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We study quantum dynamics of many-qubit systems strongly coupled to a quantized electro-
magnetic cavity field in the presence of decoherence and dissipation for both quantum emitters and
cavity photons, and taking into account the varying coupling strength of different qubits to the cavity
field and the spread of their transition frequencies. Compact analytic solutions for time-dependent
quantum state amplitudes and observables are derived for a broad class of open quantum systems
in Lindblad approximation with the use of the stochastic Schroedinger equation approach. We show
that depending on the initial quantum state preparation, an ensemble of qubits can evolve into a
rich variety of many-qubit entangled states with destructive or constructive interference between
the qubits. In particular, when only a small fraction of qubits is initially excited, the dissipation
in a cavity will inevitably drive the system into robust dark states that are completely decoupled
from the cavity and live much longer than the decay time of the cavity field. We also determine
the conditions under which coherent coupling to the quantized cavity field overcomes the dephasing
caused by a spread of transition frequencies in multi-qubit systems and leads to the formation of a
decoupled dark state.
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I. INTRODUCTION

Solid-state cavity quantum electrodynamics (QED) attracted much interest as a promising platform for quantum
information and quantum sensing systems; see, e.g., [1–5] for recent reviews. A typical scenario involves an ensemble
of quantum emitters (ideally, two-level systems) such as quantum dots, defects in crystals, or molecules, strongly
coupled to a quantized electromagnetic (EM) field in a dielectric or plasmonic nanocavity. We will call these quantum
emitters qubits for brevity, although the logical qubits forming the gates may involve many two-level systems as well
as photonic or mixed degrees of freedom. Several or many qubits are required for most applications. Although direct
near-field coupling among qubits is possible and desired for some gating protocols, in the nanophotonics context such
coupling would require deterministic placement of qubits with sub-nm accuracy, which is challenging. A simpler
scenario which still permits various ways of quantum state manipulation is the one in which the qubits are coupled
only through the common cavity field. This is the situation considered in this paper.

The problem of N qubits strongly coupled to a quantized cavity mode has been considered many times, starting
from the seminal Tavis-Cummings paper [6]. Inherent in most of these studies is the assumption of identical qubits
coupled to the field with identical coupling strengths. This makes the system invariant to permutations and allows one
to drastically reduce the number of degrees of freedom and related computational effort; see, e.g., the recent work [7]
(and references therein) where an efficient numerical solver was proposed to solve the N-qubit master equation in the
Lindblad approximation. In the solid-state nanocavity context, the cavity field is strongly nonuniform, especially in
plasmonic nanocavities where it varies on a nanometer scale. This makes the qubit-cavity coupling strength strongly
variable from qubit to qubit. Moreover, for many popular quantum emitters, such as quantum dots, optically active
point defects, excitons in semiconductor nanostructures etc., the spread of transition frequencies exceeds homoge-
neous linewidth, making inhomogeneous broadening the dominant source of dephasing. Any of these factors break
permutation symmetry and increase the complexity of the problem, making it difficult to solve even numerically for
large N . As a result, the problems with dissimilar quantum emitters are usually analyzed for few qubits, and even
then numerical treatment of the Lindblad master equation is required, e.g., [8–10].

Here we are able to drastically simplify the analysis and obtain analytic or semi-analytic solutions for quantum
dynamics of N strongly coupled dissimilar qubits or multilevel fermionic systems in the presence of decoherence and
dissipation for both quantum emitters and cavity photons. This progress is made possible by applying a modified
version of the stochastic Schrödinger equation (SSE) formalism. The idea of adding Langevin noise to the Schrödinger
equation is nothing new; see, e.g., [11–17]. This approach is typically used for numerical Monte-Carlo simulations.
We recently developed a version of SSE suitable for analytic solutions of open strongly-coupled cavity QED problems
[18, 19] and, as we show here, it is quite useful in analysis of nonuniform and inhomogeneously broadened many-qubit
systems. In this paper we focus on the dissipation-driven formation of highly entangled dark states that are decoupled
from the cavity field. The ability to generate and control such states is a problem of great practical importance for
the rapidly developing field of plasmonic nanocavity QED, where the dissipation of a cavity mode is much faster than
the relaxation in quantum emitters [20–25]. The dissipation-driven formation of entangled bright and dark states in
ensembles of quantum emitters has been studied extensively in the context of the Dicke model of superradiance [26, 27];
see, for example, [28–34] and references therein. The typical bad-cavity or no-cavity regime of Dicke superradiance
is in a sense opposite to the regime of strong-coupling dynamics, although extended samples can still demonstrate
complex oscillatory quasi-chaotic propagation effects [35, 36].

The paper is organized as follows. In Sec. II we introduce the Hamiltonian and general classification of quantum
states for N two-level qubits strongly coupled to a quantized cavity mode, including the spread of transition frequencies
and coupling strengths. In Section III we add the effects of dissipation, dephasing, and noise to the model using the
stochastic equation of evolution, which we introduced in more detail elsewhere [18, 19]. In Section IV we obtain
analytic solutions of the equations formulated in Sec. III and provide numerical examples illustrating dissipation-
driven formation of entangled dark states decoupled from the cavity field as well as the corresponding emission
spectra. In Sec. V we generalize the analysis of Sec. IV to include a large spread of transition frequencies of the qubits
and band-to-band transitions in multi-level electron systems. In Section VI we further generalize the analysis of the
same model to provide the classification of bright and dark states for arbitrary M -photon excitations in dissipative
strongly coupled N -qubit systems and illustrate this formalism with analytic results and numerical examples for
small values of M and N . Appendix A derives some useful analytic formulas for the spatial field distribution in the
practically important case of a nanocavity formed by a metallic nanotip or a nanoparticle over a metallic substrate,
which has been used in a variety of recent experiments. Appendix B derives approximate analytic results for quantum
dynamics of inhomogeneously broadened ensembles of qubits.

Since most results in this paper are in the analytic form and the plots are normalized, here, we list typical values
of the parameters in experimental solid-state nanophotonic systems which determine the strength of light-matter
coupling and relaxation rates. Strong-coupling cavity QED experiments with molecular quantum emitters typically
employ fluorescent organic dye molecules. The dipole moments of electronic transitions for a single molecule vary
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from several D [20] to 10-20 D [37, 38]. J-aggregates of tens or hundreds of molecules were used to achieve strong
and even ultrastrong coupling regime [38–40]. Molecular vibrational transitions have typical dipole moments in the
∼ 0.1 − 2 D range [42]. Vibrational strong coupling in the mid-infrared has been achieved for molecular ensembles
[43]. Semiconductor quantum dots (QDs) make another popular choice of a quantum emitter in strong coupling
experiments. Early demonstrations of strong coupling to a single QD involved an epitaxial III-V QD with a large
interband dipole moment of ∼ 30 D in a dielectric microcavity at low temperature [44, 45]. More recent strong-coupling
experiments with a single quantum emitter at room temperature utilized colloidal QDs [46] with lower dipole moments
∼ 5− 10 D but placed in a plasmonic nanocavity [5, 23–25, 47, 48].

The relaxation times in quantum emitters are strongly dependent on temperature, cavity geometry, and material
quality. At low temperatures, the linewidth of an electronic transition in molecules in diffraction-limited microcavities
reaches the natural width limited by radiative transitions, 20-40 MHz [37, 49]. For an epitaxial QD in a solid matrix
the linewidth is in tens of GHz [44]. For colloidal QDs at room temperature the total linewidth reaches tens of meV
[24, 25, 46]. The radiative lifetimes are from a few to a few tens of ns, both for QDs [24, 44, 46, 50] and for electronic
transitions in molecules [37, 41]. Furthermore, when the qubits are placed in a plasmonic nanocavity, the decay time
of their excited state is shortened due to coupling to nonradiative plasmon modes and Ohmic dissipation of the optical
near field of quantum emitters in the metal [5, 50, 51], while still remaining much longer than the photon lifetime in
plasmonic nanocavities which is in tens of fs [52].

Photon decay times are longest for dielectric microcavities: photonic crystal cavities, nanopillars, Fabry-Perot
cavities, distributed Bragg reflector mirrors, etc. Their quality factors are typically between 103− 107, corresponding
to photon lifetimes from sub-ns to µs. However, the field localization in the dielectric cavities is diffraction-limited,
which limits the attainable single-qubit vacuum Rabi frequency values to hundreds of µeV. Therefore, the strong
coupling regime for a single or few quantum emitters is possible only at low temperatures. Interestingly, even in
these experiments the cavity decay rate is faster than the decoherence of quantum emitters, although not by orders of
magnitude; see, e.g., [37, 44, 45, 49]. In plasmonic nanocavites based on metallic nanoparticles, nanotips, or nanogaps,
single-emitter Rabi splitting on the order of 100–300 meV has been observed [20–25], enabling room-temperature
strong coupling.

II. N QUBITS IN A NONUNIFORM NANOCAVITY FIELD: THE MODEL

Our formalism is applicable to any open cavity QED system with a few or many qubits located in a nonuniform
cavity field. The results are particularly important for metallic nanocavities with strong field nonuniformity on the
nm scale and ultrashort photon limetimes. Therefore, we will have in mind a plasmonic nanocavity formed, e.g., by a
nanotip or nanoparticle over a metallic substrate [23, 25, 51, 52] as sketched in Fig. 1a or a graphene nanostructure
supporting surface plasmon-polariton modes as in Fig. 1b (e.g., [53, 54]).

We begin by introducing the Hamiltonian and defining the variables for N two-level systems with states |0j〉 and
|1j〉, where j = 1, ...N , with energy levels 0 and Wj . We introduce the operators of annihilation and creation of an

excited state, |1j〉, σ̂j = |0j〉 〈1j | and σ̂†j = |1j〉 〈0j |, which satisfy standard (anti)commutation relations within each

qubit: σ̂j
† |0j〉 = |1j〉 , σ̂j |1j〉 = |0j〉, σ̂j σ̂j = σ̂j

†σ̂j
† = 0; σ̂j σ̂j

† + σ̂j
†σ̂j = 1. Then one can define the dipole moment

operator, d̂ =
∑N
j=1

(
djσ̂
†
j + d∗j σ̂j

)
, where dj = 〈1j | d̂ |0j〉, and the Hamiltonian for all qubits, Ĥa =

∑N
j=1Wj σ̂

†
j σ̂j .

The N -qubit system interacts with a single-mode field Ê = E(r)ĉ+E∗(r)ĉ†, where ĉ and ĉ† are standard annihilation
and creation operators for bosonic Fock states. The function E(r) is the spatial structure of the electric field in a
cavity. It is normalized as in [55] ∫

V

∂
[
ω2ε (ω, r)

]
ω∂ω

E∗(r)E(r)d3r = 4π~ω (1)

to preserve the standard form of the field Hamiltonian, Ĥem = ~ω
(
ĉ†ĉ+ 1

2

)
. Here V is a quantization volume and

ε (ω, r) is the dielectric function of a dispersive medium that fills the cavity. The relation between the modal frequency
ω and the function E(r) can be found by solving the classical electrodynamics boundary-value problem corresponding
to the cavity in question.

The total Hamiltonian after adding the electric-dipole interaction with the field within the rotating wave approxi-
mation (RWA) is

Ĥ = ~ω
(
ĉ†ĉ+

1

2

)
+

N∑
j=1

Wj σ̂
†
j σ̂j − ~

N∑
j=1

(
ΩRj σ̂

†
j ĉ+ h.c.

)
, (2)
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(a)

(b)

FIG. 1: An ensemble of quantum emitters (e.g. quantum dots or molecules) in a nanocavity consisting of (a) a
metallic nanoparticle or nanotip of the scanning probe above a metallic substrate, or (b) a graphene nanopatch

supporting a surface plasmon-polariton mode.

where ΩRj =
dj·E(rj)

~ is the Rabi frequency for the jth qubit located at the position rj in the cavity. Note that this
model includes a spread of the transition energies of the qubits Wj , and the variation of the cavity EM field depending
on the position of each qubit, which is essential for any nanocavity. Therefore, the model loses permutation symmetry
which was used to drastically simplify the analysis in [6, 7]. Nevertheless, as we show below, a significant reduction
in the dimensionality of the problem is possible in our case too.

Hereafter, we will use the Hamiltonian in the interaction picture:

Ĥint = −~
N∑
j=1

(
ΩRj σ̂

†
j ĉe

i∆jt + h.c.
)
, (3)

where ∆j =
Wj

~ −ω. For an arbitrary quantum state of the N-qubit system coupled to a cavity mode, the state vector
can be expanded over all possible combinations of subsystems as

Ψ =

∞∑
n=0

N∑
p=0

CpN∑
αp=1

Cnpαp |n〉|p, αp〉, (4)

where |n〉 is a Fock state of the boson (EM) field, |p, αp〉 is a qubit state, and Cnpαp are the complex amplitudes to be
determined. Here, the index αp denotes different subsets of p elements out of a set of j = 1, 2, . . . N , which correspond
to the excitation of p qubits out of N . The total number of such subsets is determined by the binomial coefficient
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CpN = N !
p!(N−p)! . The state |p, αp〉 can be written as

|p, αp〉 =

 ∏
jp∈αp

∣∣∣σ̂†jp〉
 |0qub〉,

where jp ∈ αp are qubit numbers belonging to the subset marked by index αp and

|0qub〉 =

N∏
j=1

|0j〉 = |0, α0〉. (5)

As a reminder, when the coefficients Cnpαp are calculated using the Hamiltonian (3) then the operators used to
calculate the observables should be transformed in the same way the Hamiltonian (2) was transformed into the

interaction picture, Eq. (3), namely σ̂j → σ̂je
−i

Wj
~ t and ĉ→ ĉe−iωt.

Similar to the case of identical qubits and identical field strength at the location of each qubit [6], the Schrödinger
equation with the Hamiltonian (3) leads to a set of linear equations for the probability amplitudes Cnpαp which can
be split into independent blocks corresponding to the condition

n+ p = M = const. (6)

The dimension of the Hilbert space within each independent block is
∑min[M,N ]
p=0 CpN ; for M ≥ N it is equal to∑N

p=0 C
p
N = 2N . Further reduction of the dimensionality of the problem would require identical values of the Wj and

ΩRj in which case all states including initial conditions have exact permutation symmetry and one could sum over all
states corresponding to various combinations αp made of p excited atoms; see [7] and the discussion in Section VI.

As we discuss in Section VI, in the presence of dissipation and noise, the noise source terms couple the groups with
different values of M . However, in the strong coupling regime, such noise-induced coupling scales as a small ratio of
dissipation rates to the Rabi frequency and therefore can be included perturbatively. A similar perturbative approach
has been developed for nonlinear strong coupling of electron-photon-phonon systems [56]. In practice, the generation
of nonclassical multiphoton number states is still a tremendous experimental challenge. Therefore, in Sections III-V
we choose initial conditions corresponding to single-photon excitation energies. Single-photon sources of quantum
light are readily available and can be used for initialization of both single- and many-qubit states with a single-photon
excitation energy. These are widely used in quantum information applications, including, for example, Bell states and
their generalizations to many-qubit systems; see, e.g., [57, 58]. With single-photon excitations as initial conditions,
the states that can be reached as a result of evolution of the system include the ground state |0〉ΠN

j=1 |0j〉 and the
states with energies close to the single-photon energy:

Ψ = C00 |0〉ΠN
j=1 |0j〉+ C10 |1〉ΠN

j=1 |0j〉+

N∑
j=1

C0j |0〉 |1j〉ΠN
m 6=j |0m〉 , (7)

where the time-dependent complex amplitudes C00, C10, and C0j fully characterize a given quantum state and are
to be determined from the analysis below. We postpone the analysis of arbitrary multiphoton excitations with fully
quantized multiphoton states until Sec. VI.

III. DESCRIPTION OF DISSIPATION AND NOISE USING STOCHASTIC EQUATIONS OF
EVOLUTION

A standard way to include the effects of dissipation is based on the master equation for the density matrix ρ̂ of the
system [59],

d

dt
ρ̂ = − i

~

[
Ĥ, ρ̂

]
+ L̂(ρ̂), (8)

where L̂(ρ̂) is the relaxation operator. If there are S states in a given basis |α〉, Eq. (8) corresponds to 1
2S(S + 1)

equations for the matrix elements ραβ = ρ∗βα. The number of equations that need to be solved can be reduced to

S via the method of the stochastic equation of evolution for the state vector [11–19]. This becomes possible if the
structure of the relaxation operator permits representing the right-hand side of Eq. (8) in the form

− i

~

[
Ĥ, ρ̂

]
+ L̂(ρ̂) = − i

~
(Ĥeff ρ̂− ρ̂Ĥ†eff ) + δL̂(ρ̂), (9)
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where Ĥeff = Ĥ + Ĥ(ah) is an effective non-Hermitian Hamiltonian.
Within the Markovian models of relaxation, the stochastic equation for the state vector takes the form

d

dt
|Ψ〉 = − i

~
Ĥeff |Ψ〉 −

i

~
|R〉 . (10)

In Eq. (10) the vector |R〉 is a stochastic Langevin source with the following statistical properties:

|R〉 = 0, Rα (t′)R∗β (t′′) = ~2δ (t′ − t′′)Dαβ , Dαβ = 〈α| δL̂(ρ̂) |β〉
ρ̂=⇒|Ψ〉〈Ψ | ; (11)

the overbar (· · · ) means averaging over the noise statistics, Rα = 〈α| R〉 . The dyadics CαC∗β in Eqs. (10),(11) where

Cα = 〈α| Ψ〉 correspond to the density matrix elements ραβ in the master equation (see the proof in [18]).

The observables in the method of the stochastic equation are determined by g = 〈Ψ | ĝ |Ψ〉, where ĝ is an operator
corresponding to the physical quantity g. This definition differs from a standard one by an additional averaging over
the noise statistics. The choice of operators Ĥ(ah) and correlators Dαβ should ensure the conservation of the norm

of the stochastic vector, 〈Ψ | Ψ〉 = 1, and bring the system to a physically reasonable steady state in the absence of
external perturbation.

Another widely used method to include the effects of dissipation in quantum optics is the Heisenberg–Langevin
approach [60, 61]. However, when applied to the dynamics of strongly coupled systems, the Heisenberg equations
become nonlinear (see, e.g., [60]), whereas the stochastic equation for the state vector, Eq. (10), is always linear,
which is an important advantage of this method.

The representation of the type shown in Eq. (9) is possible, in particular, for the Lindblad relaxation operator.

Here we will use the Lindbladian L̂(ρ̂) in the case of independent dissipative reservoirs for the field and qubits and at
zero temperature:

L(ρ̂) = −Σj [
γj
2

(σ̂†j σ̂j ρ̂+ ρ̂σ̂†j σ̂j − 2σ̂j ρ̂σ̂
†
j )]−

µ

2
(ĉ†ĉρ̂+ ρ̂ĉ†ĉ− 2ĉρ̂ĉ†), (12)

which gives

Ĥeff = Ĥ − i~1

2

∑
j

γj σ̂
†
j σ̂j + µĉ†ĉ

 , δL̂(ρ̂) =
∑
j

γj σ̂j ρ̂σ̂
†
j + µĉρ̂ĉ†. (13)

Here the relaxation constants µ and γi are determined by the cavity Q-factor and inelastic relaxation of the qubits,
respectively. The Q-factor is determined by adding up diffraction and Ohmic losses in a cavity; e.g., [62, 63]. Elastic
relaxation processes (pure dephasing) are included later in this section. The case of arbitrary temperatures is con-
sidered in [18]. Note that for a qubit with the transition in the visible or near-IR range, even a room-temperature
reservoir is effectively at zero temperature.

Introducing state vectors Ψ of the type given in Eq. (7), we obtain a set of stochastic equations for the amplitudes,

Ċ00 + γ00C00 = − i
~
R00, (14)

Ċ10 + γ10C10 − i
N∑
j=1

Ω∗RjC0je
−i∆jt = − i

~
R10, (15)

Ċ0j − γ0jC0j − iΩRjC10e
i∆jt = − i

~
R0j , (16)

where the relaxation constants are related to the EM field and qubit relaxation constants in the Lindbladian Eq. (12)
by

γ00 = 0, γ10 =
µ

2
, γ0j =

γj
2
. (17)

The noise properties are given by

R∗αn (t′)Rβm (t′′) = ~2δαβδnmDαn,αnδ (t′ − t′′) , (18)
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D00,00 =

N∑
j=1

γj |C0j |2 + µ|C10|2, D10,10 = 0, D0j,0j = 0. (19)

To include elastic relaxation (pure dephasing) in the Lindbladian Eq. (12) we need to add the term [64]

L(el)(ρ̂) = −Σj

[
γ
(el)
j

2
(σ̂zj σ̂

†
zj ρ̂+ ρ̂σ̂zj σ̂

†
zj − 2σ̂†zj ρ̂σ̂zj)

]
,

where σ̂zj = σ̂†zj = |1j〉 〈1j | − |0j〉 〈0j | and γ
(el)
j is an elastic relaxation constant. Recent analysis [18, 19] shows that

for two-level qubits the elastic processes can be included by making the following replacements in the expressions for

γ0j and D0j,0j : γ0j =⇒ γ0j+ γ
(el)
j , D0j,0j =⇒ D0j,0j + 2γ

(el)
j |C0j |2. These relationships lead to standard relaxation

timescales of populations T1j = 1
γj

and coherence T2j = 1
1

2T1j
+γ

(el)
j

[64]. Therefore, including pure dephasing processes

leads to corrections in the last of Eqs. (17) and the last of Eqs. (19), namely

γ0j =
γj
2

+ γ
(el)
j , D0j,0j = 2γ

(el)
j |C0j |2. (20)

Taking into account Eqs. (20), it is easy to show that for any set of elastic scattering rates Eqs. (14)-(16) conserve
the norm:

N∑
j=1

|C0j |2 + |C10|2 + |C00|2 = 1; (21)

and Eqs. (15)-(16) preserve the following relationship which includes only the rates of inelastic relaxation:

d

dt

 N∑
j=1

|C0j |2 + |C10|2
 = −

N∑
j=1

γj |C0j |2 − µ|C10|2. (22)

If pure dephasing processes can be neglected and the reservoir temperature is much lower than the optical transition
frequency (in energy units), we always have D0j,0j = D10,10 = 0, which, together with R10 = R0j = 0, allows one
to neglect the contribution of noise sources R10 and R0j when calculating observables; see [18, 19]. In this case,
Eqs. (14)-(16) can be considered an improved version of the Weisskopf-Wigner approximation, because they not only
include dissipation as imaginary parts of eigenenergies but also conserve the norm of the state vector; see Eq. (21).

IV. QUANTUM DYNAMICS AND EMISSION SPECTRUM OF AN ENSEMBLE OF QUBITS WITH
EQUAL TRANSITION FREQUENCIES

A. Analytic solution for quantum dynamics in a nonuniform cavity field

Here we consider a low-Q plasmonic cavity with a field decay time much shorter than dissipation times in qubits
T(1,2)j . In this case the dissipation is dominated by the field decay, and we can put γ0j ≈ 0 in Eqs. (14)-(16).
Furthermore, considering the low-temperature limit (as compared to the optical frequency) we can put γ00 = D0j,0j =

D10,10 = 0, which, together with R10 = R0j = 0, allows one to neglect the effect of noise terms R10 and R0j [18, 19].
Of course the resulting solutions will be valid at the intermediate timescales shorter than the qubit relaxation times.
The solution including qubit relaxation is equally straightforward to obtain, but it is more cumbersome.

The resulting coupled equations for the probability amplitudes C10 and C0j read

Ċ10 +
µ

2
C10 − i

N∑
j=1

Ω∗RjC0je
−i∆jt = 0, (23)

Ċ0j − iΩRjC10e
i∆jt = 0, (24)

whereas the solution for the amplitude of the ground state is

C00(t) = C00(t = 0)− i

~

∫ t

0

R00dt, (25)



8

so that C00(t)− C00(t = 0) = 0. The value of C2
00(t) can be also determined directly from the conservation law (21),

but we will need Eq. (25) when calculating the emission spectrum below.
These equations can be immediately solved for an ensemble of qubits with the same transition frequencies but with

different Rabi frequencies since they are located in a nonuniform field of a nanocavity. The case of different transition
frequencies is considered in the next section. We can put ∆j = 0 in Eqs. (23), (24) and introduce the new variable

F =

N∑
j=1

Ω∗RjC0j , (26)

which yields

Ċ10 +
µ

2
C10 − iF = 0, (27)

Ḟ − iΩ2
NC10 = 0, (28)

where

Ω2
N =

N∑
j=1

|ΩRj |2 (29)

is a collective Rabi frequency. The initial conditions C10(0) = F (0) = 0 give a trivial steady state solution, and there
is an infinite number of states corresponding to F = 0.

Seeking the solution ∝ eΓt gives(
C10

F

)
= e−

µ
4 t

[
AeiΣt

(
1
K1

)
+Be−iΣt

(
1
K2

)]
, (30)

where

K1,2 = ±Σ − iµ
4
, Σ =

√
Ω2
N −

µ2

16
(31)

and the constants A and B are given by the initial conditions

A =
K2C10(0)− F (0)

K2 −K1
, B =

F (0)−K1C10(0)

K2 −K1
,

and

F (0) =

N∑
j=1

Ω∗RjC0j(0).

Similarly, from Eq. (24) when ∆j = 0 we obtain

C0j(t) = C0j(0) + iΩRj

∫ t

0

C10(t′)dt′. (32)

Using the solution for C10 which follows from Eq. (30),

C10(t) =

[
C10(0)

(
cosΣt− µ

4Σ
sinΣt

)
+ i

F (0)

Σ
sinΣt

]
e−

µ
4 t, (33)

we arrive at

C0j(∞) = C0j(0)−ΩRj
F (0)

Ω2
N

. (34)

Note that Eq. (34) is valid for any µ.
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At long times one always has C10(∞) = F (∞) = 0. Therefore, for the initial state satisfying the condition

C0j(0)

C0i(0)
=
ΩRj
ΩRi

, (35)

all energy stored initially in the qubit system is radiated away over a short cavity decay time ∼ 1/µ. Such a state is
the generalization of the bright Dicke state (see, e.g., [7, 58]) to an ensemble of quantum emitters strongly coupled to
a spatially nonuniform field of a plasmonic cavity.

Consider an arbitrary initial state:

|Ψ(0)〉 =



C00(0)
C10(0)
C01(0)
...

C0j(0)
...

C0N (0)


=



C00(0)
0
0
...
0
...
0


+



0
C10(0)
C01(0)
...

C0j(0)
...

C0N (0)


. (36)

We are interested in the subset of equations for variables C10 and C0j that end up being separated from the ground
state. Since the system is linear, we can split the last column on the right-hand side of Eq. (36) into two components:


C10(0)
C01(0)
...

C0j(0)
...

C0N (0)

 =



0

C01(0)−ΩR1
F (0)
Ω2
N

...

C0j(0)−ΩRj F (0)
Ω2
N

...

C0N (0)−ΩRN F (0)
Ω2
N


+



C10(0)

ΩR1
F (0)
Ω2
N

...

ΩRj
F (0)
Ω2
N

...

ΩRN
F (0)
Ω2
N


. (37)

It is easy to see that the first column on the right-hand side of Eq. (37) corresponds to a stationary (dark) state with
C10 = F = 0. The second column gives rise to the bright state found before. As a result, we obtain

C10(∞) = 0, C0j(∞) = C0j(0)−ΩRj
∑N
m=1Ω

∗
RmC0m(0)∑N

j=1 |ΩRj |2
. (38)

Then from Eq. (21) the amplitude of the ground state is given by

|C00(∞)|2 = 1−
N∑
j=1

∣∣∣∣∣C0j(0)−ΩRj
∑N
m=1Ω

∗
RmC0m(0)∑N

j=1 |ΩRj |2

∣∣∣∣∣
2

. (39)

It is clear from Eqs. (38) and (39) that if the number J of initially excited qubits is much smaller than the total
number of qubits, J � N , then the change of the initial quantum state of the qubit ensemble is of the order of J/N .
Therefore, an ensemble of ground-state qubits effectively shields an arbitrary initial state of a relatively small group
of excited qubits from coupling to the cavity field. The shielding is due to formation of an entangled dark state in
which the destructive interference leads to decoupling of the many-body state from the cavity field, even though each
qubit remains strongly coupled to the quantum field of a cavity.

The following numerical example in Fig. 2 illustrates the formation of an entangled dark state in an ensemble of
qubits in a nonuniform field of a nanocavity. To have an explicit analytic expression for the nanocavity field distribution
we use the model described in Appendix A: a metallic sphere over a metallic substrate, where the metallic sphere
can represent a nanoparticle or an apex of a nanotip as in recent strong-coupling experiments [20, 22, 23, 25, 48].
For a strongly subwavelength field localization the quasielectrostatic approximation is valid and one can solve the
electrostatic boundary-value problem for a given geometry. As we discuss in Appendix A, this restricts the spectral
range to near-infrared or longer wavelengths, in order to stay away from the interband transition region and plasmon
resonances. Rigorous modeling of plasmonic nanocavities is outside the scope of this paper; we just need an example
of a spatial field distribution. There is an extensive literature on theoretical and numerical approaches to describe
lossy and leaky plasmonic cavity modes; see, e.g. a recent review [52] or [65]. For our example, we take the sphere
of radius R = 10 nm with its center located on z-axis at z0 = 1.2R above the substrate. We will use the line charge
approximation (A21) for the electric field of a cavity mode, which is an excellent approximation to the exact formula,
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FIG. 2: Time evolution of the populations for an ensemble of N = 21 qubits in the nanocavity formed by the
metallic sphere of radius R = 10 nm with its center located on z-axis at z0 = 12 nm above the substrate; see

Appendix A for the field distribution. The molecules are assumed to be distributed uniformly within a circle of
radius 10 nm on the substrate, with the center of the circle at the cavity axis ρ = 0. The inset shows the top view of

one possible realization of this distribution, with random angular positions in the substrate plane. The effective
cavity volume is 50 nm3, the transition dipole moment is 10 Debye, the Rabi frequency at ρ = 0 is 120 meV, and the

cavity decay time is 1/µ = 20 fs. Top blue curve: The sum of the occupation probabilities of all qubits
∑N
j=1 |C0j |2

when only the qubit in the center of the cavity is excited, i.e., C01(0) = 1; middle red curve: the occupation |C01(t)|2
of the initially excited qubit; bottom orange curve: the sum of all occupation probabilities when the qubits were

initally prepared in the bright state (35).

as one can see from the middle plot in Fig. 12. Let us take N = 21 qubits distributed uniformly on the substrate
at distances from ρ = 0 to 10 nm from the z-axis. The inset shows the top view of one possible realization of this
distribution. The angular positions of the qubits in the substrate plane are randomly generated and do not affect the
results, because the cavity field has an axial symmetry. As a reminder, we neglect any direct coupling between the
qubits due to, e.g., their dipole-dipole interactions.

First we consider an arbitrary initial state which is neither bright nor dark. Let us assume for definiteness that only
one qubit located at the maximum field ρ = 0 is initially excited, i.e., its initial probability amplitude C01(t = 0) = 1,
whereas all other qubits are in the ground state. The subsequent excitation of this qubit as described by |C01(t)|2
is shown as the middle red curve in Fig. 2, whereas the sum of populations of all qubits is the top blue curve. As is
obvious from the picture, after the bright state component of the initial state is radiated away over a short time of a
few 1/µ, the system remains in an entangled dark state which is decoupled from the cavity mode and has a lifetime
determined by relaxation constants of the qubits. This can also be verified by calculating F (t) from Eq. (26) which
approaches zero over the same timescale. Only a few per cent (∼ 1/N) of the total excitation energy is radiated away.
This result remains qualitatively the same when we vary the distribution of the initial excitation; only the fraction
of the radiated energy changes. The dynamics changes if the system was initially prepared exactly in the bright state
described by Eq. (35). In this case all initial excitation is radiated away over the time of the order of a few 1/µ. The
bottom (orange) curve in Fig. 2 shows the behavior of the sum of all qubit populations when the system starts from
the bright state.

If the cavity size is increased by, e.g., increasing the value of R, the collective Rabi frequency ΩN decreases as
V −1/2, where V is the cavity volume. According to in Eqs. (30) and (31), this will increase the period of oscillations
of populations in Fig. 2, but the fraction of the excitation energy left in the dark state will remain the same. Moreover,
the dark state will survive even if ΩN becomes smaller than the cavity decay rate µ/4, as long as ΩN remains greater
than

√
γ0jµ/2, where γ0j is the relaxation rate for the qubits defined in the previous section and assumed to be the

same for all qubits here. However, this robustness of the dark state only exists for identical qubits. As we will see
in Sec. V, for an ensemble of qubits with a large spread of transition frequencies ∆m, the reduction of the collective
Rabi frequency below ∆m destroys the dark state. Furthermore, as we discuss in Sec. VI, for multiphoton excitations
reducing the collective Rabi frequency below the cavity decay rate activates noise terms which couple eigenstates
with different excitation energies and effectively accelerate the relaxation in the qubit ensemble. Therefore, the strong
coupling condition in which ΩN is larger than all relaxation rates in the system is essential for the dark state formation
in most cases.
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B. The emission spectrum

Detecting the radiation from quantum emitters placed in nanocavities is one of the most straightforward ways to
study their quantum dynamics [2, 20, 23, 25, 60, 66]. The power spectrum received by the detector can be calculated
as [60, 66]

P (ν) = A · S (ν)

where

S (ν) =
1

π
Re

∫ ∞
0

dτeiντ
∫ ∞
0

dtK (t, τ) , (40)

K = 〈Ψ (0)| ĉ† (t) ĉ (t+ τ) |Ψ (0)〉 ; (41)

ĉ† (t) and ĉ (t) are Heisenberg creation and annihilation operators for the cavity field, Ψ (0) is an initial state of
the system. The coefficient A is determined by the cavity design, spatial structure of the cavity field, and detector
properties.

These equations indicate that to calculate the power spectrum one has to solve the Heisenberg-Langevin equations
for the operators ĉ (t) and ĉ† (t) [60] and evaluate the correlator including averaging over the noise statistics, K ⇒
〈Ψ (0)| ĉ† (t) ĉ (t+ τ) |Ψ (0)〉. However, the Heisenberg-Langevin equations are nonlinear in the strong-coupling Rabi
oscillations regime for a single-photon field. Therefore, it is more convenient to utilize the solution of the linear
stochastic equation (10) for the state vector. The corresponding procedure is described in [56] where we prove that
the correlator K (t, τ) can be calculated as

K (t, τ) = 〈 Φ (t, τ) |ΨC (t+ τ)〉. (42)

Here ΨC (t+ τ) = ĉΨ (t+ τ), where Ψ (t+ τ) is the solution to the stochastic Schrödinger equation (10) on the time
interval [0, t+ τ ] with initial condition |Ψ (0)〉; Φ (t, τ) is the solution to Eq. (10) on the time interval [t, t+ τ ] with
initial condition ΨC (t), and ΨC (t) = ĉΨ (t), where Ψ (t) is also the solution Eq. (10) but over the time interval
[0, t]. The overbar in Eq. (42) denotes averaging over the statistics of noise sources, which according to the Langevin
approach is equivalent to averaging over the reservoir degrees of freedom [67].

Now we apply this formalism to calculate the emission spectrum of an excited qubit in an ensemble of ground-state
qubits. Since we just want to illustrate how the formation of an entangled dark state suppresses the emission from
the cavity, we can simplify algebra and consider identical Rabi frequencies: ΩRj = ΩR, Ω2

N = NΩ2
R. If needed, a

more cumbersome analytic solution for the spectrum can also be readily obtained for an arbitrary distribution of Rabi
frequencies using the state vector derived in the previous subsection.

As before, we will solve for the evolution over the intermediate timescales when only the field dissipation has to be
taken into account. Consider an initial state in which only one qubit is excited, |Ψ(0)〉 = |0〉 |11〉ΠN

m=2 |0m〉.
As usual, we seek the solution of the stochastic equation for the state vector in the form of Eq. (7). From Eqs. (7)

and (10) one can get

ΨC (t) = ĉΨ (t) = C10 (t) |0〉ΠN
j=1 |0j〉 (43)

According to the above procedure, we need to find the solution of Eqs. (23)-(25) with initial condition (43) at the
time interval [t, t+ τ ]. One can see that Eqs. (23),(24) have a trivial zero solution, whereas Eq. (25) yields

Φ (t, τ) =

[
C10 (t)− i

~
e−i

ω
2 τ

∫ τ

0

R00 (t+ t′) dt′
]
|0〉ΠN

j=1 |0j〉 . (44)

Substituting Eqs. (43) and (44) into Eq. (42) and taking into account that the term linear with respect to the noise
source gives zero upon averaging, we obtain

K (t, τ) = C∗10 (t)C10 (t+ τ) . (45)

Using Eq. (30) for the function C10 (t) we get

K (t, τ) =
|ΩR|2

Σ2
e−

µ
4 τe−

µ
2 t sin (Σt) sin [Σ (t+ τ)] . (46)
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The resulting power spectrum in Eq. (40) is given by

S (ν) =
8 |ΩR|2

πµ (µ2 + 16Σ2)
Re

µ− 2iν(
µ
4 − iν

)2
+Σ2

.

Taking into account the fact that we solved the problem in the interaction picture, the measured spectrum is obtained
by replacing ν ⇒ ν − ω. Using also Eq. (31), we obtain

S (ν) =
1

2π

|ΩR|2(
(ν − ω)

2 −
(
N |ΩR|2 − µ2

8

))2
+ µ2

4

(
N |ΩR|2 − µ2

16

) . (47)

Under the condition µ� 2 |ΩR|
√
N the spectrum is simplified:

S(ν) =
1

2π

|ΩR|2(
(ν − ω)

2 −N |ΩR|2
)2

+ µ2

4 N |ΩR|
2
,

i.e., the spectrum consists of two well-resolved lines shifted with respect to ω by ± |ΩR|
√
N , with the maximum value

Smax

(
± |ΩR|

√
N
)

= 1
π

2
Nµ2 and linewidth ∼ µ

2 . The dependence Smax ∝ 1
N reflects the destructive interference effect

described above: the probability of the photon emission by a qubit scales as Prad ≈ 1
N .
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FIG. 3: Normalized emission spectra given by Eq. (47) for three values of N and the cavity decay rate µ/2 = ΩR.
The height of the peaks scales as 1/N .

This behavior is illustrated in Fig. 3 which shows the emission spectra given by Eq. (47) for three different qubit
numbers N and the cavity decay rate µ/2 = ΩR. The most interesting result here is not the splitting of the spectrum
which is an obvious consequence of strong coupling, but the fact that the peak intensity (the height of the peaks) gets
suppressed with increasing N as 1/N . This behavior is robust and does not depend on the details of initial excitation
as long as the number of initially excited qubits is much smaller than N ; see the discussion after Eqs. (38) and (39).

As we already pointed out, the dissipation-driven transition of a system into a dark state is not surprising by itself
and has been studied before for various systems; see, e.g., the formation of subradiant states in the Dicke superradiance
problem [34] or quantum dots in a plasmonic cavity [9, 10]. It is nontrivial, however, that in our case of a strongly
coupled N -qubit system, the amount of energy loss from the system before it goes into the dark state approaches zero
as 1/N due to destructive interference from unexcited qubits. It is also convenient that we have a complete analytic
solution describing the effect.

V. MANY-QUBIT SYSTEMS WITH DIFFERENT TRANSITION FREQUENCIES

In this section we consider an ensemble of qubits with a large spread of transition frequencies interacting with a
spatially nonuniform cavity mode. This is usually the case for quantum dots where the inhomogeneous broadening is
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related to the dispersion of the dot sizes. We will assume that the inhomogeneous broadening dominates:

µ

4∆m
� 1, (48)

where ∆m is the half-width of the inhomogeneous broadening. We will show below that under strong-coupling
conditions the inhomogeneous broadening leads to long-period pulsations of individual qubit populations but does
not prevent the formation of a collective dark state decoupled from the cavity mode, as long as the collective Rabi
frequency ΩN in Eq. (29) remains larger than ∆m.

It follows from Eq. (24) that

C0j = C0j(0) + iΩRj

∫ t

0

C10(τ)ei∆jτdτ, (49)

which can be substituted into Eq. (23) to obtain

Ċ10 +
µ

2
C10 = i

N∑
j=1

Ω∗RjC0j(0)e−i∆jt −
∫ t

0

N∑
j=1

|ΩRj |2C10(τ)ei∆j(τ−t)dτ. (50)

Now we introduce the Laplace transform,

Cp =

∫ ∞
0

C10(t)e−ptdt, C10(t) =
1

2πi

∫ x+i∞

x−i∞
Cpe

ptdp.

Since the functions
∑N
j=1Ω

∗
RjC0j(0)e−i∆jt and

∑N
j=1 |ΩRj |2e−i∆jt do not grow as t → ∞, we can assume Re[p] > 0

and therefore x > 0. Laplace transforming Eq. (50) gives

pCp − C10(0) +
µ

2
Cp = iFp − CpDp, (51)

where

Fp =

∫ ∞
0

 N∑
j=1

Ω∗RjC0j(0)e−(i∆j+p)t

 dt =

N∑
j=1

Ω∗RjC0j(0)

i∆j + p
,

Dp =

∫ ∞
0

N∑
j=1

|ΩRj |2e−(i∆j+p)tdt =

N∑
j=1

|ΩRj |2

i∆j + p
.

Solving Eq. (51) gives

C10(t) =
1

2πi

∫ x+i∞

x−i∞

C10(0) +
∑N
j=1

Ω∗RjC0j(0)

i∆j+p

p+ µ
2 +

∑N
j=1

|ΩRj |2
i∆j+p

eptdp. (52)

The functions C0j(t) are determined by substituting Eq. (52) into Eq. (49).
The behavior of the function C10(t) is determined by zeros of the denominator of the integrand in Eq. (52):

C10(t)→
∑
k

Ake
p0kt,

where p0k are the solutions of equation

(
p+

µ

2

)
ΠN
j (i∆j + p) +

N∑
j=1

|ΩRj |2ΠN
k 6=j(i∆k + p) = 0. (53)

Equation (53) determines a set of N + 1 normal modes for the system of Eqs. (23) and (24) after the replacement
C0j(t)e

−i∆jt → C0j(t) which eliminates explicit time dependence. The Laplace transform is especially convenient in
the limit of a continuous spectrum, see Appendix B. The dynamics of the populations of individual qubits should
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FIG. 4: Time evolution of the populations for an ensemble of N = 41 qubits with transition frequencies distributed
pseudo-randomly in the range ±∆m = 50 meV around resonance with a cavity mode. The cavity decay, Rabi

frequency distribution, geometry, and spatial distribution are the same as for the example in Fig. 2. Top blue curve:

the sum of the occupation probabilities of all qubits
∑N
j=1 |C0j |2 when only one qubit in the center of the cavity is

excited initially, i.e., C01(0) = 1; bottom red curve: the occupation |C01(t)|2 of the initially excited qubit.
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FIG. 5: Excitation probability of the cavity mode, |C10(t)|2, for the same conditions as in Fig. 4. Inset: same for a
short initial time interval, showing initial relaxation of the cavity field and Rabi oscillations.

include the beatnotes with characteristic periods T ∼ πN
∆m

. At the same time, as long as the collective Rabi frequency
ΩN remains greater than the inhomogeneous linewidth, strong coupling still leads to the formation of a collective
dark state in which only a small fraction ∼ 1/N of the initial excitation energy is radiated away whereas the sum of
all qubit populations remains approximately constant and close to its initial value.

We illustrate this dynamics by solving numerically the set of Eqs. (23) and (24) for particular values of the param-
eters. One example is shown in Figs. 4 and 5. Here we consider N = 41 qubits with transition frequencies distributed
pseudo-randomly in the range ±∆m = 50 meV around resonance with a cavity mode, which corresponds to typical
spread of frequencies of semiconductor quantum dots. The geometry and spatial distribution are the same as for the
example in Fig. 2. The cavity decay time is again 20 fs, i.e., µ = 33 meV and the Rabi frequency in the center of
the cavity is 120 meV. As is clear from the figures, over a very short initial time of the order of several 1/µ a small
∼ 1/N fraction of the initial excitation energy is radiated away and the entangled dark state is established. After that,
individual qubit populations undergo slow quasi-chaotic oscillations, as expected from a system of coupled oscillators
with incommensurate frequencies, whereas the sum of all populations remains almost constant except for a very slow
decay with characteristic timescale of > 104 1/µ. This decay is due to a small residual coupling to a cavity mode: as
one can see from the long-time dynamics in Fig. 5, the cavity mode maintains quasi-chaotic oscillations at a very low
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level of ∼ 10−4. Eventually, the relaxation of individual qubits which we neglected here will kick in, typically over ps
timescales at room temperatures and ns to µs scale at low temperatures.
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FIG. 6: Time evolution of the sum of the occupation probabilities of N = 41 qubits
∑N
j=1 |C0j |2 with transition

frequencies distributed pseudo-randomly in the range ±∆m = 90 meV around resonance with a cavity mode. The
cavity decay time, Rabi frequency distribution, geometry, and spatial distribution are the same as for the example in

Fig. 2. Only one qubit in the center of the cavity is initially excited, i.e., C01(0) = 1. Three curves correspond to
three different collective Rabi frequencies ΩN . Top orange curve: ΩN = 540 meV, middle red curve: ΩN = 270

meV, bottom blue curve: ΩN = 27 meV.

The initial stage of relaxation to the dark state (µt ≤ 20) is modulated by fast Rabi oscillations that are not
even visible in Fig. 4 but can be seen in the inset of Fig. 5. The subsequent slow beatnote oscillations of individual
qubit populations vary from qubit to qubit and between different random realizations of the distribution of transition
frequencies, but the qualitative picture remains the same. The beatnote oscillations become strictly periodic when
the transition frequencies are separated by the same frequency interval, but this would be an unrealistic situation.

If the collective Rabi frequency ΩN becomes smaller than ∆m, for example because of an increase in the cavity

volume, the decay of the sum of the occupation probabilities of all qubits
∑N
j=1 |C0j |2 accelerates. This is illustrated in

Fig. 6 which shows the evolution of the sum of populations for three values of the Rabi frequency at the cavity center:
ΩR(0) = 120 meV (top curve), 60 meV (middle curve), and 6 meV (bottom curve, which correspond the the values
of the collective Rabi frequency ΩN = 540 meV, 270 meV, and 27 meV, respectively. There is an obvious shortening
of the decay time when ΩN becomes much smaller than the total spread of transition frequencies determined by
2∆m = 180 meV. With increasing spectral density of qubits the periods of beatnotes increase, eventually leading to a
continuous spectrum of inhomogeneous broadening, where further analytic insights can be obtained, especially for the
photon mode dynamics which is not significantly affected by beatnote oscillations. Some limiting cases are described
in Appendix B.

A. Multilevel electron systems

Here we consider a multilevel quantum-confined electron system such as electron states in a quantum well or
a transition-metal-dichalcogenide (TMD) monolayer, or perhaps in a quantum wire or a multilevel quantum dot.
Note that quantum well structures are usually placed in planar cavities where only one dimension is subwavelength.
Furthermore, all epitaxially grown semiconductor nanostructures cannot be squeezed into a nanometer gap and have
to be integrated into a larger-size cavity, for example a dielectric microcavity [2, 44, 45, 68–72]. At the same time,
plasmonic nanostructures and tip-induced nanocavities have been increasingly used to achieve a strong-coupling
regime, especially with TMD monolayer semiconductors [73–75].

Optical transitions in such systems occur generally between two groups of electron energy states, for example
between electron states in the conduction band and valence band. Let us take zero energy in the middle between
these two groups and denote positive energies in the conduction band as Wj (Latin indices) and negative energies in
the valence band as −Wα (Greek indices). The frequencies of the optical transitions are

ωjα =
Wj +Wα

~
. (54)
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We do not consider here the intraband optical transitions within each group, e.g. α ⇐⇒ β or m ⇐⇒ n, although
the formalism below can be easily extended to include them.

The RWA Hamiltonian is

Ĥ = ~ω
(
ĉ†ĉ+

1

2

)
+

J∑
j=1

Wj â
†
j âj −

A∑
α=1

Wαâ
†
αâα − ~

J∑
j=1

A∑
α=1

[(
ΩR;jαâ

†
j âαĉ+Ω∗R;jαâ

†
αâj ĉ

†
)]

(55)

where ΩR;jα =
dαj ·E

~ .
It is again convenient to work in the interaction picture where

Ĥ = −~
J∑
j=1

A∑
α=1

ΩR;jαâ
†
j âαĉe

i∆jαt + h.c. (56)

where ∆jα = ωjα − ω. Note that the electric-dipole-forbidden transitions are eliminated by values djα = 0.
Instead of the excitation and deexcitation operators for a qubit that are specific to a two-level system, σ̂†and σ̂, it

is easier to introduce standard creation and annihilation operators of the fermion states. Therefore, the states that
were denoted as |0jα〉 and |1jα〉 when using the operators σ̂† and σ̂ become |0j〉 |1α〉 and |1j〉 |0α〉 when using standard
fermion operators.

We consider again lowest-energy states corresponding to zero- or single-photon excitations:

Ψ = C00 |0〉ΠJ
j=1 |0j〉ΠA

α=1 |1α〉+ C10 |1〉ΠJ
j=1 |0j〉ΠA

α=1 |1α〉

+

N,A∑
j,α

C0jα |0〉 |1j〉 |0α〉ΠJ
m6=j |0m〉ΠA

β 6=α |1β〉 . (57)

Equations for the probability amplitudes C10 and C0jα within the stochastic Schrödinger equation formalism become

Ċ10 +
µ

2
C10 − i

J∑
j=1

A∑
α=1

Ω∗R;jαC0jαe
−i∆jαt = 0, (58)

Ċ0jα − iΩR;jαC10e
i∆jαt = 0. (59)

If spin states are degenerate, pairs {j, α} corresponding to different spin states {j↓, α↓} and {j↑, α↑} have to be taken
into account separately in Eqs. (58) and (59).

To proceed, we assign the number s = 1, ..., J × A to each pair {j, α} and therefore reduce the problem to the
one already solved in this section. The most interesting result, in our opinion, is still the formation of a long-lived

entangled dark state decoupled from the cavity field when the collective Rabi frequency
(∑J

j=1

∑A
α=1 |ΩR;jα|2

)1/2
exceeds the width of the inhomogeneous broadening |∆jα|max.

VI. NONCLASSICAL MULTIPHOTON STATES IN DISSIPATIVE STRONGLY-COUPLED SYSTEMS

Many of the results obtained in previous sections for single-photon excitations, in particular the formation of dark
entangled qubit states decoupled from the cavity field, can be generalized to arbitrary multiphoton excitations which
correspond to N ≥ M and M > 1 in Eqs. (4) and (6). To avoid cumbersome algebra, consider an example of equal
Rabi frequencies and exact resonance, when one can put ΩRj = ΩR and ∆j = 0 in the Hamiltonian (3). This is not a
critical assumption and it can be avoided at the expense of more complicated final expressions. Within the stochastic
equation for the state vector, any group of probability amplitudes with a fixed value of M = n+ p is described by the
following system of equations,(

d

dt
+ γnpαp

)
Cnpαp − i

ΩR√n+ 1

p∑
αp−1

C(n+1)(p−1)αp−1
+Ω∗R

√
n

N−p∑
αp+1

C(n−1)(p+1)αp+1

 = Rnpαp(t), (60)

where

Rnpαp(t)R∗n′p′α′p(t′) = ~2δ(t− t′)Dnpαp;n′p′α′p
. (61)
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The lower index in the sums shows the type of a subset and the upper index shows the number of elements in the
sum. Equation (60) implies that the subsets αp−1 and αp+1 are related to subset αp through

|p, αp〉 = σ̂†jp−1
|p− 1, αp−1〉 , |p, αp〉 = σ̂jp+1

|p+ 1, αp+1〉 (62)

where each pair αp, αp−1 or αp, αp+1 corresponds to a certain value of the qubit index: jp−1 or jp+1. Each subset αp
corresponds to a certain finite number of subsets αp−1 or αp+1 which contribute to the summation in Eq. (60).

In the general case the presence of noise source terms Rnpαp couples the groups with different values of M . However,

in the strong coupling regime such a noise-induced coupling scales as a small parameter
γnpαp
ΩR

� 1 and therefore can
be included perturbatively. A similar perturbative approach has been developed for nonlinear strong coupling of
electron-photon-phonon systems [56].

Furthermore, for high enough photon frequencies ~ω � T , one can assume zero temperature of dissipative reservoirs.
At optical frequencies this is true even at room temperature. In this case the method of determining relaxation rates
γnpαp and correlators Dnpαp;n′p′α′p

is described in Sec. III. Assuming in addition that field dissipation is dominant in
a nanocavity, we obtain

γnpαp = n
µ

2
, (63)

Dnpαp;n′p′α′p
= 〈n|〈p, αp|δL̂(ρ̂)

ρ̂=|Ψ〉〈Ψ ||p
′, α′p〉|n′〉 = µδpp′δαpα′p

√
(n+ 1)(n′ + 1)× C(n+1)pαpC

∗
(n′+1)p′α′p

, (64)

where the operator δL̂(ρ̂) is determined by the last term in Eq. (13). It follows from Eq. (64) that nonzero autocorre-
lators of noise terms inside the group with a fixed value of M = n+ p are determined by averages of the amplitudes
C(n+1)pαpC

∗
(n+1)pαp

from the group with M ⇒M + 1:

Dnpαp;npαp = µ(n+ 1)C(n+1)pαpC
∗
(n+1)pαp

;

whereas, nonzero cross-correlators coupling the groups with different M = n+ p and M ′ = n′ + p′ are determined by
the amplitudes C(n+1)pαpC

∗
(n′+1)pαp

from the groups with M ⇒M + 1 and M ′ ⇒M ′ + 1:

Dnpαp;n′pαp = µ
√

(n+ 1)(n′ + 1)C(n+1)pαpC
∗
(n′+1)pαp

.

Therefore, for low-temperature reservoirs the coupling between blocks with different M exists only in the downward
direction. The maximum value of M is determined by the initial energy of the system; thermal excitations above
initial M are impossible. Within the group corresponding to maximum M all correlators Rnpαp(t)R∗n′p′α′p(t′) are equal

to zero and therefore one can neglect the noise terms in Eq. (60) for this group as they do not affect the observables.
The noise terms in lower-M groups affect how the deexcitation proceeds across all possible relaxation channels (as,
e.g., in [56]). At the same time the relaxation rate of the states in the highest-M group is determined only by the
values of γnpαp = nµ2 .

These properties allow us to obtain intuitive analytic results describing quantum dissipative multiqubit dynamics
at low reservoir temperature. For example, consider the states in the highest-M group where we can put Rnpαp = 0
in Eq. (60) and take into account Eq. (63). This gives(

d
dt + nµ2

)
Cn(M−n)αM−n − i

(
ΩR
√
n+ 1

∑M−n
αM−n−1

C(n+1)(M−n−1)αM−n−1

+Ω∗R
√
n
∑N−M+n
αM−n+1

C(n−1)(M−n+1)αM−n+1

)
= 0,

(65)

where n = 0, 1, ...,M .
The main technical difficulty with solving Eqs. (65) is related to the rules imposed by Eq. (62),which dictate how

each element of the subset αM−n is related to the elements of subsets αM−n∓1 which enter the sums
∑M−n
αM−n−1

(...)

and
∑N−M+n
αM−n+1

(...), respectively. However, one avoids this complication when finding complex energy eigenvalues by

summing each of Eqs. (65) over all subsets αM−n. This results in the following equations for the variables

Fn =

CM−nN∑
αM−n

Cn(M−n)αM−n :
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d

dt
+ n

µ

2

)
Fn − i

(
ΩR
√
n+ 1(N −M + n+ 1)Fn+1 +Ω∗R

√
n(M − n+ 1)Fn−1

)
= 0. (66)

For example, consider the case of M = 2. Seeking Fn ∝ eΓt we obtain Γ −i(N − 1)ΩR 0

−i2Ω∗R Γ + µ
2 −i

√
2ΩR

0 −i
√

2Ω∗R Γ + µ

 F0

F1

F2

 = 0, (67)

which gives

Γ
(
Γ +

µ

2

)
(Γ + µ) + 2N |ΩR|2Γ + 2(N − 1)|ΩR|2µ = 0. (68)

When N � 1, equation (68) can be factorized:

(Γ + µ)
[
Γ
(
Γ +

µ

2

)
+ 2N |ΩR|2

]
= 0,

which gives

Γ1,2 ≈ −
µ

4
± i
(

2N |ΩR|2 −
µ2

16

)1/2

, Γ3 ≈ −µ. (69)

It is easy to see that the roots Γ1,2 describe evolution of coupled 1-photon and 0-photon states,

Ψn=0,1 = Ψn=0 + Ψn=1 =

C2N∑
α2

C02α2
|0〉|2, α2〉+

C1N∑
α1

C11α1
|1〉|1, α1〉,

whereas root Γ3 describes evolution of the 2-photon state,

Ψn=2 = C20α0 |2〉|0, α0〉, where |0, α0〉 ≡ |0qub〉.

Therefore, for a large number of qubits the 2-photon state evolves independently of other states and decays with
decay rate µ. At the same time, 1-photon and 0-photon states get entangled while oscillating with collective Rabi

frequency ≈
(

2N |ΩR|2 − µ2

16

)1/2
and decay with decay rate µ

4 .

As the next example, we consider an initial state in which M qubits are excited whereas the cavity field is in the

vacuum state, i.e., Ψ (0) =
∑CMN
αM

C
(0)
0MαM

|0〉|M,αM 〉. The superscript (0) denotes initial moment of time t = 0. An
arbitrary initial state is a superposition of bight and dark initial states. Let’s consider their evolution separately.

A. Dark states

These are uncoupled from the cavity field and therefore are relatively long-lived, especially in the nanocavity QED
context where the relaxation is dominated by the cavity field decay. The dark states must satisfy the conditions

N−M+1∑
αM

C
(0)
0MαM

= 0. (70)

Every element of the subset αM−1 in Eqs. (70) is related to the elements of subset αM in the sum
∑N−M+1
αM

(...)

according to the rules of Eqs. (62). It is easy to see that an initial state vector which satisfies the conditions

C
(0)
(n>0)(M−n)αM−n = 0 and Eqs. (70) remains constant with time, i.e., is a stationary solution of Eqs. (65).

Equations (70) contain CM−1N equations for CMN variables, i.e., the dark state conditions can be satisfied when

CMN > CM−1N . This gives the condition for the existence of dark states: not more than half of the qubits can be
initially excited,

N ≥ 2M. (71)
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The structure of a dark state can be visualized for a simple example, when M = 2 and N = 4. In this case the
initial state vector is given by

Ψ (0) = |0〉
(
C

(0)
12 |1〉|1〉|0〉|0〉+ C

(0)
13 |1〉|0〉|1〉|0〉+ C

(0)
14 |1〉|0〉|0〉|1〉

+C
(0)
23 |0〉|1〉|1〉|0〉+ C

(0)
24 |0〉|1〉|0〉|1〉+ C

(0)
34 |0〉|0〉|1〉|1〉

)
,

(72)

where the ket before the parentheses is the photon state. Equations (70) become

C
(0)
12 + C

(0)
13 + C

(0)
14 = 0, C

(0)
12 + C

(0)
23 + C

(0)
24 = 0, C

(0)
13 + C

(0)
23 + C

(0)
34 = 0, C

(0)
14 + C

(0)
24 + C

(0)
34 = 0,

which gives the dark state as

C
(0)
12 = C

(0)
34 = A, C

(0)
13 = C

(0)
24 = B, C

(0)
14 = C

(0)
23 = C, (73)

and

A+B + C = 0. (74)

Note that the dark states at any moment of time correspond to the trivial solution of Eqs. (66): Fn = 0 for any n.
Therefore, they cannot be analyzed with Eqs. (66).

B. Bright states

Obviously, one of the bright states is a completely symmetric state:

C
(0)
0MαM

= const =
1√
CMN

. (75)

In this case due to symmetry we have Cn(M−n)αM−n = Fn
CM−nN

at any moment of time. Such states are typical for

the systems possessing permutational symmetry [7]. Then from Eqs. (66) we obtain that there is only one stationary
state Fn = 0 for any n, which means that the energy of the state satisfying Eq. (75) will be radiated away completely.

The state given by Eq. (75) is not the only bright state. Consider again the case of M = 2 and N = 4 for illustration.
In this case the state vector at an arbitrary moment of time has the structure

Ψ = |0〉 (C12|1〉|1〉|0〉|0〉+ C13|1〉|0〉|1〉|0〉+ C14|1〉|0〉|0〉|1〉+ C23|0〉|1〉|1〉|0〉+ C24|0〉|1〉|0〉|1〉+ C34|0〉|0〉|1〉|1〉)
+ |1〉 (C1|1〉|0〉|0〉|0〉+ C2|0〉|1〉|0〉|0〉+ C3|0〉|0〉|1〉|0〉+ C4|0〉|0〉|0〉|1〉) + |2〉C0|0〉|0〉|0〉|0〉. (76)

Consider the following initial state: C
(0)
14 = −C(0)

23 6= 0, C
(0)
ij 6=14,23 = 0, C

(0)
1,2,3,4 = 0, C

(0)
0 = 0. One can show that in

this case at any moment of time C14 = −C23, C
(0)
ij 6=14,23 = 0, C1 = C4 = −C2 = −C3, C0 = 0. As a result, Eqs. (65)

yield the following equations,

d

dt
C14 − 2iΩRC1 = 0,

(
d

dt
+
µ

2

)
C1 − iΩ∗RC14 = 0,

which describe decaying Rabi oscillations at frequency ≈
(

2|ΩR|2 − µ2

16

)1/2
resulting in a complete radiative energy

loss with amplitude decay rate µ
4 . Formally, these expressions for the decay rate and Rabi frequency obtained using

Eqs. (65) are similar to those obtained from Eqs. (66). However, it is easy to see that the above solution corresponds
to the trivial solution of Eqs. (66), i.e., Fn = 0 for all n, and therefore it cannot be derived from Eqs. (66).

Since the system is linear, an antisymmetric initial state of a more general form,

C
(0)
12 = −C(0)

34 , C
(0)
13 = −C(0)

24 , C
(0)
14 = −C(0)

23 ,

is also bright.
It is easy to see that any initial state of the type Eq. (72) can always be split into two bright states (symmetric

and antisymmetric one) and one dark state. For example, suppose that we initially excited one pair of qubits with
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probability of 1, i.e., Ψ (0) = |0〉|1〉|1〉|0〉|0〉, where as always the first ket describes the photon state. This state can be
represented as a sum of a symmetric bright state,

Ψ
(s)
bright =

1

6
|0〉 (|1〉|1〉|0〉|0〉+ |1〉|0〉|1〉|0〉+ |1〉|0〉|0〉|1〉+ |0〉|1〉|1〉|0〉+ |0〉|1〉|0〉|1〉+ |0〉|0〉|1〉|1〉) ,

an asymmetric bright state,

Ψ
(as)
bright =

1

2
|0〉 (|1〉|1〉|0〉|0〉 − |0〉|0〉|1〉|1〉) ,

and a dark state,

Ψdark =
1

6
|0〉 (2|1〉|1〉|0〉|0〉 − |1〉|0〉|1〉|0〉 − |1〉|0〉|0〉|1〉 − |0〉|1〉|1〉|0〉 − |0〉|1〉|0〉|1〉+ 2|0〉|0〉|1〉|1〉) .

One can see that 1/3 of the original excitation energy goes to the dark state and is preserved until the qubit decay
kicks in. The fraction of the preserved excitation increases if the initial state is closer to the dark state. For example,
an initial state Ψ (0) = 1√

2
|0〉 (|1〉|1〉|0〉|0〉+ |0〉|0〉|1〉|1〉) is a sum of a symmetric bright state,

Ψ
(as)
bright =

1

2
√

2
|0〉 (|1〉|1〉|0〉|0〉+ |1〉|0〉|1〉|0〉+ |1〉|0〉|0〉|1〉+ |0〉|1〉|1〉|0〉+ |0〉|1〉|0〉|1〉+ |0〉|0〉|1〉|1〉) ,

and a dark state,

Ψdark =
1

2
√

2
|0〉 (|1〉|1〉|0〉|0〉 − |1〉|0〉|1〉|0〉 − |1〉|0〉|0〉|1〉 − |0〉|1〉|1〉|0〉 − |0〉|1〉|0〉|1〉+ |0〉|0〉|1〉|1〉) .

In this case 1/2 of the original excitation energy goes into the dark state.
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FIG. 7: An example of time evolution of populations for the M = 2, N = 4 state (76), when the two qubits are
excited initially, namely C12 = 1 and all other coefficients are zero. The Rabi frequency ΩR is 100 meV and cavity
decay time 1/µ = 20 fs. Left panel: occupation probability of the two-photon state |C0(t)|2; middle panel: same for
|C12(t)|2 and |C34(t)|2; right panel: same for |C13(t)|2. The dynamics of other |Cij(t)|2 probabilities looks similar to

that of |C13(t)|2.

Figures 7 and 8 illustrate this dynamics with a numerical example by solving Eqs. (65) with the rules imposed
by Eq. (62) for the initial state Ψ (0) = |0〉|1〉|1〉|0〉|0〉 in which two qubits are excited with unit probability and all
other coefficients are zero. This initial state is a mix of bright and dark states. As is clear from Fig. 7 plotted for
the M = 2, N = 4 state given by Eq. (76), the bright state part is radiated away over the time of several 1/µ, after
which all occupations containing one or two photons, namely |Cj(t)|2 where j = 0, 1, 2, 3, 4, approach zero whereas
all two-qubit coefficients approach an entangled dark state decoupled from the cavity mode, in which the sum of all
qubit populations is equal to 1/3 as predicted by our analytic theory; see the dashed blue curve in Fig. 8.

With increasing total number of qubits N the fraction of the initial excitation which goes into the dark state
increases rapidly, as illustrated with the M = 2, N = 6 example in Fig. 8; see the solid red curve. This behavior is
qualitatively similar to the case of single-photon excitations solved in the main text.

If the experiment has a complete control over qubit excitations, one can switch between dark and bright states as
needed; however, even in the case of no control the fact that a large or even dominant fraction of the initial excitation
goes into a long-lived dark state makes low-Q plasmonic nanocavities more appealing for applications.

For large values of m and N the procedure of expanding an initial state into bright and dark states is unlikely to
be simpler than direct solution of ordinary differential equations (65) obtained within the SSE method. However,
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N = 4

N = 6
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FIG. 8: Sum of all occupation probabilities for the M = 2, N = 4 state (76) (dashed blue curve) and the M = 2,
N = 6 state (solid red curve) as a function of time, for the same initial conditions: two qubits are excited, namely

C12 = 1 and all other coefficients are zero.

there is a class of initial states for which this procedure is still the simplest. Consider the subset of states which do
not have any common qubit and denote it as |M, α̃M 〉. There are obviously L = N

M of such states and we consider
only the excitations where L is integer. If only such states are excited initially and all initial amplitudes are the same
and equal to 1√

L
, such states keep almost all their initial energy, especially for large N −M � 1: the amplitudes of

states in |M, α̃M 〉 approach 1√
L

N−M
N−M+1 whereas the amplitudes of all other states |M,αM 〉 are excited from zero to

the level of 1√
L

1
N−M+1 .

VII. CONCLUSIONS

We found analytic solutions for the quantum dynamics of many-qubit systems strongly coupled to a quantized
electromagnetic cavity mode, in the presence of decoherence and dissipation for both quantum emitters and cavity
photons. Analytic or semi-analytic solutions are derived for a broad class of open quantum systems including identical
qubits, an ensemble of qubits in a nonuniform nanocavity field with a broad distribution of coulping strengths and
transition frequencies, and multi-level electron systems. The formalism is based on the stochastic equation of evolution
for the state vector, within Markov approximation for the relaxation processes and rotating wave approximation with
respect to the optical transition frequencies. Although the stochastic Schrödinger equation is typically used for
numerical Monte-Carlo simulations, our version of this approach turned out to be convenient for the analytic theory.

We demonstrated in the analytic derivation that the interaction of an ensemble of qubits with a single-mode
spatially nonuniform quantum field leads to entangled states of practical importance, with destructive or constructive
interference between the qubits depending on the initial excitation. In particular, if one or a small fraction of qubits
were excited initially whereas the field was in the vacuum state, the subsequent relaxation drives the whole ensemble
of qubits into an entangled dark state which is completely decoupled from the leaky cavity mode, even though each
qubit remains strongly coupled to the field. It is nontrivial that only a small fraction 1/N of the initial excitation
energy is lost before the system goes into the dark state, where N is the number of qubits in the ground state.

We found the conditions in which strong coupling overcomes the spread of transition frequencies of an ensemble
of qubits or a multi-electron system and leads to formation of a decoupled many-qubit dark state with conserved
total excitation energy, despite quasi-chaotic oscillatory dynamics of individual qubits. We also studied the interplay
of bright and dark states for multiphoton excitation energies and determined the conditions for the formation of
decoupled dark states.

A potentially important effect not included in this paper is direct dipole-dipole coupling between neighboring qubits.
Dipole-dipole interactions can affect both the relaxation rates of the qubits and the transition frequencies, which would
change the numerical values of these phenomenological parameters, without affecting the results. At the same time,
dipole-dipole coupling contributes an additional interaction term in the Hamiltonian which This affects the dynamics
of entangled dark states and could be potentially utilized for manipulation of the quantum state and implementation
of logic gates. This is an interesting topic for future work.
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Appendix A: Spatial distribution of the electric field in a plasmonic nanocavity

In this section, we derive a representative example of the spatial distribution of the cavity field that we use in the
numerical examples in this paper. We are interested in fields oscillating at optical frequencies in a plasmonic nanocav-
ity. Consider for definiteness the nanocavity created by a metallic sphere in (sub)nm vicinity to the metallic substrate,
as in strong coupling experiments with gold nanoparticles or in typical nanotip-based cavity QED experiments; see,
e.g., [20, 22, 23, 25, 48, 51]. One can approximate the tip apex as a sphere, with the radius R and variable distance
to the substrate. In the above experiments, the tip apex radius was 10-20 nm whereas the nanoparticle radius varied
in broader limits 20-50 nm.

All plasmonic nanocavities demonstrated so far are leaky, i.e., the field emitted by the qubits is coupled to prop-
agating EM modes of various kinds. Nevertheless, the spatial distribution of the electric field confined in the region
much smaller than wavelength, for example in the near zone of the nanoparticles or in the nanogap between the
tip and the substrate, can still be described in the quasielectrostatic approximation. Within our approach based on
phenomenological relaxation rates, the losses due to coupling to radiating modes contribute to the overall cavity loss
rate µ. A detailed modeling of cavity modes in lossy and leaky plasmonic nanocavities is outside the scope of this
paper.
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FIG. 9: To-scale diagram of the first four image charges for z0 = 1.1 with all scales normalized to the radius of the
sphere. Also shown are z∞ ≡ limn→∞ zn and z∞ ≡ limn→∞ zn (we calculate these in the text). No image charges
are placed in the sphere below z∞ and none are placed in the substrate above z∞. The axes are the z and ρ of a

cylindrical coordinate system.

We work in a cylindrical system of coordinates with the origin on the plane and the cylindrical axis—the z-axis—
intersecting the center of a sphere at z = z0 > 0. The placement of the coordinate system is illustrated in Fig. 9. We
will normalize all spatial scales to the radius of the sphere. Since the sphere and the plane do not intersect, we have
z0 > 1. To find the spatial distribution of the nanocavity field, we assume both the nanosphere and the substrate
to be perfect conductors. We solve the problem using the method of images, as suggested in [76]. Note that the
method of images can be extended to materials with arbitrary complex dielectric permittivities; for example for a
plane interface between the materials with dielectric permittivities ε1 and ε2 the image charge gets multiplied by the
factor ε1−ε2

ε1+ε2
[77], which approaches the ideal conductor limit of -1 in the limit of large |ε2| � 1, no matter whether

it is the real or imaginary part of the dielectric permittivity which has a large absolute value. For an interface with
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a sphere the situation is more complicated as it requires summation over an infinite number of image charges, but
again the corrective factor is an explicit function of dielectric constants and approaches the ideal conductor limit when
the dielectric constant of a sphere |ε2| � 1; see [78]. If we take gold as an example [79], at near-infrared and longer
wavelengths the Drude limit of |ε2| � 1 is valid. For example at the wavelength of 750 nm the dielectric constant
of bulk gold is ε2 ' −20 + 1.2i [79]. We numerically checked that for our geometry the resulting correction to the
field amplitude as compared to an ideal conductor is less than 10 per cent at near-infrared and longer wavelengths.
At visible and shorter wavelengths there will be a large deviation from the Drude limit, especially in the interband
transition region. Furthermore, there will be plasmon resonances dependent on the cavity geometry.

Our problem, then, is that of solving the Laplace equation with Dirichlet boundary conditions on a sphere and a
plane not intersecting the sphere. The geometry requires the placement of an infinite number of point charges along
the z-axis. Without loss of generality, we suppose the sphere to be at some positive potential and the plane to be at a
potential of zero. Note that here we are interested only in the spatial field distribution; the amplitude is determined
by the normalization condition 1 for the quantized field mode.

First, we place an image charge q0 at z0—the center of the sphere; this raises the sphere to the desired nonzero
potential. But q0 breaks the boundary condition for the plane; the plane is distorted by q0 to some nonzero, nonuniform
potential. To restore the plane to ground, we place another image charge q0 = −q0 at z0 = −z0 inside the half-space—
this is the reflection of q0 in the plane. But now the boundary condition for the sphere is not satisfied. Typically,
when it is introduced in elementary texts on electricity and magnetism (e.g., [77, 80, 81]), correcting the distortion on
the plane by q0 (a plane and a point charge) is the first problem solved via the method of images and correcting the
distortion on the sphere by q0 (a sphere and a point charge) is the second. To cancel the effect of q0 on the sphere,
we place q1 at z1 such that (z0 − z1)(z0 − z0) = 1 and q1/q0 = −[(z0 − z1)/(z0 − zn)]1/2. But now q1 distorts the
plane; so, we place q1 = −q1 at z1 = −z1, etc. The distortion of the plane by each qn is canceled by qn, the reflection
of qn in the plane; the distortion of this qn on the sphere is canceled by qn+1, the reflection of qn in the sphere. The
first four image charges are depicted in Fig. 9.

In the following section, we write a set of coupled difference equations (or recursion relations) for the image charges
and their positions on the z-axis; we solve these equations to obtain closed form expressions for qn and zn in terms
of the initial conditions q0 and z0; then, we write the field on the metallic substrate—the location of the quantum
emitters—as an infinite series where each term is the contribution from qn and its reflection in the plane qn.

1. Series solution via difference equations

We set q0 = 1, since the field amplitude is determined by normalization as already stated. Then we have

qn = −qn, (A1)

zn = −zn, (A2)

(z0 − zn+1)(z0 − zn) = 1, (A3)

qn+1

qn
= −

(
z0 − zn+1

z0 − zn

)1/2

= − 1

z0 − zn
, (A4)

where the second line of Eq. (A4) follows from Eq. (A3) and the fact that 1/(z0 − zn) > 0. Decoupled and with the
qns and zns eliminated, Eqs. (A1–A4) are

(z0 − zn+1)(z0 + zn) = 1, (A5)

1

qn
+

1

qn+2
=

2z0
qn+1

. (A6)

Eq. (A6) is solved in [76] but Eq. (A5) is not; we present solutions to both equations. The solution we present to
Eq. (A6) is similar to the solution in [76].

Eq. (A6) is a second-order, linear difference equation in 1/qn; furthermore, the zeroth (1/qn) and second (1/qn+2)
terms are both multiplied by the same coefficient, namely, 1. The solutions to this kind of equation are nicely expressed
in terms of hyperbolic functions; this is due to the following two identities for hyperbolic functions:

sinhϑn+ sinhϑ(n+ 2) = 2 coshϑ sinhϑ(n+ 1),

coshϑn+ coshϑ(n+ 2) = 2 coshϑ coshϑ(n+ 1). (A7)
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Since sinh and cosh are linearly independent, Eq. (A7) implies that

1/qn = A sinhαn+B coshαn, (A8)

where α defined by

coshα = z0 (A9)

is the general solution to Eq. (A6). The constants A and B can be determined from the given initial conditions q0
and z0. We use Eq. (A4) to find that 1/q1 = 2z0 = 2 coshα; thus, A and B are determined by the system

1/q0 = 1 = A,

1/q1 = 2 coshα = A coshα+B sinhα. (A10)

Eq. (A10) is solved by A = 1 and B = 1/ tanhα; so, the image charges are given by

qn =
sinhα

sinhα(n+ 1)
. (A11)

In writing Eq. (A11), we have used the identity

sinhϑ coshϕ+ coshϑ sinhϕ = sinh (ϑ+ ϕ) (A12)

to simplify the expression obtained from substituting the values of A and B found from solving Eq. (A10) into
Eq. (A8).

We have obtained a closed-form expression for qn; now, we turn our attention toward doing the same for zn. While
Eq. (A5) is nonlinear, it is first-order and rational; furthermore, it is of a form such that it can be reduced to a
linear second-order difference equation via a simple nonlinear change of variable—this method is detailed in [82]. We
rearrange Eq. (A5) by solving for zn+1 and adding z0 = coshα to both sides:

zn+1 + coshα = 2 coshα− 1

zn + coshα
. (A13)

We write Eq. (A13) in terms of the new variable ξn where the ξns are defined by zn + coshα = ξn+1/ξn; this leads to

ξn+2 + ξn = 2 coshα ξn+1. (A14)

Eq. (A14) is identical to Eq. (A6); so, Eq. (A14) is also solved by Eq. (A8), which implies

zn + coshα =
coshα(n+ 1) + C sinhα(n+ 1)

coshαn+ C sinhαn
. (A15)

Note that Eq. (A15) contains only one undetermined constant while Eq. (A8)—from which Eq. (A15) is derived—
contains two. This is due to the fact that Eq. (A15) is the general solution to Eq. (A5), which is first-order, while
Eq. (A8) is second-order.

Applying the initial condition z0 = coshα to Eq. (A15) yields C = 1/ tanhα which leads to

zn =
sinhα

tanhα(n+ 1)
. (A16)

To obtain Eq. (A16), we have again used Eq. (A12) to simplify.
Using the expressions obtained for qn and zn, we can write the field E as an infinite series; but first, we consider

the asymptotic behaviors of qn and zn for large n. Since, for large n, sinhα(n+ 1) behaves like e|α|n, qn rapidly
approaches 0. On the other hand, zn rapidly approaches the constant |sinhα| since tanhα(n+ 1) rapidly approaches
1 if α > 0 or −1 if α < 0. Denote

z∞ ≡ lim
n→∞

zn = |sinhα| = (z20 − 1)1/2. (A17)

The last equality follows from the identity sinh arcoshx = (x2 − 1)1/2 which holds for all x such that |x| > 1. Since
z∞ = (z20 − 1)1/2, z∞ > z0 − 1 (i.e., the point z = z∞ on the z-axis is inside the ball) follows from the triangle
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1

z∞ = (z20 − 1)1/2

z0

FIG. 10: The existence of a triangle with sides of these lengths is ensured by the Pythagorean theorem. The triangle
inequality applied to this triangle yields 1 + (z20 − 1)1/2 > z0; so, z∞ > z0 − 1. See Eq. (A17).

inequality—see Fig. 10; so, all image charges are placed inside one of the conductors (zn strictly decreases from z0 as
n increases so z0 ≥ zn > z∞ for all n), as expected.

We are interested in the field E in the z = 0 plane. In this plane we have

E =

∞∑
n=0

[
qn(ρ− ẑzn)

(ρ2 + z2n)3/2
− qn(ρ + ẑzn)

(ρ2 + z2n)3/2

]

= −2ẑ

∞∑
n=0

qnzn
(ρ2 + z2n)3/2

. (A18)

Since the field in the plane, as computed with Eq. (A18), is purely in the z direction, we will from now on write the
magnitude of the field E = −Ez instead of the field E; also, since we are going to normalize the field, we drop the
prefactor of 2 on the second line of Eq. (A18). Substituting Eqs. (A11) and (A16) into Eq. (A18), we arrive at

EN ≡ sinh2 α

N∑
n=1

coshαn

sinh2 αn

[
ρ2 +

(R sinhα

tanhαn

)2]−3/2
→ E as N →∞. (A19)

For large n, the nth term in Eq. (A19) is proportional to e−|α|n; the series converges rapidly—more rapidly for larger
values of |α|, that is, for larger values of z0 (coshx is increasing on x ∈ (0,∞)). Consider Fig. 11 which illustrates
convergence of the series for the case z0 = 1.1; EN does not change appreciably between N = 20 and N = 104.
Furthermore, for z0 ≥ 2 it is enough to have N = 3.

0 0.5 1 1.5 2
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1

2

3
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ρ

E
N

N = 104

N = 20

N = 5

FIG. 11: EN plotted against ρ for z0 = 1.1 and various values of N . EN is the field due to the first 2N image
charges; it is the first N terms in the series solution for the field—Eq. (A19). The lines corresponding to E20 and
E104 are indistinguishable. All fields are normalized to the same scale defined by placing the unit charge q0 = 1 in

the middle of the sphere and normalizing all distances by the radius of the sphere.
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2. Two approximations

Equation (A19) is straightforward to use in numerical simulation but is unwieldy for the analytic derivation of
the quantum dynamics in the main text. We consider two physically motivated approximations; we call one the
point-charge approximation and the other the line-charge approximation.

We define the point-charge approximation

EpN ≡
QNZN

(ρ2 + Z2
N )3/2

(A20)

where QN ≡
∑N−1

0 qn and ZN ≡ (1/QN )
∑N−1

0 znqn. The point-charge approximation is the field due to a real
dipole composed of QN at z = ZN and −QN at −ZN . By “real dipole” we mean two point charges with charges of
opposite sign but equal magnitude separated by some finite distance. Unlike the field due to a dipole vector located
at the origin, the field of this real dipole does not diverge for small as ρ → 0. QN is just the total sum of charges.
ZN is the average of the displacements of the charges weighted according to the magnitude of the charges, i.e., it is
the position of the qn’s center of mass but with charge instead of mass. The point-charge approximation is the field
due to the point charge which most closely resembles the infinite series of image charges above the substrate and that
most-closely-resembling charge’s reflection in the plane.

The line charge approximation is

ElN ≡
QN

z0 −
√
z20 − 1

(
1√

ρ2 + z20 − 1
− 1√

ρ2 + z20

)
(A21)

where QN is the same as in the point-charge approximation. The line-charge approximation is the field due to a total
charge of QN distributed uniformly over the line between zn and z∞ and the reflection of this object in the plane.
We chose a uniform charge distribution not because the discrete distribution of image charges are well approximated
by uniform continuous distribution—it is not—but because it is simple and because it leads to an integrand with a
nice antiderivative. The line-charge approximation is the most straightforward way to include the fact that the qn’s
are extended in the z-direction.

While the point-charge approximation is a single term, its dependence on z0—through ZN and QN—is not expressed
in closed form. On the other hand, while the line-charge approximation is two terms, its dependence on z0 is simpler;
it still contains QN but does not contain ZN . We will see that the line-charge approximation is also more accurate
for z0 ∼ 1 which is our main interest.

Fig. 12 illustrates the accuracy of the point and line-charge approximations at three values of z0. We evaluate the
accuracy of the approximations by comparing them to E20 (since N = 20 is enough terms for the series to converge
at z0 = 1.1—see Fig. 11, it should also be enough for z0 = 1.2 and z0 = 11). The line-charge approximation is more
accurate than the point-charge approximation for z0 ∼ 1. For z0 <≈ 1.2 the line-charge approximation underestimates
the field at small ρ and for z0 >≈ 1.2 the line-charge approximation overestimates the field at small ρ. For large z0
(e.g., the z0 = 11 plot in Fig. 12), while the point-charge approximation has converged to the true field, the line-charge
approximation hovers above the true field, that is, the line-charge approximation overestimates the field by about the
same amount for all ρ. The origin of this hovering behavior becomes apparent when we consider the point-charge
approximation of the line-charge approximation, i.e., an approximation of an approximation (and the point-charge
approximation is appropriate for any distant-from-the-origin and localized charge distribution mirrored in the plane).
The best fit point charge to the line of charge involved in the line-charge approximation is a charge located at the
center of the line, that is, at z = z0 − (z0 − z∞)/2; however, this is slightly too close to the origin—for large z0, the
exact field is best approximated by a point charge at z = z0. Fig. 13 corroborates this argument; it shows that, for
z0 = 11, when the substitution z0 → z0 + (z0 − z∞)/2 is made, the point and line-charge approximations agree.

Appendix B: The limit of a continuous spectrum of transition frequencies

Consider a large enough sample of qubits with a dense enough distribution of transition frequencies, so that the
continuous distribution limit in Eq. (50) is justified. This is possible when

|ΩRj | � ∆j −∆j±1.

In the opposite limit the field is mostly coupled to one qubit closest to resonance.
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FIG. 12: Three plots of E20 (the series solution—Eq. (A19)), Ep20 (the point-charge approximation—Eq. (A20)) and
El20 (the line-charge approximation—Eq. (A21)) against ρ for three values of z0, namely, 1.1 (top panel), 1.2 (middle

panel) and 11 (bottom panel). In the bottom panel, the lines corresponding to E20 and Ep20 are indistinguishable.
All fields are normalized to the same scale described in the caption to Fig. 11. The numerical examples in the main

text make use of the line approximation with z0 = 1.2.

In the continuous limit we replace ∆j ⇒ ∆ and introduce the density of states g(∆) as

k+p∑
j=k

Oj =

∫ ∆k+p

∆k

O(∆)g(∆)d∆,

where Oj is a sequence of discrete values of a given function.
Then Eq. (50) is transformed as

Ċ10 +
µ

2
C10 = i

∫ ∞
−∞

e−i∆tΩ∗R∆C0∆(0)g(∆)d∆−
∫ t

0

[∫ ∞
−∞

ei∆(τ−t)|ΩR∆|2g(∆)d∆

]
C10(τ)dτ. (B1)

It is convenient to parameterize the density of states g(∆) and ΩR∆ as

g(∆) =
N

2∆m
f(∆), ΩR∆ =

ΩN√
N
ρ(∆),

where 2∆m is the width of the distribution of frequency detunings. With this parameterization
∫∞
−∞ f(∆)d∆ = 2∆m.
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FIG. 13: Plot of the point-charge (Eq. (A20)) and line-charge (Eq. (A21)) approximations evaluated at z0 = 11 as
well as the line-charge approximation evaluated at 11 + [11− (112 − 1)1/2]/2 = 11 + 301/2 against ρ. The lines

correspond to Ep20(z0 = 11) and El20(z0 = 11 + 301/2) are nearly indistinguishable. All fields are normalized to the
same scale described in the caption to Fig. 11.

As a result, Eq. (B1) takes a form convenient for applying the Laplace transform:

Ċ10 +
µ

2
C10 = i

√
NΩN
2∆m

F̃ (t)− |ΩN |
2

2∆m

∫ t

0

D̃(t− τ)C10(τ)dτ, (B2)

where

F̃ (t) =

∫ ∞
−∞

F∆e
−i∆td∆; F∆ = C0∆(0)ρ∗(∆)f(∆);

D̃(t) =

∫ ∞
−∞

D∆e
−i∆td∆; D∆ = |ρ(∆)|2f(∆).

Since
∫∞
−∞ |ΩR∆|

2g(∆)d∆ =
∑N
j=1 |ΩRj |2 = Ω2

N , one can show that
∫∞
−∞D∆d∆ = 2∆m.

Applying Laplace transform to Eq. (B2) gives

pCp − C10(0) +
µ

2
Cp = i

√
NΩN
2∆m

F̃p −
|ΩN |2

2∆m
CpD̃p, (B3)

where

F̃p =

∫ ∞
0

F̃ (t)e−ptdt =

∫ ∞
−∞

F∆
i∆+ p

d∆,

D̃p =

∫ ∞
0

D̃(t)e−ptdt =

∫ ∞
−∞

D∆

i∆+ p
d∆.

Solving Eq. (B3) gives

C10(t) =
1

2πi

∫ x+i∞

x−i∞

C10(0) + i
√
NΩN
2∆m

∫∞
−∞

F∆d∆
i∆+p

p+ µ
2 + |ΩN |2

2∆m

∫∞
−∞

D∆d∆
i∆+p

eptdp, (B4)

where, as usual, the analytic continuation of the complex p-plane to the region Re[p] ≤ 0 corresponds to the counter-

clockwise integration path around the poles in the integrals
∫∞
−∞

(...)d∆
i∆+p .
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The poles of an integrand in Eq. (B4) are determined by

p+
µ

2
+
|ΩN |2

2∆m

∫ ∞
−∞

D∆

i∆+ p
d∆ = 0. (B5)

In our system the inhomogeneous broadening is much greater than the decay rate of the cavity field, ∆m � µ; see
Eq. (48). In the strong coupling regime, the Rabi frequency is also much greater than the cavity decay rate, ΩN � µ.
The value of the ratio between ∆m and ΩN determines two distinct dynamic regimes.

1. Strong inhomogeneous broadening

In this case

|ΩN |2

2∆2
m

� 1� N |ΩN |2

4∆2
m

, (B6)

where the second inequality is due to the limit of a continuous spectrum: the typical value of the Rabi frequency
〈ΩR〉 ∼ ΩN√

N
should exceed the distance between discrete spectral lines 2∆m/N . The first inequality ensures that near

the pole the value of |p| ∼ max
[
µ,

Ω2
N

∆m

]
� ∆m. In this case, taking into account correct direction of the integration

path around the pole in Eq. (B4), we obtain a standard expression:

1

i∆+ p
⇒ πδ(∆)− iP

∆
,

where P is principal value of the integral. The resulting solution of Eq. (B5) is

p0 = −µ
2
− π|ΩN |2

2∆m
D∆=0 + i

|ΩN |2

2∆m

∫ ∞
−∞

P
∆
D∆d∆. (B7)

It is easy to show that the expression π|ΩN |2
2∆m

D∆=0 is exactly the probability of transition per unit time from the

state |1〉ΠN
j=1|0j〉 into the continuous spectrum of states of excited qubits calculated with Fermi’s Golden Rule.

The time evolution of C10(t) becomes

C10(t) ≈

[
C10(0) +

√
NΩN
2∆m

(
iπF∆=0 +

∫ ∞
−∞

P
∆
F∆d∆

)]
ep0t. (B8)

The second term in the brackets on the rhs of Eqs. (B8) is due to the dynamics at short times t < ∆−1m � µ−1, i.e.,
before the exponential decay kicks in. If qubits are not initially excited, this term is exactly zero. Furthermore, it
can be neglected if the initial probability of finding the photon mode excited, Pph = |C10(0)|2, is at least as large

as the initial excitation of the qubits, Pqub =
∑N
j=1 |C0j(0)|2, whereas the distribution of excitation probabilities of

individual qubits is “uniform”: |F∆| ∼ |C0j(0)| ∼ 1√
N
|C10(0)|.

It is important to keep in mind that despite Eq. (48), dissipation of the cavity field can be faster than the energy
transfer to resonant qubits, as long as

1� µ

4∆m
> π

Ω2
N

4∆2
m

.

2. “Weak” inhomogeneous broadening

Now consider a relatively narrow frequency spectrum, when

Ω2
N

2∆2
m

� 1,

while still ∆m � µ. In this case the transition to continuous spectrum is always valid and the roots of Eq. (B5)
satisfy |p| ∼ ΩN � ∆m. Since the typical width of the spectrum is 2∆m, we always have D|∆|∼ΩN�∆m � 1, or even
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D|∆|>∆m = 0 for a limited spread of transition frequencies. Keeping only the leading nonzero terms with respect to

a small parameter ∆m
ΩN

and using
∫∞
−∞D∆d∆ = 2∆m, Eq. (B5) can be transformed to

p2 +Ω2
N ≈ −

[
µ

2
+

Ω2
N

2∆m

(
D∆=Im[p] −

i

p2

∫ ∞
−∞

∆D∆d∆+
1

p3

∫ ∞
−∞

∆2D∆d∆

)]
p, (B9)

which has the solution

p0 = ±i(ΩN − δΩs)− iδΩas − κ± + o

(
(δΩs,as)

2

ΩN
,
κ2±
ΩN

)
, (B10)

where

δΩs =
1

4∆mΩN

∫ ∞
−∞

∆2D∆d∆, δΩas = − 1

2∆m

∫ ∞
−∞

∆D∆d∆, κ± =
µ

4
+
πΩ2

N

4∆m
D∆=±ΩN .

In particular, for Gaussian distribution D∆ = 2√
π
e−∆

2/∆2
m ,

δΩs =
∆2
m

2
√
πΩN

, δΩas = 0, κ+ = κ− =
µ

4
+

√
πΩ2

N

2∆m
e−Ω

2
N/∆

2
m .

Note that the contribution to photon absorption κ± originated from light-qubit coupling (the second term) cannot
be expanded in powers of a small parameter ∆m

ΩN
.

Comparing this solution with the one obtained without any inhomogeneous broadening, it is easy to see that the

frequency shift due to inhomogeneous broadening, ∼ ∆2
m

ΩN
, is always greater than the one due to finite cavity field

decay, ∼ µ2

ΩN
, as long as Eq. (48) is satisfied. At the same time, photon absorption κ± is dominated by the cavity

field dissipation µ. This is obvious when the spread of frequencies is limited and D∆=±ΩN = 0, but it remains true
also for a Gaussian distribution D∆ as long as

1� µ

4∆m
>

√
π

2

Ω2
N

∆2
m

e−Ω
2
N/∆

2
m .

To get simpler algebra, let’s consider a symmetric distribution D∆ when κ+ = κ− and δΩas = 0. A general
case leads to more cumbersome expressions but the same qualitative result. Neglecting the terms of the order of∫∞
−∞∆F∆d∆

ΩN
∫∞
−∞ F∆d∆

∼ ∆m
ΩN

,
∫∞
−∞∆2F∆d∆

Ω2
N

∫∞
−∞ F∆d∆

∼ ∆2
m

Ω2
N

, µ
ΩN

etc., we obtain a result similar to the one for identical qubits without

detunings. Indeed, in this case Eq. (B4) gives the following the solution for C10(t):

C10(t) ≈
(
C10(0) cos [(ΩN − δΩs)t] + i

F (0)

ΩN
sin [(ΩN − δΩs)t]

)
e−κτ , (B11)

where we used

√
NΩN
2∆m

∫ ∞
−∞

F∆d∆ =

N∑
j=1

Ω∗RjC0j(0) = F (0).

Substituting Eq. (B11) into Eq. (49) yields

C0j(t) = C0j(0) + iΩRj

∫ t

0

(
C10(0) cos [(ΩN − δΩs)t] + i

F (0)

ΩN
sin [(ΩN − δΩs)t]

)
e(i∆j−κ)τdτ. (B12)
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