Parameterized quantum circuits as ma-
chine learning models. Quantum Science and Technology,
4(4):043001, nov 2019.

[47] M. Cerezo, Andrew Arrasmith, Ryan Babbush, Si-
mon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R.
McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio,
and Patrick J. Coles. Variational quantum algorithms.
Nature Reviews Physics, 3(9):625–644, 2021.

[48] Hossein T. Dinani, Diego Tancara, Felipe F. Fan-
chini, and Raul Coto. Estimating the degree of non-
markovianity using quantum machine learning, 2022.

[49] V. Vapnik. The nature of statistical learning theory.,
1995.

[50] Christopher J. C. Burges. A tutorial on support vec-
tor machines for pattern recognition. Data Mining and
Knowledge Discovery, 2(2):121–167, 1998.

[51] M. Opper and R. Urbanczik. Universal learning curves
of support vector machines. Phys. Rev. Lett., 86:4410–
4413, May 2001.

[52] B. Schölkopf, A. J. Smola, R. C. Williamson, and
P. L. Bartlett. New support vector algorithms. Neural
Computation, 12:1207, 2000.

[53] Alex J. Smola and Bernhard Schölkopf. A tutorial on
support vector regression. Statistics and Computing,
14(3):199–222, 2004.

11

[54] Felipe F. Fanchini, Göktuğ Karpat, Daniel Z. Rossatto,
Ariel Norambuena, and Raúl Coto. Estimating the de-
gree of non-markovianity using machine learning. Phys.
Rev. A, 103:022425, Feb 2021.

[55] Luis E. Herrera Rodriguez, Arif Ullah, Kennet J. Rueda
Espinosa, Pavlo O. Dral, and Alexei A. Kananenka. A
comparative study of different machine learning methods
for dissipative quantum dynamics, 2022.

[56] T. Hastie, R. Tibshirani, and J.H. Friedman. The el-
ements of statistical learning: Data mining, inference,
and prediction, 2009.

[57] Ryan LaRose and Brian Coyle. Robust data encodings
for quantum classifiers. Phys. Rev. A, 102:032420, Sep
2020.

[58] Manuela Weigold, Johanna Barzen, Frank Leymann, and
Marie Salm. Encoding patterns for quantum algorithms.
IET Quantum Communication, 2(4):141–152, 2021.

[59] John A. Smolin and David P. DiVincenzo. Five two-bit
quantum gates are sufficient to implement the quantum
fredkin gate. Phys. Rev. A, 53:2855–2856, Apr 1996.

[60] Lukasz Cincio, Yiğit Subaşı, Andrew T Sornborger, and
Patrick J Coles. Learning the quantum algorithm for
state overlap. New Journal of Physics, 20(11):113022,
nov 2018.

[61] Seth Lloyd, Maria Schuld, Aroosa Ijaz, Josh Izaac, and
Nathan Killoran. Quantum embeddings for machine
learning, 2020.

[62] Juan Carlos Garcia-Escartin and Pedro Chamorro-
Posada. swap test and hong-ou-mandel effect are equiv-
alent. Phys. Rev. A, 87:052330, May 2013.

[63] Heinz-Peter Breuer, Elsi-Mari Laine, and Jyrki Piilo.
Measure for the degree of non-markovian behavior of
quantum processes in open systems. Phys. Rev. Lett.,
103:210401, Nov 2009.

[64] Dariusz Chruściński, Andrzej Kossakowski, and Ángel
Rivas. Measures of non-markovianity: Divisibility versus
backflow of information. Phys. Rev. A, 83:052128, May
2011.

[65] Ángel Rivas, Susana F. Huelga, and Martin B. Plenio.
Entanglement and non-markovianity of quantum evolu-
tions. Phys. Rev. Lett., 105:050403, Jul 2010.

[66] Shunlong Luo, Shuangshuang Fu, and Hongting Song.
Quantifying non-markovianity via correlations. Phys.
Rev. A, 86:044101, Oct 2012.

[67] Alaor Cervati Neto, Göktuğ Karpat, and Felipe Fernan-
des Fanchini. Inequivalence of correlation-based mea-
sures of non-markovianity. Phys. Rev. A, 94:032105, Sep
2016.

[68] Scott Hill and William K. Wootters. Entanglement of a
pair of quantum bits. Phys. Rev. Lett., 78:5022–5025,
Jun 1997.

[69] P. Haikka and S. Maniscalco. Non-markovian dynamics
of a damped driven two-state system. Phys. Rev. A,
81:052103, May 2010.

[70] S. J. Whalen and H. J. Carmichael. Time-local
heisenberg-langevin equations and the driven qubit.
Phys. Rev. A, 93:063820, Jun 2016.

[71] M. A. Nielsen and I. Chuang. Quantum computation and
quantum information, 2000.

[72] Guillermo Garćıa-Pérez, Matteo A. C. Rossi, and S. Man-
iscalco. Ibm q experience as a versatile experimen-
tal testbed for simulating open quantum systems. npj
Quantum Information, page 1, Jun 2020.

[73] B. Bellomo, R. Lo Franco, and G. Compagno. Non-
markovian effects on the dynamics of entanglement.
Phys. Rev. Lett., 99:160502, Oct 2007.

[74] Sonja Daffer, Krzysztof Wódkiewicz, James D. Cresser,
and John K. McIver. Depolarizing channel as a com-
pletely positive map with memory. Phys. Rev. A,
70:010304, Jul 2004.

[75] David C. McKay, Thomas Alexander, Luciano Bello,
Michael J. Biercuk, Lev Bishop, Jiayin Chen, Jerry M.
Chow, Antonio D. Córcoles, Daniel Egger, Stefan Filipp,
Juan Gomez, Michael Hush, Ali Javadi-Abhari, Diego
Moreda, Paul Nation, Brent Paulovicks, Erick Winston,
Christopher J. Wood, James Wootton, and Jay M. Gam-
betta. Qiskit backend specifications for openqasm and
openpulse experiments, 2018.

[76] Ville Bergholm, Josh Izaac, Maria Schuld, Christian
Gogolin, Shahnawaz Ahmed et al. Pennylane: Automatic
differentiation of hybrid quantum-classical computations,
2018.

