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Abstract

We present the results of a theoretical study of XUV superfluorescence from doubly excited

states of helium resonantly pumped by FEL pulses. Our model allows to predict both the spectrum

and angular distribution of emitted XUV radiation in a wide range of experimentally accessible

parameters. This is achieved by going beyond two key deficiencies of most previous models: the

one-dimensional treatment in space is upgraded to three dimensions with electromagnetic fields

treated in the paraxial approximation, and spontaneous emission is modeled by a recently developed

approach that avoids the unrealistic delayed response but preserves the expected characteristics

of the emitted field in the spontaneous emission limit. The case study of 3a 1P o resonance in

helium with 63.66 eV excitation energy is presented for realistic parameters of seeded light pulses

from the FERMI FEL facility and a newly developed high-pressure gas cell. Results of numerical

simulations show that both the spectral width and angular divergence of emitted radiation vary

with gas pressure and pump pulse intensity in a complex way.
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I. INTRODUCTION

The development of free-electron lasers (FELs) [1–3] has opened the way for studying

nonlinear interaction of extreme ultraviolet (XUV) and x-ray light with matter. One of

such processes is superfluorescence [4], where spontaneously emitted radiation is amplified

as it propagates through an inverted population of target atoms. Achieving a substantial

population of excited states which rapidly decay via fluorescence in the XUV or x-ray spec-

tral domain requires pumping by highly intense light pulses with duration on the order of

femtoseconds, that are currently produced only by FELs. Superfluorescence has in recent

years been observed in a range of different targets, for example in neon gas [5], copper foil [6]

and manganese solutions [7]. In all of these experiments, strong amplification of fluorescence

was observed along with an exponential dependence of the number of emitted photons on

pump pulse energy.

Since the emitted light pulses have high longitudinal coherence and a duration that is com-

parable to that of FEL pulses [8, 9], there has been interest in employing superfluorescence

as the basis for new implementations of x-ray lasers [10]. However, designing such elaborate

instruments requires reliable theoretical predictions. Modeling of superfluorescence is an

intricate problem, which has been extensively investigated in the optical domain [4], but

has recently also received attention at shorter wavelengths [8, 9, 11]. Despite the progress

in the theoretical description of XUV and x-ray superfluorescence, the agreement between

predictions and experimental results is still only qualitative. One of the problems is an ac-

curate description of spontaneous emission, which is the basis for subsequent amplification

of the emitted field. This has most widely been modeled by adding stochastic noise terms

mimicking fluctuations of polarization to the semiclassical Maxwell-Bloch equations [12, 13].

However, it has been shown [14] that the generally used form of the noise terms produces

a delay in the emitted pulse with respect to pumping, and is thus inadequate for modeling

systems in which pump pulse duration is comparable to the excited state lifetime.

Another reason for the poor agreement between theoretical and experimental results is

that field propagation is generally modeled in a single spatial dimension. This is justified by

the fact that typically in superfluorescence experiments the excited part of the target has the

shape of an elongated cylinder. However, even in this case, the system evolution depends on

the Fresnel number, which is proportional to the square of the target radius and inversely

2



proportional to the target length and emitted field wavelength, and is thus a measure of the

significance of diffraction effects [4]. Strictly speaking, the one-dimensional spatial approxi-

mation is only adequate when the Fresnel number of the system is approximately one. The

spatially one-dimensional approach also assumes that the intensity profile of pump radia-

tion in the plane perpendicular to its propagation direction is uniform with a cut-off at a

certain radius. Since the amplification of emitted radiation depends exponentially on the

local intensity of the pump pulse, such a model cannot directly describe the propagation of

pulses with a Gaussian lateral intensity profile, such as those produced by realistic FELs [1].

A Gaussian spatial intensity profile can be approximately accounted for by combining sim-

ulation results for the box-type intensity profile for different peak intensities [14]. However,

such spatial averaging does not provide information on transverse variations of the emitted

field intensity, and is only applicable if the Rayleigh range of the pump beam is much larger

than the target length, so that diffraction of the FEL pulse inside the target is negligible.

This is not the case in experiments with gas targets pumped by XUV pulses featuring focal

sizes of a few micrometers and the Rayleigh range on the order of milimeters [15].

The typical experimental setup for observation of superfluorescence is the following: pump

pulses are focused onto the target to create a long column of transiently excited atoms or

ions. Amplified emission in the forward direction is analyzed with a dispersive spectrometer,

diffracting the signal onto a 2D detector. The dispersive axis of the recorded images thus

reflects the energy spectrum of superfluorescence pulses, whereas the nondispersive direction

allows for observation of the spatial intensity profile of emitted radiation [5]. Recording

the zero-order image on a CCD camera after filtering out the pump signal also allows to

directly measure the transverse angular profile of superfluorescence with a resolution of

approximately the ratio of pixel size and distance between the target and detector. However,

due to the lack of 3D modeling, the latter aspect of the measurements has not yet been fully

investigated. Modeling the spatial dependence of the emitted field intensity is also crucial for

experiments in which the gain cannot be simply inferred from measurements of the emitted

pulse energy. Such an example is the observation of seeded Mn Kβ stimulated emission [16],

where the target was irradiated with two-color FEL pulses. One color was used to create a

core-hole population inversion, and the other to stimulate the weak Kβ emission. Because

of the lack of an upstream spectrometer that would measure the shot-by-shot seed pulse

energy before the target, amplification of Kβ emission was detected based on the angular
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divergence of the amplified field with respect to the seed.

In this work we present a theoretical study of XUV superfluorescence from the 3a 1P o

doubly excited state of helium, resonantly pumped by FEL pulses with 63.66 eV photon

energy (Fig. 1). The evolution of the system is described in three spatial dimensions and

time, and the electromagnetic fields are propagated in the paraxial approximation. This

is applicable since due to the elongated shape of the excited medium, emitted radiation

primarily propagates along the cylinder axis even when taking into account its transverse

variations. The duration of pump pulses is comparable to the 80 fs lifetime of the excited

state, which predominantly decays via autoionization. To model spontaneous emission and

the onset of amplification, the recently introduced form of stochastic noise terms [17] is

added to the Maxwell-Bloch equations. We demonstrate that this approach reproduces the

expected temporal and spectral profile of spontaneously emitted radiation in the paraxial

approximation for the studied system.

The helium atom is the prototypical two-electron system, and as such it has been im-

mensely studied over the years. In particular, the measurement of the double excitation

spectrum [18] was one of the early ground-breaking applications of synchrotron radiation.

The advent of XUV FEL sources has enabled the study of nonlinear effects in helium, such as

resonant multi-photon excitation [19, 20] and superfluorescence at visible wavelengths [21].

While XUV amplified spontaneous emission from helium has not been observed before,

superfluorescence from the 3a 1P o doubly excited state was theoretically investigated in

Ref. [22]. However, in this study, the system evolution was described in a single spatial

dimension, and spontaneous emission was modeled using noise terms that introduced an

artificial delay to the emitted field. This model could thus provide only qualitative pre-

dictions on the characteristics of superfluorescence. In the present work, we surpass the

most prohibiting limitations of the previous model by treating the system evolution in three

spatial dimensions with noise terms that adequately model spontaneous emission, as well

as including resonant coupling in He+, which will be shown to significantly affect the spec-

tral properties of emitted radiation after its amplification. The presented numerical results,

which are calculated for realistically achievable pumping and target parameters, could thus

be directly experimentally verified.

The paper is organized as follows: in Sec. II, the theoretical model of superfluorescence

from doubly excited states of helium is described along with the methods used to numer-
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FIG. 1. Schematic representation of the level scheme. Helium atom in the ground state (0) is

resonantly photoexcited to the selected doubly excited state (i), which is coupled to the continuum

and decays via fluorescence to a singly excited state (f) or via autoionization to He+ 1s (a). The

latter is coupled to He+ 2p (b) by the emitted radiation.

ically solve the obtained system of partial differential equations. Numerical results of the

simulations and characteristics of superfluorescence in different regimes are discussed in

Sec. III. Details of the derivation are presented in Appendix A, whereas the numerical val-

ues of photoionization cross sections used in the simulations are specified in Appendix B.

In Appendix C, simulation results for the case of spontaneous emission are discussed, and

the ability of stochastic noise terms to suitably describe spontaneous emission is verified.

Atomic units are used throughout the paper, unless states otherwise.

II. THEORETICAL DESCRIPTION AND MODELING

The target is helium gas which is pumped by linearly polarized FEL pulses with 63.66 eV

photon energy, resonant with the 1 1Se → 3a 1P o transition (|0〉 → |i〉 in Fig. 1) [23]. This

particular doubly excited state was selected for the present case study because it is relatively

isolated in energy, so considering the pump spectral width, which is a few meV for seeded

XUV FEL pulses [1], it is the only state that is excited. It has a lifetime of 80 fs [23]

and decays predominantly by autoionization, resulting in a natural linewidth of 8.2 meV.

The radiative decay contributes only 4.8µeV [24] to the width, and the dominant radiative

decay channel is to the singly excited 3 1Se state (|f〉), with the emitted photon energy of
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40.74 eV [25] and a fluorescence branching ratio of 72.7%. The final singly excited state

has a lifetime of 55 ns [26]. Minor radiative decay channels of the doubly excited state are

neglected, as it has been shown that emission from the dominant fluorescence channel is

most strongly amplified and inclusion of minor channels does not significantly affect the

evolution of superfluorescence [22].

Transition dynamics in the helium atom are modeled by a three-level Λ system, which

is resonantly coupled to the 1sεp continuum (Fig. 1). This is a good approximation, since

the linearly polarized pump field resonantly populates a single excited state, and this decays

radiatively to a single final state by emission of radiation having the same linear polarization

as the pump. The energy of photons emitted on the |i〉 − |f〉 transition is relatively close to

the 40.8 eV energy of 1s − 2p transition in He+ with a 6.6µeV natural width. The ground

state of He+ (denoted by |a〉) is strongly populated by autoionization of the doubly excited

state, so in the saturation regime, where the spectral width of emitted radiation is expected

to increase [9], significant field absorption due to the He+ 1s − 2p transition could occur,

and the corresponding resonant coupling must be considered by the model. Spontaneous

emission on this transition is neglected, since the He+ 2p excited state (|b〉) has a lifetime of

100 ps. Additionally, atomic and ionic states can be photoionized by the pump and emitted

field. State |c〉 denotes a single level that is included to account for field absorption due to

photoionization and effectively replaces excited states He+ nl with n = 3, 4. The latter is a

reasonable approximation made to simplify the model, because resonant coupling of these

states to each other or to the atomic states is negligible, and their populations are expected

to be small.

A. Equations for atomic populations and coherences

Atomic states are coupled by the pump field F and emitted field E, with their main

propagation direction parallel to the z axis. The transverse electric fields can be written in

terms of their slowly varying amplitudes as

U = U(+)ei(kUzz−ωUt) + U(−)e−i(kUzz−ωUt). (1)

Here U = F,E are the pump and emitted electric field, and U(±) = F(±),E(±) their re-

spective positive- and negative-frequency components. Wave vector component along the
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main propagation direction z and carrier frequency of the field U are denoted by kUz and

ωU, respectively. When modeling spontaneous emission with the addition of stochastic noise

terms [17], the positive- and negative-frequency field amplitudes are not complex conju-

gate pairs. However, |0〉 − |i〉 transition is resonantly pumped by a strong FEL pulse and

branching ratio for the decay of the doubly excited state back to the ground state is about

50 times smaller than that for fluorescence into the final 3 1Se state [27]. Stochastic noise

contributions to the |0〉− |i〉 transition are thus negligible, and we can assume F(−) = F(+)∗.

Following the derivation in Refs. [22, 28, 29], which is also outlined in Appendix A, we

obtain a system of semiclassical Maxwell-Bloch equations that describe the evolution of the

density matrix and propagation of electric field amplitudes in the paraxial and slowly varying

envelope approximations [30]. In the retarded time frame, with τ = t−αz, the evolution of

atomic populations is described by

∂

∂τ
ρ00 =− (γ0 + Γ0)ρ00 − iF(−)µ̃0i

(
1− i

q0i

)
ρi0 + iF(+)µ̃i0

(
1 +

i

qi0

)
ρ0i, (2a)

∂

∂τ
ρii =− (Γa + Γr + Γi)ρii − iF(+)µ̃i0

(
1− i

qi0

)
ρ0i + iF(−)µ̃0i

(
1 +

i

q0i

)
ρi0

− iE(+)µ̃if

(
1− i

qif

)
ρfi + iE(−)µ̃fi

(
1 +

i

qfi

)
ρif − χ

(
hρfi + h†ρif

)
, (2b)

∂

∂τ
ρff =− (γf + Γf )ρff + Γfr ρii − iE(−)µ̃fi

(
1− i

qfi

)
ρif + iE(+)µ̃if

(
1 +

i

qif

)
ρfi

+ χ
(
h†ρif + hρfi

)
+ h∗ρif + h†∗ρfi. (2c)

Here Γa = 8.2 meV is the autoionization decay width of the doubly excited state, Γr = 4.8µeV

its fluorescence width, Γfr = 3.5µeV partial radiative rate to the final state, and γ0,f are field-

induced widths of the ground and final state (see Appendix A). Nonresonant photoionization

processes are encompassed in Γj, j = 0, i, f , that are added to the density matrix equations

via a rate-equation approach and are defined as

Γ0 = ΓE0, (3a)

Γi = ΓFi + ΓEi, (3b)

Γf = ΓFf . (3c)

Here ΓUj denotes the photoionization rate of state |j〉 with field U and can be expressed as

ΓUj = σUjJU, where JU = U(+)U(−)/ (2παωU) is the flux of field U and σUj the photoionization

cross section specified in Appendix B. Ionization of the ground state with the emitted field
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populates He+ 1s, whereas ionization of the final state with the pump field and ionization

of the doubly excited state with both fields populate the combined ionic state |c〉 (see

Appendix B).

The modified dipole matrix elements µ̃ij = µ̃ji, j = 0, f, describe transitions to and

from the discrete excited state modified by an admixture of the continuum [22], and qij are

the real-valued Fano parameters [31]. For the present atomic system, the values of dipole

moments are µ̃i0 = 0.0143 a.u. and µ̃if = 0.279 a.u.. For the pumping transition qi0 = −2.57,

so the resonant part of the absorption coefficient for the pump field exhibits an asymmetric

Fano profile, whereas for the |i〉 − |f〉 transition qif was calculated to be 310, hence in the

spontaneous emission limit the emitted field spectrum is modeled as a Lorentzian. Fano

parameters qij and dipole matrix elements µ̃ij were calculated using the method of complex

rotation [32].

The terms proportional to h(†), h(†)∗ on the r.h.s of Eqs. (2b) and (2c) are stochastic

noise terms mimicking spontaneous emission on the |i〉 − |f〉 transition, with χ being a

normalization factor [17, 33]. The derivation of stochastic terms for the studied case is

presented in Appendix A, whereas in Appendix C we numerically demonstrate the validity

of simulating spontaneous emission with this approach by comparing the numerical and

analytical results in the limit of low target pressures and pump pulse intensities.

Coherences describing the pumping transition |0〉 − |i〉 evolve according to

∂

∂τ
ρi0 =−

(
Γi0
2

+ ΓDi0 − i∆F

)
ρi0 − iF(+)µ̃i0

(
1− i

qi0

)
ρ00 + iF(+)µ̃i0

(
1 +

i

qi0

)
ρii

− iE(+)µ̃if

(
1− i

qif

)
ρf0 − χhρf0, (4a)

∂

∂τ
ρ0i =−

(
Γi0
2

+ ΓDi0 + i∆F

)
ρ0i − iF(−)µ̃0i

(
1− i

q0i

)
ρii + iF(−)µ̃0i

(
1 +

i

q0i

)
ρ00

+ iE(−)µ̃fi

(
1 +

i

qfi

)
ρ0f − χh†ρ0f , (4b)

where Γij = Γa + Γr + Γi + Γj + γj for j = 0, f , and ∆F = ωF − (Ei − E0) is the pump

field frequency detuning (Ej are energies of atomic levels). The last two terms on the

r.h.s of Eqs. (4) are proportional to ρ0f , ρf0, and are significant only when the emitted field

intensity is large. In the studied system, this only occurs after field amplification, when the

contribution of spontaneous emission is already negligible and the emitted field amplitude

can be described classically with E(−) ≈ E(+)∗. Consequently, stochastic noise terms in

Eqs. (4) can be neglected, and we can assume ρi0 = ρ∗0i.
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The Doppler line broadening is accounted for in an approximate way [34] by adding an

extra decay rate ΓDij = γD|Ei−Ej| to the equations for nondiagonal density matrix elements,

where γD = [8 ln(2)kBT/(Mc2)]
1/2 ≈ 6.15 × 10−6 at room temperature with M being the

mass of helium atoms and T the gas temperature. Collisional processes are neglected, since

for the gas pressures of interest both the elastic collisional rates between atoms [35] as well as

electron-impact excitation and ionization rates [36] are much smaller than the autoionization

or photoionization rates.

The time dependence of other nondiagonal matrix elements is described by

∂

∂τ
ρif =−

(
Γif
2

+ ΓDif − i∆E

)
ρif − iE(+)µ̃if

(
1− i

qif

)
ρff + iE(+)µ̃if

(
1 +

i

qif

)
ρii

− iF(+)µ̃i0

(
1− i

qi0

)
ρ0f + χh (ρii − ρff ) + h†∗ρii, (5a)

∂

∂τ
ρfi =−

(
Γif
2

+ ΓDif + i∆E

)
ρfi − iE(−)µ̃fi

(
1− i

qfi

)
ρii + iE(−)µ̃fi

(
1 +

i

qfi

)
ρff

+ iF(−)µ̃0i

(
1 +

i

q0i

)
ρf0 + χh† (ρii − ρff ) + h∗ρii, (5b)

∂

∂τ
ρ0f =−

(
Γ0f

2
+ i [∆F −∆E]

)
ρ0f − iF(−)µ̃0i

(
1− i

q0i

)
ρif + iE(+)µ̃if

(
1 +

i

qif

)
ρ0i

+
(
χh+ h†∗

)
ρ0i, (5c)

∂

∂τ
ρf0 =−

(
Γ0f

2
− i [∆F −∆E]

)
ρf0 − iE(−)µ̃fi

(
1− i

qfi

)
ρi0 + iF(+)µ̃i0

(
1 +

i

qi0

)
ρfi

+
(
χh† + h∗

)
ρi0, (5d)

with ∆E = ωE − (Ei − Ef ) being the emitted field detuning, and Γ0f =
∑

j=0,f (Γj + γj).

Since in our case the only contribution to the emitted field stems from resonant fluorescence,

∆E = 0.

B. Equations for ionic populations and coherences

Ionic states |a〉 and |b〉 effectively act as a two-level system, however, the equation gov-

erning the lower state population contains additional terms due to its resonant coupling to

the doubly excited state:

∂

∂τ
ρaa =− ΓFaρaa + (γ0 + ΓE0) ρ00 + Γaρii + γfρff − iE(−)µabρba + iE(+)µbaρab

+ 2
µ̃i0
qi0

F(+)ρ0i + 2
µ̃0i

q0i

F(−)ρi0 + 2
µ̃if
qif

E(+)ρfi + 2
µ̃fi
qfi

E(−)ρif , (6a)
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∂

∂τ
ρbb =− (ΓFb + ΓEb) ρbb + iE(−)µabρba − iE(+)µbaρab, (6b)

∂

∂τ
ρab =−

(
Γab
2

+ i∆ion.
E

)
ρab − iE(−)µab (ρbb − ρaa) , (6c)

∂

∂τ
ρba =−

(
Γab
2
− i∆ion.

E

)
ρba + iE(+)µba (ρbb − ρaa) . (6d)

Here µab = µba = 0.372 a.u., Γab = ΓFa + ΓFb + ΓEb, and ∆ion.
E = ωE− (Eb−Ea) with Ea and

Eb being the energies of the He+ 1s and 2p states, respectively. Other levels of He+ are only

coupled to the rest of the system through nonresonant photoionization, so the population

of state |c〉, in which they are combined, evolves according to

∂

∂τ
ρcc = − (ΓFc + ΓEc) ρcc + (ΓFi + ΓEi) ρii + ΓFfρff . (7)

C. Field propagation equations

In the paraxial approximation, propagation of the slowly varying pump field amplitude

is described by (see Appendix A) [4, 37](
∂

∂z
− i

2kF
∇2
⊥

)
F(+) = −κF

2
F(+) − 2πiαωFnµ̃0i

(
1− i

q0i

)
ρi0, (8)

where ∇2
⊥ = (∂2/∂x2 + ∂2/∂y2), n is the number density of atoms, and

κF = n

(
σ̃0ρ00 +

∑
j=i,f,a,b,c

σFjρjj

)
(9)

is the pump field absorption coefficient. The FEL pump pulse impinging on the target is

assumed to have an axially symmetric Gaussian transverse intensity profile with the focal

point at longitudinal position z0 (see Appendix A). The input parameters are the pulse

energy EFEL and spotsize d0 in focus (FWHM of the intensity profile). The temporal profile

of the pump pulse is also assumed to be Gaussian with a FWHM duration τ0, in accordance

with temporally coherent pulses produced by the seeded FEL FERMI [1] that operates in

the XUV spectral range.

Equations for the emitted field amplitudes are(
∂

∂z
− i

2kE
∇2
⊥

)
E(+) =− κE

2
E(+) − 2πiαωE

[
nµ̃fi

(
1− i

qfi

)
ρif + ρ∗fi

2
+ µ̃fih

+ nµabρba

]
, (10a)
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(
∂

∂z
+

i

2kE
∇2
⊥

)
E(−) =− κE

2
E(−) + 2πiαωE

[
nµ̃if

(
1 +

i

qif

)
ρfi + ρ∗if

2
+ µ̃ifh

†

+ nµbaρab

]
. (10b)

Due to the stochastic noise terms (terms proportional to h, h†) the positive- and negative-

frequency amplitude components are not hermitian conjugates. The form of coherence terms

(second term on r.h.s of each equation) arises from the regularization necessary because of

divergent noise trajectories [17]. The absorption coefficient

κE = n

(
σ̃fρff +

∑
j=0,i,b,c

σEjρjj

)
is the same for both amplitudes, as it only depends on the field flux and diagonal density

matrix elements.

D. Numerical implementation

The system of differential equations is solved numerically on a discrete grid of points

(xk, yl, zm, τn) = (k∆x, l∆y,m∆z, n∆τ). Differential equations for the density matrix are

propagated as

ρij, xkylzmτn+1 = ρij, xkylzmτn+1

∣∣
reg.

+ ∆τ ρij, xkylzmτn
∣∣
noise

, (11)

where ρij,xkylzmτn+1

∣∣
reg.

is the regular part of the density matrix equations (without stochas-

tic terms), which is propagated from time τn to τn+1 using the 4th order Runge-Kutta

method [38], and ρij, xkylzmτn
∣∣
noise

is the stochastic part. On the discretized grid, the noise

normalization factor is χ = παωE|µ̃fi|2∆z and the stochastic terms are defined as [17]

hxkylzmτn =

√
1

χ∆V∆τ

[√
ρii

ρii − ρff

]
xkylzmτn

ξxkylzmτn , (12a)

h†xkylzmτn =

√
1

χ∆V∆τ

[√
ρii

ρii − ρff

]
xkylzmτn

ξ†xkylzmτn , (12b)

h∗xkylzmτn =

√
χ

∆V∆τ

[√
ρii − ρff

ρii

]
xkylzmτn

ξ∗xkylzmτn , (12c)

h†∗xkylzmτn =

√
χ

∆V∆τ

[√
ρii − ρff

ρii

]
xkylzmτn

ξ†∗xkylzmτn , (12d)

where ∆V = ∆x∆y∆z, and ξ, ξ† are complex random numbers drawn from a standard

normal distribution at each grid point. Equations for the field propagation are solved by a

split-step finite-difference beam propagation method [39, 40] (see Appendix A for details).
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III. RESULTS AND DISCUSSION

Previous studies have shown [22] that the crucial parameter for achieving superfluores-

cence in gasses is a sufficiently high target density. This is usually achieved by using an open-

end stationary or pulsed gas cell, or an Even-Lavie or Parker valve as the source [5, 41, 42],

however, in these cases the spatial profile of gas density is generally unknown. Moreover,

density along the pump pulse propagation direction rises and falls off slowly, causing un-

wanted absorption of the pump pulse where gas density is too small to achieve amplification.

Another option is to use the recently developed microfluidic glass cells produced by fem-

tosecond laser irradiation followed by chemical etching [43, 44], which allow to achieve a high

gas density with a flat profile in a localized region. Such cells have been used for example

to demonstrate the generation of few-cycle deep ultraviolet pulses via frequency upconver-

sion [45], and to efficiently generate high-order harmonics in helium gas [46]. These devices

appear ideal for superfluorescence experiments, since the gas density inside the cell can be

finely tuned and pressures of up to 1 bar can be achieved [46]. As the aim of this study is to

reproduce a realistic experimental setup as closely as possible, we will use a density profile

that can be produced by a simple version of such a cell [45] and is shown on the left-hand

side plot of Fig. 6. The (target or gas) pressure p specified throughout this section refers to

the backing pressure in the reservoir that is connected to the cell by an injection channel.

Gas density inside the cell scales linearly with backing pressure [46], and its maximum value

is about 1% smaller than the density calculated from the ideal gas law using the value of

the backing pressure. The length of the microfluidic cell is around 10 mm, and we assume

that the focal point of the FEL beam is at the middle of the cell with a focal FWHM spot

size of d0 = 6µm and τ0 = 50 fs FWHM pulse duration, in line with parameters achiev-

able at FERMI FEL [15]. Numerical results presented in this section are averaged over 300

repetitions of the simulation, unless stated otherwise.

In experiments with gas targets, it is possible to investigate the dependence of the super-

fluorescence yield from a given excited state on two parameters: target pressure and pump

pulse energy. The number of emitted photons as function of these two parameters for the

3a 1P o resonance in He is shown in Fig. 2. Increasing either of the two parameters produces

the same characteristic curve. At low pressures or pump pulse energies, the density of ex-

cited states is small and emission is spontaneous with a linear increase of the number of
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FIG. 2. Number of emitted photons as function of gas pressure and pump pulse energy. Dashed

lines denote the corresponding number of pump photons impinging on the target.

emitted photons. When either of the two parameters is sufficiently high, the emitted field

starts to amplify and the photon number increases exponentially, until the system reaches

saturation at high gas pressures and/or pump pulse energies. In the latter regime, the de-

pendence of the photon number on the two parameters can be anywhere from constant to

linear, depending on the fraction of atoms that is excited from the ground state, or can

even start to decrease at very high gas pressures, when emitted field absorption becomes the

dominant process. At the highest investigated gas pressures, the number of emitted photons

is only about and order of magnitude smaller than the number of photons in the FEL pulse

impinging on the target.

A quantity that is generally measured in superfluorescence experiments is the spatially-

integrated frequency spectrum of emitted radiation. In the spontaneous emission limit, the

spectral profile is approximately Lorentzian with a width corresponding to the excited state

lifetime (see Fig. 7(a)). The spectral shape remains roughly equal also in the amplification

regime. While gain narrowing, i.e. a decrease in the bandwidth of emitted radiation, is

expected to occur simultaneously with field amplification in high-gain systems [47], this

is not observed here because the pump pulse duration is comparable to the excited state

lifetime, and pumping modifies the excited state population as it decays. Increasing the

pressure even further leads to a broadening of the spectral line, which also becomes highly
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FIG. 3. Spectral intensity of radiation emitted from the target exit integrated over transverse

dimensions for different backing pressures and 40µJ pump pulse energy. Dashed vertical line

denotes the |i〉 − |f〉 transition energy.

asymmetric. Figure 3 shows spatially-integrated frequency spectra of radiation emitted by

the target for different backing pressures after the onset of saturation. Broadening of the

spectral line is caused by the Autler-Townes effect and is characteristic of the saturation

regime of superfluorescence [9, 22], however, its asymmetry is specific to the presented case.

In part, the asymmetric profile is a consequence of the fact that radiation stems from an

autoionizing resonance. This leads to a modified Autler-Townes effect producing a complex

spectral shape [48], which can be observed in Fig. 3 for pressures below 20 mbar, when

the emission line is still relatively narrow. Additionally, as the spectral line widens with

increasing gas pressure, the high-energy part of the emission spectrum starts to overlap

with the energy of He+ 1s−2p transition at 40.8 eV. The emitted field is re-absorbed around

this transition energy due to resonant excitation of He+ ions in the ground state. Depending

on the pressure and pump pulse energy, this absorption can be only partial; coupling of ionic

states to the strong electric field produces Rabi oscillations in the time domain (see Fig. 6)

and the corresponding broadening or splitting of the emission line in the spectral domain.

In line with this, the spectral region of partial field re-absorption is not limited to a few µeV

around 40.8 eV photon energy, as expected in the case of non-driven He+ 1s− 2p transition

governed by the natural width.

In the XUV spectral region, directional radiation emitted from the target is usually ana-
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FIG. 4. Single-repetition and average time-integrated angular spectra of radiation emitted from

the target exit for 5 mbar (first row) and 25 mbar backing pressure (second row), and 10µJ pump

pulse energy.

lyzed using a grating spectrometer. In the Fraunhofer approximation, the zero-order image

measured on a 2D detector typically positioned several meters from the target approxi-

mately corresponds to the time-integrated angular spectrum of emitted radiation. Examples

of single-shot 2D angular spectra along with spectra averaged over 300 repetitions of the

simulation for two different backing pressures are shown in Fig. 4. For the considered pump

pulse energy of 10µJ, the lower pressure of 5 mbar corresponds to the amplification regime

of superfluorescence, whereas at the higher pressure of 25 mbar the system is in saturation.

Single-shot angular spectra differ substantially between different repetitions of the simula-

tion and can be highly asymmetric, with the peak of intensity positioned off-axis. This

reflects the randomness of spontaneous emission which initiates the amplification process.

On the other hand, average spectra exhibit cylindrical symmetry with maximum intensity

at θx,y = 0, as expected when pumping the target with a Gaussian beam. Average spectra

differ for the two gas pressures, both in their shape as well as angular divergence.

More detailed changes of the angular spectral shape and divergence with varying gas

pressure are demonstrated in Fig. 5. We define the angular divergence as the FWHM

of average angular spectral intensity at either θx = 0 or θy = 0 mrad (average spectra

are axially symmetric). At the lowest depicted pressures corresponding to initial stages

of the amplification regime, the angular spectrum is approximately Gaussian, but angular
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FIG. 5. (a) Scaled angular spectra of emitted radiation at θy = 0 for different backing pressures

and 10µJ pump pulse energy. (b) Angular divergence of the emitted field (see text) as function of

backing pressure for two different pump pulse energies. Dashed gray lines denote the (a) angular

spectrum and (b) angular divergence of the pump pulse.

divergence decreases with increasing pressure. This is a consequence of gain guiding; contrary

to the case of spontaneous emission, which is approximately isotropic, in stimulated emission

the field modes that are amplified are those propagating at small angles with respect to the

pump propagation direction, because those are the modes that encounter a large population

inversion and can thus be amplified. Moreover, the spatial profile of population inversion

mimics that of the pump pulse, and thus has a Gaussian transverse profile. Since the rate

of amplification is exponentially dependent on the local population inversion, its spatial

distribution additionally contributes to the overall reduction of divergence.

As the gas pressure increases, parts of the gas close to the axis of pump pulse propagation

enter saturation. However, field modes propagating off-axis might still undergo exponen-

tial amplification, since away from the target axis the overall field intensity is smaller and

population inversion can remain positive. Consequently, in latter parts of the target, am-

plification of off-axis modes is relatively stronger than of those propagating at very small

angles, hence the angular spectrum changes shape and divergence increases.

Depending on the combination of gas pressure and pump pulse energy, the transverse

profile of population inversion can differ substantially from the Gaussian profile of the pump
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pulse, and the maximum density of excited states can also vary longitudinally. The former

occurs if the pump pulse is strong enough to completely deplete the ground state in some

finite transverse region, whereas the latter takes place if the gas pressure is large and the

pump pulse is significantly absorbed as it propagates through the target. Both cases can

lead to a more complex dependence of the angular divergence, as shown for the 40µJ case

in Fig. 5(b).

Overall, the angular divergence of the emitted pulse is significantly larger than that of

the pump pulse. For all investigated gas pressures and both pump pulse intensities, angular

divergence of the pump pulse after transition through the target is approximately 1.4 mrad.

In terms of the angular spread of a Gaussian beam, which is defined in terms of its waist, this

corresponds to 2.5 mrad, which is approximately in agreement with the expected angular

spread of a Gaussian beam for the given focus size and wavelength (2.43 mrad) [49].

Analyzing the spatio-temporal dependence of emitted field intensity and population inver-

sion shows that the dynamics of light-matter interaction are indeed highly nonuniform across

the target, making 3D spatial modeling crucial for studies of superfluorescence. Figure 6

shows the (x, τ) dependence of these variables at y = 0µm and two different propagation

distances z. The dependence of the emitted photon number on z is similar to the curves

in Fig. 2, with a clearly discernible amplification and saturation region. Hence, the first

longitudinal point z = −2.8 mm corresponds to the amplification regime, and the second

point z = 2.8 mm to the saturation regime. Even though the quantities depicted in Fig. 6

cannot be directly measured, they can support the interpretation of results in Figs. 2 and

3, which can be experimentally verified.

At z = −2.8 mm, population inversion in atomic helium ρii − ρff , which is created by

resonant pumping with the FEL pulse, is positive and relatively large at short times. The

main decay channel of the doubly excited state is autoionization to state |a〉, causing the

population inversion in He+ to be negative in the whole (x, t) region, since here the emitted

field intensity is relatively small and resonant transfer of population to He+ 2p is negligible.

The ground state of He+ can be further photoionized to He2+ by the strong pump pulse,

making the spatio-temporal dependence of population inversion more complex. The emitted

field is delayed with respect to the pump pulse, as amplification requires some time to build

up [9]. Since Fig. 6 shows results for a single repetition, the transverse dependence of the

emitted field intensity is not symmetric with respect to x = 0µm. However, this allows us
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FIG. 6. Results of a single repetition of the simulation for 25 mbar backing pressure and 10µJ

pump pulse energy. Left-hand side of the figure shows the number of emitted photons as function of

propagation distance, along with the scaled longitudinal density profile of gas inside the microfluidic

cell. Transverse (x, y) dependence of gas density is assumed to be constant. Plots on the right-hand

side show the scaled emitted field intensity, population inversion in neutral helium ρii − ρff , and

He+ population inversion ρbb − ρaa at y = 0µm for two propagation distances, i.e. z = −2.8 mm

(bottom row) and z = 2.8 mm (top row), indicated by black dots on the left-hand side plot. Time

τ = 0 fs coincides with the peak of pump pulse intensity.

to observe that the regions of (x, τ) space where the emitted field intensity is significant

coincide with the regions where ρii − ρff becomes negative; these are the regions where

due to stimulated emission population is transferred to the final state |f〉 by emission of an

additional photon.

In the amplification regime at z = 2.8 mm, Rabi oscillations are clearly visible both in

the emitted field intensity and ρii−ρff population inversion, where again the high-intensity

regions coincide with a larger population of the final state. In the spectral domain, these

oscillations correspond to a broadening of the emission line, as seen in Fig. 3. At long times,

He population inversion around the target axis is more negative than in the amplification

regime, which indicates that transfer of population to state |f〉 is stronger resulting in a
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larger number of emitted photons. A clear manifestation of Rabi oscillations also in the He+

population inversion confirms that the emitted field is indeed partially reabsorbed around the

resonant energy of the |a〉 − |b〉 transition. The spectral line there is broadened beyond the

natural width due to coupling with strong electric fields, leading to the non-trivial calculated

spectral shapes at high gas pressures (Fig. 3).

IV. CONCLUSIONS

We presented the results of a theoretical model of XUV superfluorescence emitted by

helium atoms in a doubly excited state that is resonantly pumped by FEL light pulses. The

model provides quantitative predictions that could be directly verified in an experimental

campaign. The evolution of light-matter interaction is described in three spatial dimensions

and time, and electric fields are treated in the paraxial approximation, which is a realistic

3D approximation due to the elongated shape of the active medium. Spontaneous emission,

which initiates superfluorescence and thus crucially determines its evolution, is modeled by

a recently developed form of stochastic noise terms that reproduce the expected properties

of emitted radiation at low density of atoms in the resonant state.

The developed model enables the study of both the frequency and angular distribution of

the emitted electric field, which are observables that could be measured with spectroscopic

setups adapted to superfluorescence experiments. Characteristics of the emitted field are

investigated for a wide range of experimentally achievable gas pressures and pump pulse

energies. Simulation results show that the spectral width of emitted radiation increases

significantly with increasing excited state density, and the distribution of spectral intensity

exhibits a complex profile resulting from several processes. The angular divergence of the

emitted field also varies with increasing gas pressure or pump pulse energy, and is calculated

to be significantly larger than that of the pump beam. The latter is in line with experimental

observation of seeded Mn Kβ emission [16], where field amplification was detected based on

the large angular divergence of emitted radiation.

While the model takes into account a wide array of atomic processes, some approxima-

tions are still made in the derivation of Maxwell-Bloch equations that limit the usability

of the presented theoretical description. One of them is neglecting the minor radiative de-

cay channels of the doubly excited state that could potentially get amplified after emission
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on the dominant radiative transition becomes saturated [9], although it has been shown in

the frame of a spatially one-dimensional model that this should not significantly alter the

simulation results [22]. Another limiting approximation is neglecting the shifts associated

with autoionization and field-induced ionization (see Appendix A). These could become sig-

nificant at very large pump pulse energies or target pressures, and hence limit the range

of parameters that can be studied with the presented model. Finally, at large gas pres-

sures, plasma effects and electronic collisional processes could alter the dynamics of the

system evolution, or the propagation length at which the system reaches saturation could

become comparable to the transverse extent of the target, which would make the paraxial

approximation no longer applicable. Experimental investigation of resonantly pumped XUV

superfluorescence, which has not been observed before and is feasible for the studied atomic

system, is thus crucial for the evaluation of the presented theoretical results.
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W. Wurth, R. Treusch, J. Feldhaus, J. R. Schneider, and A. Föhlisch, Phys. Rev. A 75,
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Appendix A: Derivation of Maxwell-Bloch equations

The effective Hamiltonian which describes the atomic system interacting with resonant

electromagnetic fields (Fig. 1) in the rotating wave approximation is [50–52]

H =
∑
j=0,i,f

Ej|j〉〈j|+
∑
j=a,b

∫
(Ej + ε) |jε〉〈jε|dε+ F(+)µi0θF|i〉〈0|+ F(−)µ0iθ

∗
F|0〉〈i|+

E(+)µifθE|i〉〈f |+ E(−)µfiθ
∗
E|f〉〈i|+

∫
dε
(
F(+)µa0θF|aε〉〈0|+ F(−)µ0aθ

∗
F|0〉〈aε|+

E(+)µafθE|aε〉〈f |+ E(−)µfaθ
∗
E|f〉〈aε|+ Via|i〉〈aε|+ Vai|aε〉〈i|+ E(+)µbaθE|bε〉〈aε|+

E(−)µabθ
∗
E|aε〉〈bε|

)
(A1)

where Ej is the unperturbed energy of state j, Ea + ε (Eb + ε) energy of the 1sεp (2pεp)

continuum state, µjk = 〈j|µ̂|k〉 are the dipole matrix elements with µ̂ being the projection

of electric dipole moment onto the field polarization vector, and for shorter notation we

introduced θU = exp (ikUzz − iωUt), U = F,E. Continuum states above the N = 1 ionization

threshold are coupled to the doubly excited state via interaction V̂ , with Vjk = 〈j|V̂ |k〉.

Ionic state |c〉 is only populated through nonresonant processes, so it is omitted from the

Hamiltonian and will be coupled to the atomic system at a later stage via the corresponding

photoionization rates [30].

By writing the solutions of the time-dependent Schrodinger equation in terms of the

slowly varying probability amplitudes of resonantly coupled states uj as

|ψ〉 = e−iE0t

(
u0|0〉+ uiθF|i〉+ ufθFθ

∗
E|f〉+

∫
dε (uaεθF|aε〉+ ubεθFθE|bε〉)

)
, (A2)

we arrive at the following equations for the time evolution of probability amplitudes:

∂

∂t
u0 = −iF(−)µ0iui − i

∫
dεF(−)µ0auaε, (A3a)
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∂

∂t
ui = i∆Fui − iF(+)µi0u0 − iE(+)µifuf − i

∫
dεViauaε, (A3b)

∂

∂t
uf = i (E0 + ωF − Ef − ωE)uf − iE(−)µfiui − i

∫
dεE(−)µfauaε, (A3c)

∂

∂t
uaε = i∆a(ε)uaε − iF(+)µa0u0 − iVaiui − iE(+)µafuf − iE(−)µabubε, (A3d)

∂

∂t
ubε = i∆b(ε)ubε − iE(+)µbauaε (A3e)

and analogous equations for complex conjugate amplitudes, with ∆a(ε) = E0 +ωF− (Ea+ ε)

and ∆b(ε) = E0 +ωF +ωE− (Eb + ε). By using the Born-Markov approximation [53] for the

terms coupling continuum and atomic states, equations for amplitudes uaε, u
∗
aε at time t can

be formally solved to obtain (spatial coordinates are omitted)

uaε(t) =
F(+)(t)µa0u0(t) + E(+)(t)µafuf (t) + Vaiui(t)

∆a(ε) + iη
− i

∫ t

0

dt′e−i∆a(ε)(t−t′)E(−)(t′)µabubε(t
′)

(A4a)

u∗aε(t) =
F(−)(t)µ0au

∗
0(t) + E(−)(t)µfau

∗
f (t) + Viau

∗
i (t)

∆a(ε)− iη
+ i

∫ t

0

dt′ei∆a(ε)(t−t′)E(+)(t′)µbau
∗
bε(t
′),

(A4b)

where we assume the limit η → 0+.

After inserting these solutions into Eqs. (A3) and analogous equations for the complex

conjugate amplitudes, and neglecting the coupling of atomic states through the 2pεp contin-

uum (terms proportional to Viaµab and µjaµab, j = 0, f), we can make use of the Sokhotski-

Plemelj theorem [54] to define the autoionization width Γa = 2π|Via|2∆a(ε)=0 and the associ-

ated shift [50], as well as the field-induced ionization widths γ0 = σ̃0JF, γf = σ̃fJE and their

associated shifts [55]. Ionization cross sections of the ground state with the pump field and

final state with the emitted field are defined as σ̃j = 4π2αωU|µja|2∆a(ε)=0 with j = 0, f and

U = F,E, respectively. In a similar way we can define the modified dipole matrix elements

µ̃ij = µij + P

∫
dε
Viaµaj
∆a(ε)

, j = 0, f, (A5)

that describe coupling of the ground or final state to the doubly excited state modified by the

admixture of the continuum (P denotes the Cauchy principal value). The Fano asymmetry

parameters are then defined as qij = µ̃ij/ (πViaµaj)∆a(ε)=0 [31].

Density matrix equations for the atomic part of the system are obtained after neglecting

the autoionization and field-induced shifts [48], as well as coupling of the ground and final
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state through the 1sεp continuum (terms proportional to µjaµak, where j = 0, f and k = f, 0,

respectively) [22], and using ρjk = uju
∗
k as the definition of density matrix elements. Adding

the rates due to nonresonant photoionization and fluorescence from the excited to final

state leads to Eqs. (2-5). Ionic density matrix elements are defined as ρjk =
∫
ujεu

∗
kεdε with

j, k = a, b, from which Eqs. (6) are obtained after performing the same approximations as

above.

The noise contribution to equations for the time evolution of density matrix elements is

(see Refs. [17, 33, 56, 57])

∂

∂t
ρij
∣∣
noise

=−
∑
σ,s

χ
[
ρsjTisσ

(
Hish−Hsih

†)− ρisTsjσ (Hsjh−Hjsh
†)]

+
∑
σ,s

[
ρsjTisσHsih

∗ + ρisTsjσHsjh
†∗] , (A6)

where Hij = Θ(Ei−Ej) with Θ(x) being the Heaviside step function. Tensor Tjkσ describes

the relative strength of dipole transitions between atomic states. Index σ runs over the

field polarization modes, and s over the states of the system. In our case, since the pump

field is linearly polarized, a single excited state is populated, and this decays radiatively to

a single final state, so the emitted field contains only one polarization mode and index σ

can be omitted. As mentioned in the main text, spontaneous decay to the ground state is

neglected, thus

Tjk =


0 0 0

0 0 1

0 1 0

 , (A7)

where the sequence of states is (0, i, f). Inserting Eq. (A7) into Eq. (A6) leads to the noise

contributions in Eqs. (2), (4) and (5).

Field propagation equations are derived in the paraxial and slowly varying envelope

approximations [30]. The former consists in assuming that |kUx|, |kUy| � |kUz| ∼ |kU|, where

kU = (kUx, kUy, kUz) is the wave vector of field mode U , whereas the latter prescribes that

the spatial and temporal variations of field amplitudes are small, i.e. |∂U(±)/∂z| � kU|U(±)|

and |∂U(±)/∂t| � ωU|U(±)|. Equations (8) and (10) can be written in the form

∂

∂z
U = LU + C, (A8)

where L = i∇2
⊥/ (2kU) − κU/2. Propagation due to the operator L is approximated using

a second order factorization [39], where the differential operator is evaluated using a two-
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dimensional Fourier transform over the transverse directions x, y [40]. There are several

options to evaluate the last term of Eq. (A8) [58], but for its simplicity and stability the

implicit backward Euler method was chosen. The field at longitudinal point z + ∆z is thus

evaluated as

U(z + ∆z) = e−
∆z
4
κU(z+∆z)FT−1

xy

[
e
− i∆z

2kU
(k2
x+k2

y)FTxy

[
e−

∆z
4
κU(z)U(z)

]]
+ ∆zC(z + ∆z), (A9)

where FTxy denotes the Fourier transform over transverse directions and kx, ky are the

associated spatial frequencies. The boundary condition for the pump FEL field at target

entrance (z = 0) is defined as

F(+)(x, y, z = 0, t) =
F0

q
exp

(
ikF

x2 + y2

2q

)
exp

(
− [t− t0]2

4σ2
τ

)
, (A10)

where q = −z0 − ikFd
2
0/ (4 ln 2) is the complex beam parameter, στ = τ0/

(
2
√

2 ln 2
)

, t0 is

a temporal offset, and F0 is the normalization constant related to the pump pulse energy

EFEL.

Appendix B: Photoionization cross sections

Numerical values of photoionization cross sections for all processes included in the simu-

lation are presented in Table I. Cross sections σ̃j connected to the dipole matrix elements for

resonant excitation to the doubly excited state are calculated using the method of complex

rotation [32], and cross sections for ionization of the doubly excited state are calculated

using the methods from Refs. [59, 60].

The n = 3, 4 excited states of singly ionized helium, which are replaced with a single

state |c〉 in the model, are populated in the following way: ionization of the doubly excited

state with the pump and emitted field predominantly populates He+ 3p and 4p ionic states,

whereas ionization of the final state with the pump field mainly produces ions in the He+ 3s

and 4s states. The ratio between the largest and smallest cross section for ionization of these

states with a given field is around 3. Since the overall populations of these states are small

and hence simulation results are not sensitive to their respective cross sections, we take as

σFc, σEc the cross sections for photoionization of He+ 4s, which lie between the values for

other states.
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Parameter Value Parameter Value

σ̃0 0.044 σFi 1.7× 10−3

σ̃f 4.4× 10−4 σEi 5.8× 10−3

σE0 0.10 σFb 9.8× 10−4

σFf 0.032 σEb 4.5× 10−3

σFa 0.037 σFc 4.3× 10−4

σEc 1.3× 10−3

TABLE I. Values of photoionization cross sections (in atomic units) used in the simulations.

Appendix C: Verification of stochastic noise terms

In the spontaneous emission limit, where the contribution of stochastic terms in Eqs. (2,5)

is dominant and stimulated emission is negligible, simulation results can be compared to

known analytical solutions. To verify that the electric field produced by the noise terms

exhibits the expected characteristics, we consider a simplified three-level system, where

photoionization is neglected (σUj = 0, U = F,E, j = 0, i, f, a, b, c) and resonant coupling

between the ground and excited state of He+ is set to zero (µab = 0). Additionally, we omit

terms proportional to E(±) in the density matrix Eqs. (2,4,5), which produce stimulated

emission on the |i〉 − |f〉 transition. This allows us to increase the target density without

producing amplification of the emitted field, and effectively increase the spontaneous emis-

sion signal. This in turn reduces the number of repetitions of the simulation over which the

results have to be averaged to obtain convergence [17]. The target pressure of 0.3 mbar is set

to be constant throughout the 8 mm long target, and FWHM focus size of the pump pulse

with 120 fs duration and 5µJ pulse energy is set to 10µm, so that pump pulse divergence

inside the target region is negligible.

Under these conditions, the correlation function of the spontaneously emitted field has

the discretized form

JE(x, y, z, τ1, τ2) =
E

(+)
xyzτ1E

(−)
xyzτ2

2παωE

=
2παωE|µ̃if |2n

∆x∆y

z∑
z̃=0

∆ze−
γ
2
|τ1−τ2|ρii,xyz̃τmin

Θ(|τ1− τ2|), (C1)

where τmin = min(τ1, τ2), γ = Γif +2ΓDif is the decoherence rate, and Θ(x) the Heaviside step

function. Due to the properties of stochastic noise terms, field intensity in the spontaneous
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emission limit has to be regularized [17], and is calculated as

IE(x, y, z, τ) =
1

4

(
E(+)
xyzτE

(−)
xyz(τ−∆τ) + E(+)

xyzτE
(−)
xyz(t+∆τ) + E

(+)
xyz(τ−∆τ)E

(−)
xyzτ + E

(+)
xyz(τ+∆τ)E

(−)
xyzτ

)
.

(C2)

The expected temporal profile of the emitted field intensity can thus be obtained from the

field correlation function by setting τ1 = τ2±∆τ . The expected number of emitted photons

is

Nan.
E (z) =

∑
xyτ

∆τ∆x∆y JE(x, y, z, τ, τ + ∆τ) = 2παωE|µ̃if |2n∆τ∆z
∑
xyτ

z∑
z̃=0

ρii,xyz̃τe
−γ∆τ/2.

(C3)

Since spontaneous emission is a linear process, the intensity of emitted radiation at a

given time and position is proportional to the cumulative number of atoms in upper states

and the probability for radiative decay, which in Eq. (C1) are encompassed in factors nρii

and 2παωE|µ̃if |2 ∼ Γfr , respectively, with Γfr being the spontaneous radiative decay rate from

the doubly excited to the final state. The spectral profile of the emitted field is obtained

through the Wiener-Khinchin theorem as the Fourier transform of the time-integrated field

correlation function. Exponential factor exp
(
−γ

2
|τ1 − τ2|

)
in Eq. (C1) thus reproduces the

expected Lorentzian spectral profile of spontaneously emitted fields with width equal to the

decoherence rate γ, however, this profile is modified since the upper-state population varies

in time. The temporal profile of emitted field intensity thus resembles a convolution of the

exponential decay of upper states and temporal dependence of the pumping rate [61]. As

shown in Fig. 7(a), the expected spectral profile is slightly wider than the Lorentzian with

more rapidly decreasing tails.

Figure 7 presents numerical results averaged over 2 × 105 repetitions of the simulation,

along with expected analytical results. The integrated field intensity and spectral intensity

at target exit are shown, as well as the number of emitted photons. There is good agreement

between numerical and analytical results, with small discrepancies due to averaging over a

limited number of repetitions. The imaginary parts of the emitted field intensity and number

of photons indicate the level of field fluctuations remaining after averaging, and decrease with

increasing number of repetitions.

It is worth noting that a very large number of repetitions is required to obtain approxi-

mately smooth average results in the spontaneous emission limit. However, the number of

necessary repetitions is drastically reduced when the emitted field starts to amplify and the
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FIG. 7. (a) Left: temporal profile of the pump pulse intensity IF, excited state population ρii and

emitted field intensity Re(IE) at target exit integrated over transverse dimensions. Right: spectral

intensity of emitted radiation at target exit (num.), along with the expected spectral profile (an.)

and Lorentzian profile of width γ = 9 meV (Lorentz). (b) Numerically and analytically calculated

number of emitted photons as a function of propagation distance.

contribution of noise terms becomes less significant. In the spontaneous emission limit, only

results averaged over a large ensemble of simulation repetitions can be compared to physical

observables, whereas after the initialization of field amplification, individual realizations be-

come relevant and can be related to single-shot experimental results. Since in this paper we

are mainly interested in the amplification and saturation regime of superfluorescence, the

number of repetitions over which numerical results are averaged can be reduced to a few

hundred. Moreover, after amplification the field intensity no longer needs to be regularized,

as it coincides with the intensity calculated in the standard way as IE(x, y, z, τ) = E
(+)
xyzτE

(−)
xyzτ .
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