
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Generation of multiple attosecond sub-bursts in
femtosecond pulse trains by long-wavelength driving lasers

Zhiming Yin, Xiangyu Tang, Xuhong Li, Beiyu Wang, Jiaxin Han, C. D. Lin, and Cheng Jin
Phys. Rev. A 107, 013114 — Published 25 January 2023

DOI: 10.1103/PhysRevA.107.013114

https://dx.doi.org/10.1103/PhysRevA.107.013114


Generation of multiple attosecond sub-bursts in femtosecond pulse trains by

long-wavelength driving lasers

Zhiming Yin,1 Xiangyu Tang,1 Xuhong Li,1 Beiyu Wang,1 Jiaxin Han,1 C. D. Lin,2 and Cheng Jin1, 3, ∗

1Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
2J. R. Macdonald Laboratory, Department of Physics,

Kansas State University, Manhattan, Kansas 66506, USA
3MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing,
Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China

High-order harmonics generated by a long intense femtosecond laser are known experimentally to
create attosecond pulse trains (APTs). In the time domain, an APT consists of a sequence of sharp
attosecond bursts that are equally separated by each half optical cycle. Here we show that such well-
known features can be modified when longer wavelength driving laser is used. From our simulations,
we show that multiple shorter attosecond sub-bursts exist in the femtosecond pulse train within each
half optical cycle and the duration of each sub-burst scales approximately as λ−2

0
with the driving

laser wavelength λ0. We show that such sub-bursts can be found using quantitative rescattering
model for harmonics generated from a single atom and their origin is due to the interference of
the quantum orbits from first two returns of the recombining electron. We further show that such
sub-bursts can be phase matched under proper laser focusing condition and the position of the gas
cell, thus, such new features should be observable experimentally.

I. INTRODUCTION

High-order harmonic generation (HHG) is a nonlin-
ear optical phenomenon resulting from the interaction
of atoms or molecules with an intense femtosecond laser
field [1–6]. Due to its unique plateau structure in the
spectrum, HHG has been served as coherent light sources
in the extreme ultraviolet (XUV) and soft X-rays [7–10].
It has also been used for the generation of attosecond
light pulses in the form of attosecond pulse train (APT)
[11] and isolated attosecond pulse (IAP) [12] to provide
important tools for detecting and controlling ultrafast
electronic dynamics inside atoms, molecules, and ma-
terials [13–16]. In the development of attosecond light
sources, one of the motivations is to reduce its pulse du-
ration to provide better time resolution for probing phys-
ical processes. A general scheme for generating attosec-
ond pulses is to spectrally filter the coherent high har-
monics. To reduce its duration, extension of harmonics
in the plateau region is required according to the uncer-
tainty principle. To date, shortest durations of about 43
as [17] and 53 as [18] have been reported, even though
precise characterization of such short pulses remains a
contentious issue [19]. These ∼50 as pulses are gener-
ated by synthesizing a broad bandwidth (> 100 eV) of
soft X-ray (SXR) high harmonics from atoms driven by
intense long-wavelength 1.8-µm lasers. However, further
reduction of the duration of attosecond pulses has been
hindered by the existence of attochirp of high harmonics
[20]. Therefore, it is highly desirable to look for other
means to reduce the duration of an attosecond pulse.
It is well known that harmonic emission from a single

atom can be well described by a three-step model [21, 22].

∗ Corresponding author. E-mail: cjin@njust.edu.cn

In the first step, the electrons are released to the contin-
uum by tunneling ionization; in the second step, the elec-
trons are accelerated in the laser field to obtain higher
kinetic energy; in the third step, the electrons recombine
with the parent ions and emit high-energy photons, i.e.,
the high harmonics. For each harmonic order, an elec-
tron can follow multiple quantum paths in the continuum
[23–34]. According to the excursion time, the first two
shortest paths are usually called “short” and “long” or-
bits (or trajectories). These orbits are for electrons that
first return to recombine with the parent ion after strong
field ionization. When an electron visits the parent ion
more than once, higher-order return orbits can contribute
to harmonic generation. We can categorize them by the
second return, the third return, and so on, and each re-
turn has a “short” and a “long” orbit. There has been
continuing interest on the effect of multiple quantum or-
bits in strong field phenomena. For example, Zäır et al.
[31] observed experimentally quantum-path interference
between “short” and “long” orbits in the HHG, which
could be used to characterize the full single-atom dipole
moment. Hickstein et al. [30] showed that low-energy
features in the measured photoelectron angular distribu-
tion are clear signatures giving direct visualization of an
electron passing by its parent ion more than once before
strongly scattering from it. Petrakis et al. [32] experi-
mentally demonstrated a method of spectral control and
selection of high harmonics from distinct quantum paths
by varying the laser frequency chirp of an intense laser
pulse.

For the higher-order returns, since the electron spends
more time than one optical cycle, they become more ob-
vious if the driving laser is a multiple-cycle pulse. With
long-duration driving laser, it usually results in an APT
by spectral filtering high harmonics. Attosecond pulses
thus appear in each half optical cycle of driving laser in
the APT. When the wavelength of driving laser is in-
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creased, the spectral region of HHG is greatly extended
since the photon energy of harmonic cutoff is scaled as
λ2
0, where λ0 is the laser wavelength. This condition

becomes a prerequisite for reducing the duration of at-
tosecond pulse in the APT. On the other hand, the ef-
fects of higher-order returns are more evidently mani-
fested in the HHG process when the driving laser has a
long wavelength. For example, Hernández-Garćıa et al.
[25] reported a route to generate zeptosecond waveform
structure in the temporal pulse of X-ray high harmon-
ics by controlling the duration and carrier-envelope off-
set of >7 µm driving laser pulses, which is due to the
interference of X-ray emissions from multiple scattering
events. In a later theoretical work, He et al. [24] showed
that the weight of the contribution from the electron’s
higher-order returns to the HHG increases with the laser
wavelength. With the development of laser technology
in optical parametric amplification (OPA) and optical
parametric chirped pulse amplification (OPCPA), long-
wavelength MIR lasers become largely available in the
labs [7, 35, 36]. It is thus of great interest to explore
the possibility of generating sub-bursts inside each pulse
train by taking advantage of ascending contribution from
higher-order quantum orbits with long-wavelength MIR
driving lasers.

To fully describe the generation of HHG, or the at-
tosecond pulse, one also needs to consider the propaga-
tion effect of high harmonics in a macroscopic nonlinear
medium [37–39]. Efficient generation of HHG is mainly
determined by good phase matching between the geomet-
ric phase of the focused driving laser and the induced-
dipole phase accumulated due to the motion of the elec-
tron in the continuum. The later phase is approximately
proportional to the laser intensity and becomes larger for
the higher-order return quantum orbit as the electron
spends more time in the continuum [40]. Thus phase-
matching conditions are quite different for high harmon-
ics due to different quantum orbits. Since high harmonics
caused by higher-order return quantum orbits have rela-
tively large phases, they are generally difficult to phase
match in the gas medium. The meaningful control of the
duration of attosecond pulse by selecting high harmonics
from higher-order returns obtained from single-atom the-
ory should be examined by including propagation effect.
This has been rarely performed previously.

In this work, our main goal is twofold. First, we will
demonstrate that contribution of higher-order returns
to HHG driven by the MIR lasers can be utilized to
produce attosecond sub-bursts in the femtosecond pulse
train (FPT) at the level of single-atom response. Such
pulse train occurs in every half optical cycle. Second, we
will calculate the HHG phase due to higher-order return
orbits and will search condition for good phase matching.
This paper is arranged as the following. In Sec. II, we will
give the theoretical methods for simulating single-atom
HHG, the macroscopic propagation in the gas medium,
and the far-field harmonic emissions. In Sec. III, we will
first discuss the generation of attosecond sub-bursts due

to the interference of high harmonics from the first and
second return orbits using long-wavelength MIR driving
lasers at the single-atom response. We will then calcu-
late the phases for different quantum orbits, which are
then used to analyze phase-matching conditions (or the
spatial map of coherence length) of HHG. We will finally
show the results of attosecond pulses in the far field after
macroscopic propagation under the favorable conditions.
The conclusions will be given in Sec. IV.

II. THEORETICAL METHODS

A. Theory of single-atom HHG response

To simulate the response of a single atom under an ul-
trafast intense laser pulse, the most accurate way is to
numerically solve the time-dependent Schrödinger equa-
tion (TDSE). However, this approach is quite time con-
suming and the physics of electron dynamics is not easy
to uncover. Alternatively, a model based on the strong-
field approximation (SFA) proposed by Lewenstein et al.
[41] has been widely applied for simulating single-atom
HHG. A quantum orbital (QO) model [42–46] has been
further established by applying the saddle-point approx-
imation to separate harmonic emissions from different
quantum paths. To overcome the drawback of the SFA,
a quantitative rescattering (QRS) model [46–48] has been
developed in which the interaction of the returning elec-
tron and the ionic core has been properly treated. The
QRS model has been confirmed by comparing with those
from solving three-dimensional TDSE and with many ex-
periments, see Ref. [49].

1. Quantitative rescattering (QRS) model

In the QRS model [46–48], the induced-dipole moment
of an atomic target under a linearly polarized laser can
be written as:

x(ω) = W (ω)d(ω), (1)

where d(ω) is the complex photorecombination (PR)
transition dipole matrix element, which reflects the prop-
erties of the target, and W (ω) is the complex microscopic
wave packet, which is mostly determined by the laser and
the ionization potential of the target.
In the QRS model, d(ω) can be precisely calculated by

solving the time-independent Schrödinger equation under
the single-active electron (SAE) approximation, in which
the interaction between the electron and the atomic ion
is described by a model potential [50]. dSFA(ω) in the
Lewenstein (or SFA) model is obtained by assuming that
the continuum state of the ionized electron is a plane
wave, which is not accurate. Meanwhile the wave packet
W(ω) in the QRS model is the same as that in the SFA
model, and it can be calculated using the Lewenstein
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model or the quantum orbit model:

W (ω) =
xSFA(ω)

dSFA(ω)
, (2)

or

W (ω) =
xQO(ω)

dSFA(ω)
. (3)

Here xSFA(ω) and xQO(ω) are complex induced-dipole
moments, and dSFA(ω) is a pure imaginary or a pure
real number.

2. Lewenstein (or SFA) model

According to the Lewenstein model under the strong-
field approximation (SFA) [41], the time-dependent in-
duced dipole moment can be written in the form of the
following integral,

x(t) =− i

∫ t

−∞

dt′
(

−2πi

t− t′ − iǫ

)3/2

d∗x (ps +A(t))

× dx (ps +A (t′))E (t′) e−iS(ps,t,t
′) + c.c.,

(4)

where E(t) is the applied laser field, A(t) is the vector
potential, ps is the saddle-point solution for momentum,
which is given by

ps = −
1

t− t′

t
∫

t′

A(t′′)dt′′, (5)

and S(ps, t, t
′) is the classical action of the electron during

propagation in the electric field, which is expressed as

S(ps, t, t
′) =

t
∫

t′

dt′′(
1

2
[ps +A(t′′)]

2
+ Ip), (6)

where Ip is the ionization potential of the target, and t
′

and t are the ionization and recombination moments of
the electron, respectively. Note that in Eq. (4), one can
truncate the excursion time of the electron to select con-
tribution to the single-atom HHG (or the electron wave
packet) from different returns.
For hydrogenlike atoms, the dipole matrix element de-

scribing the transition from the ground state to the con-
tinuum is given by

d(p) = 〈p|d̂|g〉 = i(
27/2(2Ip)

5/4

π
)

p

(p2 + 2Ip)
3 . (7)

3. Quantum orbit (QO) model

Applying the saddle-point approximation, the follow-
ing two equations can be obtained for the harmonic with

angular frequency ω [42–46]:

1

2
[ps +A(t′)]2 = −Ip, (8)

and

1

2
[ps +A(t)]2 = ω − Ip. (9)

Here the first equation corresponds to the quantum effect
of tunneling ionization of the electron, and the second
equation represents the energy of the photon (ω) emitted
by the recombination of the electron and the parent ion.
The induced-dipole moment in the frequency domain

can be expressed as:

x(ω) =
∑

s

2π
√

det (S′′)

(

−2πi

ts − t′s

)3/2

d∗x (ps +A (ts))

× dx (ps +A (t′s))E (t′s) e
−iΘ(ps,ts,t

′

s
),

(10)

where each pair (ts, t
′

s) determines a unique quantum

orbit represented by s, the phase factor Θ(ps, t, t
′

) =

S(ps, t, t
′

) − ωt, and the calculation of the determinant
det(S′′) is straightforward. In Eq. (10), one can select
the contribution to the single-atom HHG (or the electron
wave packet) either from one specific quantum orbit or
from multiple quantum orbits.

B. Propagation equations of the high-harmonic

field

We assume that the laser beam is not affected when it
propagates in a macroscopic gas medium. By employing
a moving coordinate frame (z′ = z and t′ = t − z/c)
and applying the paraxial approximation, the Maxwell’s
wave equations for high-harmonic field in the frequency
domain are [51–54]

∇2
⊥
Ẽh (r, z

′, ω)−
2iω

c

∂Ẽh (r, z
′, ω)

∂z′

= −µ0ω
2P̃nl (r, z

′, ω)

(11)

where

Ẽh(r, z
′, ω) = F̂ [Eh(r, z

′, t′)], (12)

P̃nl(r, z
′, ω) = F̂ [Pnl(r, z

′, t′)], (13)

and

Pnl(r, z
′, t′) = n0x(r, z

′, t′). (14)

Here F̂ is the Fourier transform operator acting on the
temporal coordinate, Pnl(r, z

′, t′) is the nonlinear polar-
ization defined in Eq. (14), and n0 is the neutral atom
density. x(r, z′, t′) is the induced-dipole moment in the
time domain obtained with a local laser field at the spa-
tial position (r, z′), and it can be related to x(ω) in Eq.
(1) by an inverse Fourier transform. Once Eq. (11) is

solved, the harmonic field Ẽh(r, z
′, ω) at the exit face of

the gas medium is called the near-field harmonic.
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FIG. 1. Time-frequency analysis of single-atom harmonic emission due to first-return orbits (a), the second-return orbits (b),
and the orbits of both returns (c). The results for including all orbits are in (d). Note that the values in (a)-(d) are normalized
individually. (e) Temporal profiles of the attosecond pulses synthesized from single-atom high harmonics from different orbits
in (a)-(d). The width of the attosecond sub-burst is 30 as due to the interference of quantum orbits from the first and second
returns. Here the 1600-nm laser has the intensity of 1.5 × 1014 W/cm2 and the total pulse duration is 30 cycles. The QRS
model is applied, in which the microscopic wave packet is computed by truncating the electron excursion time in the standard
SFA model to select contributions from a specific return.

C. Far-field harmonic emission

The propagation of high-harmonic field in a gas
medium can be simulated rigorously by solving the
Maxwell’s wave equations. Its propagation in the vac-
uum can be carried out using Huygens integral under
the paraxial and Fresnel approximations. The harmonic
in the far field is obtained by the near-field harmonic by

Ef
h (rf , zf , ω)

=ik

∫

Ẽh (r, z
′, ω)

zf − z′
J0

(

krrf
zf − z′

)

exp



−
ik

(

r2 + r2f

)

2 (zf − z′)





× rdr,
(15)

where J0 is the zero-order Bessel function of the first
kind, zf and z are the far-field and near-field position
from the laser focus, rf is the transverse coordinate in
the far field.

III. RESULTS AND DISCUSSION

A. Generation of attosecond sub-bursts in the

pulse train by the interference of quantum orbits

We first calculate HHG and attosecond pulses at the
level of single-atom response. In the calculation, the elec-

tric field of the laser pulse takes the form

E(t) = E0cos
2
(πt

τ

)

cos(ωt+ ϕ). (16)

Here τ is the total duration, which is 2.75 times the full-
width-at-half-maximum (FWHM) duration of the laser
pulse, ϕ is the carrier-envelope-phase (CEP), and E0 is
the peak strength. The target is neon atom. The laser
peak intensity is 1.5 × 1014 W/cm2, the total duration
is 30 optical cycles, and the CEP is fixed at 0. With the
QRS model, the simulated HHG and attosecond pulses
are shown in Fig. 1 using a driving laser with wavelength
of 1600 nm. The time-frequency analysis of high harmon-
ics due to quantum orbits from the first return is shown
in Fig. 1(a), and for the second return in Fig. 1(b). In
Figs. 1(c) and (d), quantum orbits from the first and
second returns, and from all returns are included, re-
spectively. Here, contribution from a specific return is
selected by truncating the electron excursion time in the
SFA model. One can see that the first and second re-
turns give quite different harmonic cutoffs, see Figs. 1(a)
and (b). Harmonic emissions due to these two returns
are well resolved even after all quantum paths have been
included, see Figs. 1(c) and (d). We synthesize high har-
monics with photon energies above 0.3Up + Ip, where Up

is the pondermotive energy of the electron. The inten-
sity of the resulting attosecond pulses can be explicitly
calculated as

IAPTs(t) =

∣

∣

∣

∣

∫

∞

ω′

ω2x(ω)eiωtdω

∣

∣

∣

∣

2

, (17)



5

FIG. 2. Time-frequency analysis of single atom HHG driven by lasers with wavelengths of 2000 nm (a), 2400 nm (b), and 3200
nm (c). The intensity and number of cycles of the total duration are kept the same as those in Fig. 1. (d)-(f): Temporal profiles
of attosecond pulses by spectral filtering high harmonics from different quantum orbits at different wavelengths as indicated.
The widths of attosecond sub-bursts due to the interference of the first and second return orbits are 20 as, 14 as, and 8 as at
the three different driving wavelengths, respectively. (g) The intensity ratio of HHG due to the second return and first return
orbits as a function of the wavelength.

where ω′= (0.3Up + Ip)/~. And the results are shown
in Fig. 1(e). Including quantum orbits from individual
first or second return, a single pulse (red or blue line)
occurs within each half optical cycle of the driving laser.
By considering the interference of quantum paths from
both first and second returns, multiple fine oscillatory
temporal structures (purple line) with FWHM width of
about 30 as over each half optical cycle appear. The
strength of such temporal structures (to be called “at-
tosecond sub-bursts” from here on) are slightly modified
(black line) if higher returns (more than two) are added,
but the number and the width of attosecond sub-burst is
not changed.
The attosecond sub-bursts appearing in the time in-

terval of electron recombination, i.e., about half optical
cycle, can be interpreted quantitatively. For simplicity,
we only consider the interference of two harmonic cutoffs
generated by the first and second returns. The period of
an attosecond sub-burst is given by

T1 =
2π

ω1 − ω2
=

2π~

(3.17Up + Ip)− (1.54Up + Ip)

=
2π~

1.63Up
.

(18)

Note that the central photon energy of the synthesized
pulse train can be estimated as 1.735Up + Ip, thus the
corresponding period is about twice of the FWHM dura-
tion of the attosecond sub-burst according to Eq. (18).
Here ω1 and ω2 represent the angular frequencies of the
two harmonic cutoffs with 3.17Up and 1.54Up being the
maximum electron kinetic energies from first and second
returns, respectively. T1/2 is approximately the FWHM
of the attosecond sub-burst, which is calculated to be 35
as with Up = 35.85 eV by using the given laser param-
eters. The number of attosecond sub-bursts in the time
range from 0.15 to 0.25 cycles [grey area in Fig. 1(e)] can
be calculated as

n =
[0.1T0

T1

]

=
[ 0.2π

ω0T1

]

, (19)

where T0 and ω0 are the period and the angular frequency
of the driving laser, respectively. The calculated num-
ber n is 8 (n is rounded up to an integer). Both the
number of attosecond sub-bursts and the width of each
calculated one from simple formulas agree very well with
those shown in Fig. 1(e). We have also checked that
the depletion of the ground state can be neglected when
forming the attosecond sub-burst structure.
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We next calculate attosecond sub-bursts by increas-
ing the wavelength of the driving laser, with fixed peak
laser intensity and fixed number of optical cycles. Time-
frequency analysis of high harmonics are shown in Figs.
2(a)-(c) for the driving wavelengths of 2000 nm, 2400
nm, and 3200 nm, respectively. In the calculations, the
quantum orbits from all returns are included. Interfer-
ence of harmonic emissions from quantum orbits of first
and second returns can be clearly seen. By spectral filter-
ing the high harmonics, the temporal pulses are plotted
(black lines) in Figs. 2(d)-(f). One can see that as laser
wavelength is increased, the number of attosecond sub-
bursts is increased in the fixed time range measured by
the optical cycles, while its FWHM duration is scaled ap-
proximately as λ−2

0 as indicated in the figure, where λ0

is the wavelength of the driving laser. The structure of
the attosecond sub-burst is caused mostly by the inter-
ference of high harmonics due to quantum orbits of first
and second returns, see purple lines in Figs. 2(d)-(f).

We also check the intensity ratio of high harmonics
due to the second and first returns. This ratio is de-
fined to be the integrated harmonic intensity due to the
second return from 0.3Up + Ip to 1.6Up + Ip with re-
spect to first return from 2.0Up + Ip to 3.2Up + Ip. Fig.
2(g) shows the intensity ratio as the laser wavelength is
increased, meaning the importance of second return in-
creases with wavelength in comparison to first return.
This conclusion is consistent with what has been found
in He et al. [24] that the yield weight of harmonics gen-
erated by higher-order return orbits increases with the
wavelength. Therefore, one can expect that interference
effect in attosecond sub-bursts due to the first and second
return orbits becomes more important with the increase
of laser wavelength.

To verify the accuracy of the QRS model employed
in the above calculations, we simulate the single-atom
HHG by using the TDSE method. Comparison of time-
frequency analysis of harmonic emissions from the QRS
model and the TDSE method are shown in Figs. 3(a) and
(b). Harmonic emissions from first, second, and higher
returns from the two calculations clearly agree with each
other quite well, including the trajectory structures and
the relative strengths of harmonic emissions from differ-
ent returns. We further show the temporal attosecond
sub-bursts in Fig. 3(c), where the number of attosecond
sub-bursts and the width are also in good agreement.
Thus, the QRS model can be used to correctly predict the
behaviors of quantum orbits in the HHG process driven
by MIR lasers. Note that Hernández-Garćıa et al. [25]
have theoretically predicted similar sub-bursts with zep-
toseconds duration using a longer wavelength of 3.9-µm
laser. Their calculation was performed using the SFA+
approach [55]. They attributed such sub-burst struc-
ture to the interference of X-ray harmonic emissions from
multiple quantum orbits, including first-return, second-
return, and third return orbits. However, we have iden-
tified that harmonic emissions from third-return orbits
are very weak for the wavelength of the driving laser we

FIG. 3. Time-frequency analysis of single-atom HHG ob-
tained from the QRS model (a) and from the TDSE method
(b). (c) Temporal profiles of attosecond sub-bursts by spectral
filtering high harmonics in (a) and (b). The laser parameters
are the same as those in Fig. 1 except that the FWHM du-
ration is 3 optical cycles.

considered.

B. Phase-matching analysis of HHG from different

quantum orbits

1. Induce-dipole phase

In this section we examine whether the attosecond sub-
burst waveforms in the pulse train identified in single
atom response can be realized in actual experiments. For
this purpose, we first analyze phase-matching conditions
for high harmonics from each of multiple quantum or-
bits upon propagation in a gas medium. In quantum
orbit theory, the phase of the induced dipole is larger the
longer the quantum orbit in the continuum is, which in
turn makes phase matching more difficult and the far-
field harmonics emitted at a greater divergence angle
[46, 56–59]. The induced-dipole phase can be calculated
in the frame of the SFA by using the classical trajec-
tory of the electron under the external electric field as
[40, 60, 61]

ϕi(ps, t, t
′) = S(ps, t, t

′)− qω0t, (20)

where i = S1, L1, S2, L2, S3, L3, ..., standing for dif-
ferent quantum orbits, and t′ and t are the electron ion-
ization and recombination times obtained by solving the
Newton’s equation of motion, respectively. Here, “S1”
refers to the short quantum orbit in the first return, “L1”
the long quantum orbit in the first return and so forth.
In Fig. 4(a), the induced-dipole phase of harmonic order
23 (H23) as a function of laser peak intensity is shown
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FIG. 4. (a) Induced dipole phase as a function of laser intensity for different quantum orbits (indicated by “S1”, “L1”, ...)
calculated using classical trajectories. The distributions of quantum orbits characterized by the laser intensity I0 and the
phase coefficient α simulated by the SFA theory (b) and by the TDSE method (c). Note that the QRS model gives the same
distribution of quantum orbits as the SFA model at a given harmonic order. The wavelength of the driving laser is 800 nm and
the harmonic order is H23.

for the first six quantum orbits at 800 nm. The phase de-
pends linearly on the laser intensity, and can be written
as

ϕi = αi,q · I. (21)

Here αi,q is the phase coefficient for q-th harmonic order
and I is the laser intensity. The values of αi,q extracted
from Fig. 4(a) are listed in Table I.

TABLE I. According to the classical model, the calculated α

coefficients of each orbits at 800 nm, 1200 nm, 1600 nm, and
2000 nm. Here the unit of the α coefficient is rad · W−1cm2.

λ0(Hq) αS1 αL1 αS2 αL2 αS3 αL3

800 nm (H23) 1.5 23.5 25 32 34 48

1200 nm (H83) 5 80 84 109 113 162

1600 nm (H175) 12 190 199 259 268 383

2000 nm (H321) 26 370 388 506 526 748

The phase coefficient αi,q also can be extracted from
the intensity-dependent induced-dipole moments calcu-
lated by the SFA (or QRS) model and the TDSE method.
The contribution from the phase component αi,q over a
range of intensities close to I0 can be expressed as follows
[62–66]:

Dq(αi,q, I0) =

∫

xq(I) exp(iαi,qI)G(I − I0)dI, (22)

where xq(I) represents the induced-dipole moment of the

q-th harmonic, and G(x) = e−x2/(4a) is the Gaussian
window function with an adjusted parameter a. By em-
ploying the trapezoidal pulse shape for the driving laser,
the quantum path distributions in terms of αi,q and I0
are simulated by the SFA model and the TDSE method
in Figs. 4(b) and (c), respectively. The values of αi,q

for different quantum orbits are indicated (white dashed

lines) in these figures. It can be seen that for laser intensi-
ties generating H23 in the plateau, the αi,q from classical
trajectories are in a general agreement with the distri-
butions of quantum paths for both the SFA and TDSE
results. The quantum-path distributions simulated by
the SFA model are plotted for the laser wavelengths of
1200 nm, 1600 nm, and 2000 nm in Figs. 5(a)-(c), respec-
tively. The selected harmonic orders are labeled in these
figures. Note that the coefficients αi,q do not depend
much on the harmonic order. The white lines are the ex-
tracted coefficients αi,q from the induced-dipole phases
by the classical trajectories as shown in Figs. 5(d)-(f).
These values are also listed in Table I. With the increase
of laser wavelength, the orbital feature in the distribu-
tion of |Dq(αi,q, I0)|

2 becomes more obvious. The general
agreement between the distribution of quantum orbit and
the classical value of αi,q is also achieved. In addition,
from Table I, for a given quantum orbit, the coefficient
α approximately scales as λ3

0.

2. Coherence length of HHG for different quantum orbits

For phase matching of HHG, we consider effect caused
by the geometric phase of the driving laser beam and
the the intrinsic induced-dipole phase accumulated by
the electron following the specific quantum orbit. For
our purpose here we ignore contributions from the neu-
tral atom dispersion and the plasma defocusing. This
model is valid when the gas pressure is low and the laser
intensity is low.
The phase mismatch of wave vectors between the qth

harmonic and the fundamental driving laser can be ex-
pressed as [51, 52, 67, 68]:

δkq(r, z) = kq − |qk1 +K|, (23)

where kq = qω0/c, k1 is the total wave vector of the
driving laser and K is the effective wave vector of single-
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FIG. 5. Distributions of quantum orbits simulated by the SFA model at the laser wavelengths of 1200 nm (a), 1600 nm (b), and
2000 nm (c) for the selected harmonic orders. The corresponding induced dipole phases calculated by the classical trajectory
for different quantum orbits are shown in (d)-(f).

atom response. k1 is explicitly expressed as

k1(r, z) = k0ez −∇ϕ(r, φ, z), (24)

where ez is the unit vector along the z direction, ϕ(r, z) is
the geometric phase of the driving light, and k0 = ω0/c.
The wave vector K describing the spatial dependence of
the atomic phase is given by

K(r, z) = ∇ϕq,dip(r, z). (25)

Here ϕq,dip(r, z) is the intrinsic induced-dipole phase ac-
cumulated by an electron moving along a given quantum
orbit in the laser field. Its dependence on the laser inten-
sity is written as

ϕq,dip(r, z) = −αi,qI(r, z), (26)

where I(r, z) is the spatial peak intensity of the driving
laser.
Finally, the coherence length of HHG can be defined

as

Lq,coh(r, z) =
π

|δkq(r, z)|
. (27)

The phase-matching conditions of HHG can be opti-
mized by varying the macroscopic parameters. Below we
will show two examples to demonstrate that good phase-
matching conditions for HHG due to high-order return
quantum orbits can be achieved. We first simulate the

coherence length of high harmonics generated by a 1600-
nm driving laser, see Fig. 6. The laser beam is assumed
Gaussian, its beam waist at the focus is w0 = 130 µm,
and peak intensity at the focus is 1.5 × 1014 W/cm2.
In Fig. 6, the spatial distributions of coherence length
by “short” orbits are shown on the left column and by
“long” orbits are shown on the right column, for the first
three returns, respectively. The direction of the arrow
in the figure gives the direction of the wave vector of
the harmonic, determining its divergence in the far field.
What we are interested in here is to selectively main-
tain the contributions to the HHG from quantum orbits
other than the S1, i.e., the “short” orbit in the first re-
turn. This can be achieved by varying the position of a
gas target relative to the laser focus since the size of a
gas jet is usually much shorter than the Rayleigh range of
the driving laser. For all quantum orbits other than the
S1, a narrow good phase-matching region (white strip)
starting from the off-axis position before the laser focus
and continuing until near the laser focus and close to the
axis is observed. Because only in the white strip region
phase mismatch caused by the induced-dipole phase of
long quantum orbits can be mostly compensated by that
due to the geometric phase of the driving laser. On the
other hand, the direction of harmonic wave vector is quite
different before laser focus for different long quantum or-
bits. If the gas medium is put before the laser focus,
the harmonics from different quantum orbits cannot in-
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FIG. 6. Map of coherence length of harmonic H65 generated
by different quantum orbits. From top to bottom row, the
first, second, and third returns are plotted. The left column
are for “short” orbits, and the right column are for “long”
ones. The red arrow indicates the direction of the harmonic
wave vector. The peak intensity and the beam waist at the
focus of the 1600-nm Gaussian beam are 1.5 × 1014 W/cm2

and 130 µm, respectively.

terfere coherently because they have different divergence
angles. Thus, one would choose to put the gas medium
at the focus to minimize the diverging effects of HHG
from different quantum orbits.

Similarly, we carry out similar simulations using a
2000-nm driving laser, see Fig. 7. To improve phase
matching of quantum orbits with longer wavelength, a
more loosely focused beam is required. The beam waist
of the driving laser is thus set to 200 µm, with the same
peak intensity. The behaviors of coherence lengths are
very similar to Fig. 6, so the gas should be placed also at
the laser focus. Note that the evolution of high-harmonic
field in a gas medium is reflected in the coherence length
map, which has been demonstrated in our previous works
[51, 52]. With the guidance of the coherence lengths in
Figs. 6 and 7, we will next show the results of HHG
and attosecond pulses by performing numerical simula-
tions by solving the Maxwell’s wave equations of the high-
harmonic field.

FIG. 7. Same as Fig. 6 but for a 2000-nm driving laser with
a beam waist of 200 µm and a harmonic order of 131.

C. Macroscopic HHG and attosecond pulses after

propagation in the gas medium

1. HHG in the far field

With the macroscopic parameters used in Fig. 6, we
simulate the HHG in Fig. 8 by setting the center of
a 1-mm long gas jet at the laser focus. In the simula-
tions, we first solve the Maxwell’s wave equations of the
high-harmonic field in the gas medium, and then obtain
the spatial distributions of HHG in the far field by using
Huygens integration. The single-atom induced dipoles
are calculated by the QRS model with the separation of
quantum paths in the frame of quantum orbits model.
Fig. 8(a) gives the intensity distribution of far-field high
harmonics by including all quantum paths. Figs. 8(b)-
(d) show the intensity profiles due to the “short” orbits,
S1, S2, S3, respectively, and the results for the “long”
orbits L1, L2, L3 are plotted in Figs. 8(f)-(h). One can
see that only the harmonics generated from S1 have small
divergence, while all the other orbits result in similar and
larger divergence in the far field. For the L1 shown in Fig.
8(f), the spectrum is wider when the divergence angle is
small, and becomes narrower when the divergence angle
is increased. Fig. 8(e) gives the integrated HHG spec-
tra over the divergence angle by quantum orbits from
three different returns separately. One can see that at
the desired macroscopic conditions the harmonic yields
of the second-return orbits after propagation can be com-
parable to that of the first-return ones, which provides
the prerequisite for the conspicuous interference between
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FIG. 8. (a) Intensity distribution of the macroscopic HHG in the far field generated by including all quantum orbits. Intensity
distributions of the far-field HHG generated by individual “short” orbits from the first three returns are shown in (b)-(d), and
those results by individual “long” orbits are plotted in (f)-(h). (e) HHG spectra by integrating the harmonic yield over the
divergence angle are shown for quantum orbits from different returns. The driving laser has a wavelength of 1600 nm, other
laser and macroscopic parameters can be seen in the text.

FIG. 9. Similar figure to Fig. 1 but for the macroscopic HHG at 1 mrad in the far field.

quantum orbits. Meanwhile the harmonic yields of the
third-return orbits are relatively low, so they do not have
considerable contribution to the total harmonic yields af-
ter macroscopic propagation. Note that the sensitive de-
pendence of the phase-matching condition on the location
of the gas medium has been intensely discussed [69, 70],
and it has been known that the good phase matching for
the “long” orbits in the first return can be achieved when
the gas medium is located at the laser focus [42].

2. Macroscopic attosecond sub-bursts

We choose a divergence angle of 1 mrad to analyze
the temporal structure of attosecond sub-bursts synthe-
sized by the macroscopic HHG in Fig. 8. The time-
frequency analysis of the high-harmonic field generated
by the quantum orbits from separated first and second
returns, and by both return orbits are shown in Figs.
9(a)-(c), respectively. The results of including all orbits
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FIG. 10. (a) Intensity profile of the far-field HHG obtained by including all quantum orbits. (b) Time-frequency analysis of the
corresponding far-field HHG at 1 mrad. (c) Temporal profiles of attosecond sub-bursts with the duration of 22 as obtained by
spectral filtering far-field harmonics at 1 mrad. The driving laser field has the wavelength of 2000 nm with the peak intensity
of 1.5 × 1014 W/cm2. See text for other simulation parameters.

are shown in Fig. 9(d). One can see that harmonic emis-
sions by the second return orbits are well maintained af-
ter the macroscopic propagation, and they are compa-
rable to that by the first return ones. Fig. 9(e) shows
the temporal pulses over half optical cycle of the 1600-nm
laser. The attosecond sub-bursts with the width of about
33 as appear when the interference between the first re-
turn and the second return orbits is included. Further
adding the contribution from higher-order return orbits
doesn’t change the structure of attosecond sub-bursts
much. However, attosecond sub-burst is absent when
first return or second return orbits are considered indi-
vidually. In short, the behaviors of attosecond sub-burst
waveforms in the macroscopic pulse train are very similar
to that in the single-atom response under the conditions
of favorable phase matching. Thus to observe attosec-
ond sub-bursts experimentally, it is to use good phase
matching by properly adjusting macroscopic parameters
and laser focusing condition as illustrated.

In Fig. 10, we show another example with 2000-nm
laser using macroscopic parameters in Fig. 7. A 1-mm
long gas medium is set at the focus. The far-field har-
monic distribution with all quantum orbits included is
shown in Fig. 10(a). We select a divergence angle of
1 mrad, as shown by a white line in Fig. 10(a), and
the time-frequency picture of the HHG is plotted in Fig.
10(b). The harmonic emissions from the second return
orbits are comparable to that from the first return ones.
The interference between them leads to attosecond sub-
bursts with the duration of about 22 as in the pulse train
in Fig. 10(c). These are very close to the attosecond sub-
bursts in Fig. 2(d) obtained in the single-atom response.
These results are exactly like what we have shown in Fig.
9.

IV. CONCLUSIONS

In summary, we have shown the existence of attosecond
sub-bursts in femtosecond pulse train (FPT) using high

harmonics generated by long wavelength lasers. Unlike
pulse trains generated by 800-nm lasers where irregular
and few sharp bursts appears at each half optical cycle,
in the FPTs generated by long wavelength lasers, a large
number of regular attosecond sub-bursts appear inside of
individual femtosecond pulse profile and each attosecond
sub-burst can have duration of few attoseconds, which is
scaled by λ−2

0 with laser wavelength λ0. The existence
of attosecond sub-bursts has been found to result from
the interference of high harmonics due to quantum orbits
that undergo first return and second return, with minor
corrections from higher returns. These results can be ob-
tained for high harmonics generated from a single atom
using the SFA and the QO theories, as well as the QRS
model, and the latter has been shown to agree with ab
initio calculations from solving the TDSE. To establish
that the single-atom predictions can be observed exper-
imentally, we have carried out phase-matching analysis
and performed the macroscopic propagation simulations.
By simulating the dependence of the single-atom induced
dipole phase from individual quantum orbit on the laser
intensity by using the classical-trajectory approach, the
SFA model, and the TDSE method, the phase coefficients
extracted from different methods reach a reasonably good
agreement. We showed that the phase coefficient for a
given quantum orbit is approximately scaled as λ3

0. This
has been used to construct the map of coherence length
of HHG for each individual quantum orbit and to identify
the good phase-matching condition. We have shown that
good phase matching of harmonics at small divergence
angles can be found for the multiple long quantum orbits
if the gas jet is placed at the laser focus. Thus multiple
attosecond sub-bursts can occur over half optical cycle of
the driving laser in the far-field macroscopic pulse train
and maintain the similar pulse width to the single-atom
one. Note that if the gas jet is put after laser focus, there
would be no attosecond sub-burst structure in the pulse
train since only high harmonics due to the “short” orbit
in the first return can be well phase matched.

With the advance in the mid-infrared laser, we expect
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that shorter-duration sub-burst down to hundreds of zep-
toseconds could be generated by spectral filtering high
harmonics in a much broader spectral region. This may
also be achieved experimentally by controlling the phase
matching of different quantum orbits through properly
selecting the laser parameters and setting the position
of gas medium. This could be realized in two different
ways. One way is to increase the intensity of driving laser
while the laser wavelength is not increased such that its
spatiotemporal waveform is modified upon the propaga-
tion in the medium [71, 72]. The effect of free electron
cannot be neglected in the analysis of phase matching, so
the conditions of reaching the good phase matching for
longer quantum orbits need to be adjusted. The other
way is to maintain the low laser intensity and then in-
crease the laser wavelength. The theoretical methods
may be improved to account for magnetic field [73] and
the prediction of this work might have to be modified.
While the present study is interesting in predicting new

features of FPT generated by long-wavelength lasers, it
remains to be seen in experiment. At this time, it is too
early to speculate what applications can use such fem-
tosecond pulse trains with attosecond sub-bursts.
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K. Varjú, and B. Major, Ultrafast Sci. 2022, 9823783
(2022).

[11] P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé,
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