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We study the performance (rate and fidelity) of distributing multipartite entangled states in a
quantum network through the use of a central node. Specifically, we consider the scenario where the
multipartite entangled state is first prepared locally at a central node, and then transmitted to the
end nodes of the network through quantum teleportation. As our first result, we present leading-
order analytical expressions and lower bounds for both the rate and fidelity at which a specific class
of multipartite entangled states, namely Greenberger-Horne-Zeilinger (GHZ) states, are distributed.
Our analytical expressions for the fidelity accurately account for time-dependent depolarizing noise
encountered by individual quantum bits while stored in quantum memory, as verified using Monte
Carlo simulations. As our second result, we compare the performance to the case where the central
node is an entanglement switch and the GHZ state is created by the end nodes in a distributed
fashion. Apart from these two results, we outline how the teleportation-based scheme could be
physically implemented using trapped ions or nitrogen-vacancy centers in diamond.

I. INTRODUCTION

A quantum network is capable of distributing entan-
gled quantum states between end nodes that are possibly
separated by large distances [1–4]. The development of
quantum networks is an active field of research, with
recent milestones including the distribution of entangle-
ment over 1203 kilometers using a satellite [5], quantum
teleportation without using a preshared entangled state
[6], the generation of light-matter entanglement over 50
kilometers of optical fiber through the use of quantum
frequency conversion [7], and the creation of the first
three-node quantum network [8].

Much research focuses on the distribution of bipartite
entangled states, or Bell states, which are shared only
between two nodes. Bell states allow for many inter-
esting applications, such as quantum key distribution
[9–12] and blind quantum computation [13–15]. Some
quantum-network applications, however, require the dis-
tribution of multipartite entangled states. One class of
multipartite entangled states is formed by graph states.
Graph states are states that can be represented using
mathematical graphs, with each node corresponding to
a qubit, and each edge corresponding to an entangling
operation [16]. An example of a state that is equivalent
to a graph state up to single-qubit operations is the
Greenberger-Horne-Zeilinger (GHZ) state [17], which is
equivalent to graph states both corresponding to the
complete graph and the star graph. Distributed GHZ
states can be used for, among others, conference-key
agreement [18–21], distributed quantum computing
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[22, 23], secret sharing [24], clock synchronization [25],
and two-dimensional quantum-repeater schemes [26].
A multipartite state that is not equivalent to a graph
state is the W state [27], which can be used for e.g.
anonymous transmission [28].

Various investigations have been performed into
how specific multipartite entangled states can best
be distributed in a quantum network [26, 29–49]. A
recurring theme that can be discerned in prior work
is the use of a central node that establishes bipartite
entanglement with a number of end nodes, and then
executes local operations to transform the bipartite
states into a single multipartite entangled state between
those end nodes [30, 35, 39, 42, 43, 47–49]. Notably,
such a scheme is a key ingredient for different efficient
protocols and network architectures for distributing
multipartite entanglement [30, 43, 47–49].

In this paper, we consider the case where a multipar-
tite entangled state is distributed in a quantum network
by first creating the target state locally at the central
node, and then transmitting the qubits of the state to
the end nodes through quantum teleportation using
preshared Bell states [50]. Teleportation is realized
by executing a Bell-state measurement (BSM) on the
to-be teleported qubit and a qubit in a Bell state. Here,
we refer to a node capable of creating and teleporting
multipartite entangled states as a factory node. The
function of a factory node is illustrated in Figure 1.

Understanding the performance of factory nodes in
the presence of hardware imperfections allows for the
assessment of the different proposed protocols and net-
work architectures that incorporate such central nodes.
Metrics that quantify the performance of multipartite
entanglement distribution are the rate at which states
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Figure 1. A factory node can be used to distribute some mul-
tipartite entangled target state (for example, a graph state)
between a set of end nodes. This is done by preparing the
target state locally at the factory node and teleporting it.
Quantum teleportation of the target state is realized using
Bell states shared between the factory node and the end nodes
and Bell-state measurements (BSMs).

can be distributed, and the fidelity of distributed states
to the target state. Developing a good understanding of
the rate and fidelity is of special relevance to the work
done in [48]. Here, the authors present a protocol to
decide which node in a larger network to select as the
central node for the distribution of GHZ states. This
protocol relies on an analytical model of the rate and
fidelity with which the states can be distributed for
different possible placements of the central node. We
contribute to understanding the rate and fidelity in
Section III. Furthermore, we remark that it is not only
of interest to quantify the performance of factory nodes
in an absolute sense. It is also of interest to understand
how the performance of factory nodes compares to other
schemes that also allow for distributing multipartite
entangled states, such that statements about their
relative performance can be made. We contribute to
this by considering different types of central nodes in
Sections IC and IV.

In this work, we specifically study the use of fac-
tory nodes to distribute GHZ states in a symmetric
star-shaped network. In such a network, depicted in

Figure 2, a central node is connected to N end nodes
through, in total, N identical quantum connections.
These quantum connections can be used to distribute
Bell states. We will model the distribution of Bell states
using quantum connections as a series of attempts of
constant duration and success probability. When such
an attempt is successful, the series terminates and a Bell
state is created. When a quantum connection creates a
Bell state, it is shared between the central node and the
corresponding end node, and can be stored in quantum
memory. These Bell states can be used as a resource to
create multipartite entangled states shared by the end
nodes.

A. Summary of results

In this paper, we present two main results. As
our first result, in Section III, we provide analytical
leading-order expressions and lower bounds for both
the rate and fidelity of GHZ-state distribution in a
symmetric star-shaped network using a factory node,
and additionally an exact expression for the rate. The
leading-order expressions become exact in the limit
when the success probability of a single attempt at
Bell-state distribution using a quantum connection is
small, and the probability of losing a qubit due to
memory decoherence during the time span of a single
such attempt is small. As our second result, in Section
IV, we provide a comparison between the performance
of GHZ-state distribution on a symmetric star-shaped
network when the central node is a factory node, and
when the central node is instead a “2-switch” capable of
performing BSMs to create Bell states shared between
end nodes [41]. A key advantage to the use of factory
nodes is an increased resilience to noise in Bell-state
distribution. However, a disadvantage is reduced re-
silience to noise in BSMs. Additionally, the factory node
is typically outperformed by the 2-switch in terms of rate.

B. Comparison of analytical results to prior work

Here, we compare the analytical results for the rate
and fidelity that we present in Section III to existing
results. First, we note that we are aware of only one
prior analytical result for the fidelity of distributed
GHZ states in a similar scheme, which is found in [48].
However, the authors make the simplifying assumption
that Bell states cannot be stored in quantum memory
between attempts at Bell-state distribution. Therefore,
all connections need to be successful simultaneously.
When the success probability for distributing Bell
states is small, this is a very inefficient scheme. In
contrast, we assume entangled qubits are stored within
the factory node until all Bell states are in place
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and the GHZ state can be teleported. Here, we are
able to accurately account for the time-dependent
noise due to qubits being stored in noisy quantum
memory for random periods of time. Additionally,
it is assumed in [48] that local operations are always
noiseless, which is not an assumption made in this paper.

Second, we compare our results with the study of the
“entanglement switch”. An entanglement switch, first
defined in [41], is a quantum-network node capable of
generating and storing Bell states with k end nodes,
and executing GHZ-state measurements on n local
qubits, thereby creating GHZ states shared by n out
of k end nodes. From this perspective, a factory node
that distributes GHZ states, as studied in this paper,
can be described as an n = k entanglement switch. An
entanglement switch for which n = 2 is referred to as
“2-switch” throughout this paper.

In [39–42, 51], the entanglement switch is studied
analytically using Markov-chain techniques. In [42], it
is discussed that a minimum fidelity can be guaranteed
by incorporating a cutoff time after which qubits are
discarded from memory in the protocol, and the effects
of the cutoff time on the rate are studied for n = 2.
However, there are no expressions for the actual fidelity
(with or without cutoff time), and in case there is no
cutoff time there is also no lower bound. Additionally,
none but [39] consider the case n > 3, where the only
result that is presented for n = k is that no steady-state
solution exists in case the switch is able to store an
infinite number of entangled qubits. This is in contrast
to the present paper, where we present analytical results
for the fidelity in the absence of a cutoff time, the
parameter n can take any value, and we assume there
is only one qubit of buffer memory available per end
node. Our results are limited to n = k, but we discuss
in Section VI how the results can be extended to n < k.

A paper that does derive results for an entanglement
switch of general n = k with only a single qubit of buffer
memory is [37]. The authors provide analytical tools
for understanding and bounding the rate, but do not
consider the fidelity. Finally, numerical results for the
fidelity obtained from Monte Carlo simulations can be
found in [38]. While Monte Carlo simulations can be
used to study a larger range of setups than our analytical
results (e.g., they can be used to study asymmetric
star-shaped networks), they may need to be evaluated
many times in order to obtain results with small error
bars. Doing so can be computationally expensive. This
is especially the case when there is a large number of
end nodes, as quantum states in the system will be large
and therefore hard to simulate. On the other hand, our
analytical results are computationally cheap to evaluate
and have no error bars. Furthermore, analytical results
are often more suited to understand how a quantity
scales and gain intuition.

Figure 2. Symmetric star-shaped network studied in this
paper. N identical end nodes are each connected to a central
node through one of, in total, N identical quantum connec-
tions. These quantum connections can be used to distribute
Bell states, which can be stored in quantum memory and
provide a resource to create a multipartite entangled states
shared by the end nodes. An example of a possible central
node is a factory node.

C. Different central nodes

In order to understand how well factory nodes perform
relative to other schemes that allow for the distribution
of multipartite entangled states, a comparison needs
to be performed. This allows us to put the rate and
fidelity that factory nodes can achieve into context, and
can help determine under what circumstances it is best
to use a factory node, and under what circumstances
it may be better to consider a different scheme. Here,
we provide a non-exhaustive comparison by discussing
two alternative strategies for distributing multipartite
entangled states on the symmetric star-shaped network
depicted in Figure 2. The first of these utilizes a central
node without quantum memory, while the second uses a
2-switch as central node.

The first alternative method to factory nodes for
the distribution of multipartite entanglement in a
star-shaped network is to utilize a central node that
does not have any quantum memory. This memoryless
scheme requires connections through which photons
can be directly transmitted, e.g. they can be optical
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Figure 3. Some multipartite entangled states, such as GHZ
states and W states, can be distributed between end nodes
through the interference and measurement of entangled pho-
tons. Each of the end nodes needs to emit a photon that
is entangled to a qubit held in local quantum memory, and
transmit it to a central node. At this node, the photons orig-
inating from all the different nodes are interfered.

fibers. To distribute a multipartite entangled state,
the end nodes emit entangled photons that are sent
through the connections to the central node. Here, the
photons are interfered and measured, resulting in the
creation of the target state on the end nodes. Such
schemes exist for the distribution of GHZ states [31, 52]
and W states [53, 54], and they are illustrated in Figure 3.

An advantage of these schemes is that the central
node can be very simple, requiring only linear-optics
components and single-photon detectors. A downside
however, when distributing GHZ states, is that all pho-
tons need to arrive at the central station simultaneously,
making it very sensitive to photon losses; if each of
the N connections transmits photons successfully with
probability η (the transmittance of the connection), the
distribution rate will scale as ηN . On the other hand, a
factory node could be used to distribute states with a
rate that falls only logarithmically with N , and linearly
with the success probability of Bell-state distribution
(see Section IIIA). How this success probability scales
with η depends on the nature of the connection and the
specific method used to distribute Bell states. When
using direct transmission of entangled photons, the
scaling will be linear in η, but schemes with better
scaling exist. For example, single-click heralded entan-
glement generation [55] can be used for √η scaling, and
the scaling could be further improved using quantum
repeaters, with the exact scaling depending on how they
are implemented [56]. No further comparison between
memoryless schemes and the use of a factory node is
performed in this paper.

The second alternative method to using factory nodes

for the distribution of multipartite entanglement in a
star-shaped network, is to use a 2-switch as a central
node. The 2-switch functions as an intermediary,
allowing the end nodes to share Bell states with one
another even though they are not directly connected.
By executing the appropriate local operations at the
end nodes, these Bell states can be transformed into
the target multipartite entangled state. One downside
to this option is that it imposes the requirement that
end nodes must be able to store multiple qubits within
their quantum memory, and that they must be able
to execute multipartite entangling operations. An
additional downside is that, even if each end node is
able to store and exert full control over two qubits, there
still exist multipartite entangled states that the nodes
would be able to store but cannot create in their limited
quantum memory using only bipartite entangled states
shared between them [46]. On the other hand, when
utilizing a factory node, any multipartite entangled state
that the end nodes have enough quantum memory to
store can be distributed among them. Generally, when
using a factory node, advanced quantum capabilities are
required only of the dedicated network device, not of the
end nodes.

In section IV, we present our second main result. This
result is a comparison, based on Monte Carlo simula-
tions, of the rate and fidelity of GHZ-state distribution
on the symmetric star-shaped network using a factory
node and using a 2-switch. Here, we assume the 2-switch
follows a specific protocol under which BSMs are not
executed whenever possible, but only when they result
in a Bell state that directly contributes to the creation
of a GHZ state.

D. Outline

The remainder of this paper is set up as follows. First,
in Section II, we introduce the exact factory-node setup
and noise model we study. Next, in Section III, we pro-
vide analytical results for the rate and fidelity with which
GHZ states can be distributed on this setup. In Section
IV, we use Monte Carlo simulations to compare the per-
formance of GHZ-state distribution using a factory node
and using a 2-switch. We provide examples of how a fac-
tory node could be physically implemented using trapped
ions or nitrogen-vacancy centers in diamond in Section V.
Finally, we conclude in Section VI, where we discuss how
the results presented in this paper could be generalized
and used for further study.

II. SETUP, PROTOCOL AND MODEL

In this section, we discuss in detail the factory-node
setup that we study in this paper. Additionally, we
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introduce the exact protocol used to distribute GHZ
states on this setup, and the model that we use to
account for noise and losses.

We consider a symmetric star-shaped quantum net-
work. Such a network, depicted in Figure 2, consists of
N end nodes, and one central node that shares a single
quantum connection with each of the end nodes. For the
factory-node setup discussed in this section, this central
node is a factory node. The quantum connections can be
used to distribute Bell states of the form

|φ00〉 =
1√
2

(|00〉+ |11〉) . (1)

Each end node contains a single qubit. On the other
hand, the factory node contains 2N qubits. N of these
can be used to store the local halves of Bell states that are
distributed using the quantum connections. The other N
can be used to prepare and store a target quantum state
to be distributed among the end nodes. Furthermore,
for each of the first N qubits, the node is able to exe-
cute a BSM with exactly one of the second N qubits. In
our modeling, we allow for probabilistic BSMs. A BSM
is probabilistic e.g. when it is implemented using lin-
ear optics [57, 58]. When a BSM has success probability
qBSM, we model this as raising a “fail” flag with probabil-
ity 1−qBSM, and executing a perfect BSM otherwise. On
this setup, any N -partite target state can be distributed
between the end nodes by creating the target state lo-
cally, and then teleporting it to the end nodes using Bell
states. Specifically, we consider the distribution of an N -
partite GHZ state using Protocol 1, which is illustrated
in Figure 4. Such a state is defined by

|GHZ〉 =
1√
2

(
|0〉⊗N + |1〉⊗N

)
. (2)

Protocol 1: GHZ-State Distribution Using Fac-
tory Node

1. Repeatedly attempt Bell-state distribution over
each of the N quantum connections shared between
the factory node and the N different end nodes,
until the factory node shares a Bell state with each
end node.

2. Create an N -partite GHZ state on the N remaining
free memory qubits in the factory node.

3. Perform N BSMs at the factory node, each between
one qubit that holds part of the GHZ state, and one
qubit that holds part of a Bell state.

4. Send a classical message from the factory node to
each of the end nodes containing the results of the
BSMs.

5. If any of the BSMs was unsuccessful, all end nodes
reset their memory qubits. Return to Step 1. Oth-
erwise, the end nodes perform Pauli corrections

based on the outcomes of the BSMs, such that, in
the absence of noise, the end nodes now share a
GHZ state.

Each step in the protocol is performed after the previous
step has been concluded. In case the BSMs are all
successful, the last three steps of Protocol 1 implement
quantum teleportation of the N qubits sharing a GHZ
state from the factory node to the end nodes. Therefore,
in the absence of noise, this results in the N end nodes
sharing an N -partite GHZ state.

In this study, we assume the time it takes to distribute
a Bell state over a quantum connection follows a geo-
metric distribution. That is, Bell-state distribution is
a series of attempts, where each attempt is of constant
duration ∆t, and where the probability that an attempt
is successful is described by the constant qlink. To be
more precise, ∆t is the time it takes after starting
an attempt until both the end node and factory node
know whether it was successful or not. Only after
they have obtained this knowledge, they can decide
whether they want to reset their local qubits and start
again, or whether they should instead keep the created
quantum state stored in memory. We use this time, i.e.
∆t after the start of the attempt, as the start of the
storage time of the Bell state that is generated if the
attempt is successful. Describing Bell-state distribution
as a sequence of independent attempts is accurate
when the quantum connection consists of, for example,
heralded entanglement generation through either direct
transmission [6, 59] or photon interference [8, 55, 60–69],
or a quantum-repeater chain with fixed-time quantum
memory [70, 71].

Another assumption made here is that all quantum
connections are identical, i.e. ∆t and qlink are the same
for each of the N connections between the factory node
and the end nodes. Therefore, ∆t is used as the standard
time unit throughout the rest of this paper, and one
time step of duration ∆t during which attempts at
Bell-state distribution take place is sometimes referred
to as a “round”.

The time that it takes to send a classical message
between the factory node and any of the end nodes
is denoted tcl. Since Step 4 of Protocol 1 consists of
sending classical messages, it will take tcl to finish
that step. How large tcl is compared to ∆t depends
on how the quantum connections are implemented.
For example, in the case of heralded entanglement
generation through photon interference, ∆t includes the
time required to send photons to a midpoint station,
and the time required to send back the measurement
outcome to the nodes. Assuming classical signals travel
at the same speed of light (in fiber) as the photons used
to generate entanglement, this time is exactly equal to
tcl. ∆t may be further limited by, among others, the
rate at which entangled photons can be emitted and by
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Figure 4. Illustration of GHZ-state distribution through a factory node, using Protocol 1. (a) There is one factory node,
and there are N = 3 end nodes. (b) Bell states are distributed between the factory node and each of the end nodes (Step
1 of Protocol 1). (c) After all Bell states are in place, a GHZ state is created locally (Step 2 of Protocol 1). (d) BSMs are
executed between qubits in Bell states and qubits in the GHZ state (Step 3 of Protocol 1). (e) If all BSMs were successful and
the corresponding Pauli corrections have been applied, the end nodes share a GHZ state (Steps 4 and 5 of Protocol 1).

classical overhead due to e.g. synchronizing emission
times [8, 72, 73]. In that case, tcl < ∆t. In this paper,
we focus on the case qlink � 1. In that regime, the
number of attempts required to successfully distribute
a Bell state is typically very large. Then, as long as tcl
is not much larger than ∆t, classical communication
will only take up a negligibly small part of both the
time required to distribute one GHZ state and qubit
storage times. Therefore, we use tcl = 0 throughout
the rest of this paper. Additionally, we assume that all
local operations executed at the factory node and the
end nodes are instantaneous. These operations do not
suffer from any speed-of-light delay, and their execution
time will always become comparatively small for small
enough qlink. Because both classical communication and
local operations are modeled as instantaneous, Step 1 is
the only step of Protocol 1 with nonzero duration.

All noise in the network is modeled by depolarizing
channels, described by the action [74]

DHA,p(ρ) = pρ+ (1− p) TrHA
(ρ)⊗ 1HA

Tr 1HA

. (3)

Here, ρ is a density matrix in the Hilbert space H =
HA ⊗ HB , HA is the subspace of H that describes the
system that the depolarizing channel acts on, 1HA

is the
identity operator of HA, TrHA

is the partial trace over
HA, and p is the so-called depolarizing parameter. It can
be interpreted as losing all information about the system
described by HA with probability 1− p. Specifically, we
consider the following sources of noise:

• Noisy connections. Whenever a Bell state is cre-
ated, a depolarizing channel with parameter plink
acts on the two qubits that hold the Bell state (i.e.
HA has dimension 4). We note that, because of
the symmetry of the Bell state, this is equivalent
to a single-qubit depolarizing channel acting with
parameter plink on either of the individual qubits.

• Noisy memory. For every time unit ∆t that a quan-
tum state is stored in a memory qubit, a depolariz-
ing channel with parameter pmem acts on that qubit
(i.e. HA has dimension 2).

• Noisy BSMs. Whenever a BSM is executed, it is
preceded by two depolarizing channels with param-
eter pBSM, one on each of the participating qubits
(i.e. HA has dimension 2). This measurement
itself, following the depolarizing channels, is then
modeled as being noiseless.

• Noisy GHZ states. Whenever a GHZ state is cre-
ated, a depolarizing channel with parameter pGHZ
acts on the N qubits that hold the GHZ state (i.e.
HA has dimension 2N .)

Local Pauli corrections are modeled as noiseless.

III. ANALYTICAL RESULTS

Here, we present analytical results for the rate and fi-
delity of GHZ-state distribution using Protocol 1. For



7

the rate, we provide three analytical results: an exact
expression, a lower bound, and a leading-order expres-
sion. For the fidelity, we present two analytical results:
a lower bound and a leading-order expression. The ac-
curacy of the leading-order expression for the rate, and
of both the leading-order expression and the lower bound
for the fidelity, is verified against a numerical model built
using the quantum-network simulator NetSquid [38] in
Appendix A.

A. Rate

We denote the time required to distribute a single GHZ
state using Protocol 1 by T , which is a random variable.
The (average) rate at which GHZ states are distributed
is then defined by

R = 1/ 〈T 〉 . (4)

Thus, to calculate the rate, we need to know the expected
value of the distribution time. To this end, we decompose
the distribution time as

T = nteleportTteleport. (5)

Here, nteleport is the number of attempts at teleporting a
GHZ state until such an attempt is successful. That is,
it is the number of times Steps 1 through 4 of Protocol
1 need to be executed for the protocol to finish. Such an
attempt at teleportation may fail in case the BSMs are
probabilistic, i.e. qBSM < 1. On the other hand, Tteleport
is the time required to perform Steps 1 through 4 once.
Both these quantities are random variables. Because un-
der the present assumptions only Step 1 of Protocol 1
has a nonzero duration, Tteleport can be further dissected
into

Tteleport = nall∆t, (6)

where nall is again a random variable, corresponding to
the number of rounds of Bell-state distribution required
to share Bell states between the factory node and all
of the end nodes. That is, it is the number of rounds
required to finish Step 1 of Protocol 1. Combining the
two expressions yields

T = nteleportnall∆t. (7)

Because the expected value of a product of two indepen-
dent random variables is the product of their expected
values, we find

〈T 〉 = 〈nteleport〉 〈nall〉∆t. (8)

Since each teleportation attempt succeeds with a fixed
success probability of qNBSM (teleportation succeeds if and
only if all N BSMs are successful), nteleport is geometri-
cally distributed with 〈nteleport〉 = 1/qNBSM. Thus,

R =
qNBSM
〈nall〉∆t

. (9)

The probability distribution of nall is more compli-
cated: the number of rounds required to distribute Bell
states with all N end nodes is the number of rounds re-
quired to distribute the Bell state that takes the longest.
Writing ni for the number of attempts required to dis-
tribute a Bell state with end node i, we have

nall = max{n1, n2, ..., nN}. (10)

Each of the ni is geometrically distributed with 〈ni〉 =
1/qlink. It can be evaluated exactly using [75]

〈nall〉 =

N∑
j=1

(−1)j+1

(
N

j

)
1

1− (1− qlink)j
. (11)

This can be substituted into Eq. (9) to obtain an exact
expression for the rate. However, we also report here a
known leading-order expression [37, 76, 77],

〈nall〉 ≈
HN

qlink
, (12)

where HN is the N th harmonic number,

HN ≡
N∑
i=1

1

i
= γ + logN +O

( 1

N

)
. (13)

Here, γ ≈ 0.5772 is the Euler-Mascheroni constant. Sub-
stituting this into Equation (9) yields

R ≈ qNBSMqlink

HN∆t
, (14)

which is valid up to leading order in qlink.

There are two reasons why we report the leading-order
approximation (14) even though an exact expression is
available. First, in the regime qlink � 1, Eq. (14) is
accurate and easier to evaluate. Second, Eq. (14) more
clearly shows how the rate scales with qlink, N and qBSM,
thereby providing more intuition. We additionally note
that there exists an upper bound [37, 78],

〈nall〉 < 1 +
HN

− log(1− qlink)
. (15)

Therefore, Eq. (14) is a lower bound on the actual rate
if

HN

qlink
> 1 +

HN

− log(1− qlink)
. (16)

This is the case for any N > 3. Additionally, it is true
for N = 3 if qlink ' 0.42. Therefore, using the simpler
leading-order expression usually does not lead to overes-
timating the performance of Protocol 1. In Appendix A,
for N = 5, we find that Eq. (14) is indeed a tight lower
bound for small values of qlink, while underestimating the
rate up to a factor of two for qlink ∼ 1.
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B. Fidelity

In this section, we calculate the fidelity of the state
shared by the end nodes after a successful execution of
Protocol 1. This fidelity is defined with respect to the
perfect GHZ state. The first step is to determine the
density matrix of that state, which we denote ρ. In the
absence of noise, ρ would simply be a perfect GHZ state.
However, due to the depolarizing noise in the creation
of the local GHZ state within the factory node, the
performance of BSMs, the distribution of Bell states and
the storage of qubits, ρ is generally not a GHZ state and
is a function of the noise parameters pGHZ, pBSM, plink
and pmem. Additionally, we note that each individual
execution of the protocol is characterized by the values
that the random variables n1, n2, ..., nN take. Just like
above, the random variable ni represents the number of
rounds it takes to distribute a Bell state between the
factory node and end node i. How much decoherence
due to the storage of qubits in quantum memories is
suffered, will depend on the value that each ni takes.
Therefore, ρ is additionally a function of the random
variables n1, n2, ..., nN .

We derive ρ as a function of the noise parameters and
random variables in Appendix B. Here, we briefly sum-
marize how this derivation is performed. First, we note
that there are single-qubit depolarizing channels acting
on three groups of qubits. First, there are the qubits that
are part of the locally created GHZ state in the factory
node. Second, there are the qubits stored at the GHZ
factory that are entangled to those at the end nodes and
partake in BSMs together with the GHZ-state qubits.
Finally, there are the qubits stored at the end nodes.
Because of the symmetry of Bell states, and by exten-
sion of BSMs, it is possible to “move” all these single-
qubit depolarizing channels to only the qubits stored at
the end nodes. That is, the state ρ can be derived cor-
rectly by pretending that as the protocol is executed,
there is no single-qubit depolarizing noise within the fac-
tory node, but instead there are only single-qubit depo-
larizing channels acting at the end nodes. Because the
composition of depolarizing channels is itself a depolar-
izing channel, each end node i only undergoes a single
depolarizing channel with parameter

pi = plink p
2
BSM p2∆ni

mem , (17)

where

∆ni ≡ nall − ni (18)

is the number of rounds the Bell state shared with end
node i is stored until it partakes in a BSM. Describing
the protocol in this way is very convenient, because it
then amounts to performing perfect quantum teleporta-
tion of a noisy GHZ state to the end nodes, followed by
depolarizing channels on each of the N individual qubits
of the state. Resolving all these depolarizing channels

gives the result

ρ =
1− pGHZ

2N
1N

+ pGHZ

[ ∏
i∈N

pi
(
|GHZ〉〈GHZ|

)
N +

∏
i∈N

1− pi
2

1N

+
1

2

∑
U⊂N

1<|U |<N

∏
i∈U

1− pi
2

∏
j∈N\U

pj

1U ⊗ PN\U

]
.

(19)
Here, we have defined N = {1, 2, ..., N}, and P is the
classically correlated, unnormalized state

P1,2,...,k ≡
(
|0〉〈0|

)⊗k
+
(
|1〉〈1|

)⊗k
. (20)

The different terms in the density matrix correspond to
all different combinations of some of the qubits being
lost due to single-qubit depolarizing noise, and some
being unscathed.

Using Eq. (19), the fidelity can be efficiently written
as

Frand ≡〈GHZ|ρ|GHZ〉

=
1− pGHZ

2N

+pGHZ
∑
U⊆N

2δ|U|,0+δ|U|,N−1
∏
i∈U

(1− pi
2

) ∏
j∈N\U

pj ,

(21)
where |U | is the cardinality of set U and δi,j denotes the
Kronecker delta function. As the fidelity is a function of
the random variables ∆ni, it is itself a random variable:
it depends on how quickly one after another the different
Bell states are distributed. This is the reason why
the fidelity above is denoted with the subscript “rand”.
The delta functions are there to account for the fact
that there is “one less” factor of 1

2 in the fidelity when
no qubits are lost, and when all qubits are lost. The
reason for this is that losing a single qubit (i.e. tracing
that qubit out and then replacing it by a maximally
mixed state) in a GHZ state does not only destroy the
information held by that qubit, but also reduces the
correlation between the remaining qubits to classical
correlation instead of quantum correlation. Therefore,
the first qubit that is lost accounts for a larger drop
in fidelity than subsequent qubits. Additionally, the
last qubit that is lost does not account for any drop in
fidelity, as losing N − 1 qubits of the GHZ state will
already result in an N -qubit maximally mixed state,
the fidelity of which cannot be further decreased by
depolarizing noise.

Here, we are assuming no post-selection on distributed
GHZ states takes place. Therefore, we can describe the
state produced by execution of Protocol 1 as a mixture
between all ρ’s corresponding to different values of ∆ni.
This state is then independent of the random variables,
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and the same for each execution of the protocol. The
mixed state is the expected value of the density matrix
ρ, and its fidelity is the expected value of Frand, which
can be written as

F = 〈Frand〉 =
1− pGHZ

2N

+ pGHZ
∑
U⊆N

2δ|U|,0+δ|U|,N−1

〈∏
i∈U

1− pi
2

∏
j∈N\U

pj

〉
.

(22)
In appendix C we work out the combinatorics to rewrite
the fidelity as

F =
1− pGHZ

2N
+pGHZ

∑
U⊆N

A|U |

〈∏
i∈U

(p2
mem)∆ni

〉
, (23)

where

A|U | =

{(
plinkp

2
BSM

)|U | ( 1
2N + 1

2δ|U |,N
)

if |U | is even,
1
2

(
plinkp

2
BSM

)|U |
δ|U |,N if |U | is odd.

(24)

Now, we note that after Bell states have been dis-
tributed between the factory node and all end nodes, it
is possible to order the end nodes based on the order in
which they were connected to the factory node. That
is, to each end node i ∈ N we assign di ∈ N such that
if di > dj , then end node i shared a Bell state with
the factory node at the same time as or later than end
node j. For example, if end node 4 shared a Bell state
first, we assign d4 = 1. If such an ordering is given,
it is possible to use the results from Appendix D to
evaluate expressions like Eq. (23). However, in general,
such an ordering cannot be imposed a priori; it is only
well-defined after executing the protocol. Because the
order in which Bell states are shared is random, each
di is a random variable. Therefore, to apply the results
from the appendix, an average should be taken over all
possible orders in which Bell states can be distributed.
Because of the symmetry of the setup under consid-
eration, however, we need not worry about that. The
success probability is qlink for all quantum connections,
so all orderings are equally likely. Furthermore, since
the effective depolarizing probability per round is p2

mem
for all end nodes, the fidelity is invariant under changes
in the ordering (it does not matter if end node 4 shares
a Bell state first and end node 6 last, or the other way
around). Therefore, we can safely pretend the order in
which Bell states are distributed is fixed. Furthermore,
we set our labeling to coincide with this order. That is,
we set it such that di = i.

It follows from Eq. (D59) in Appendix D that, to lead-

ing order in qlink and (1− p2
mem),

〈∏
i∈U

(p2
mem)∆ni

〉
≈

N∏
k=1

(N + 1− k)qlink

|Uk|(1− p2
mem) + (N + 1− k)qlink

,

(25)
where

Uk ≡ {u ∈ U |u < k}. (26)

For example, if U = {1, 3}, then U1 = ∅, U2 = U3 = {1}
and U4 = U . Since the expression is to leading order
in 1 − p2

mem and 1 − p2
mem ≥ 1 − pmem, we consider

the approximation to be valid up to leading order in
1 − pmem. A leading-order expression for the fidelity is
then obtained by combining Eq. (23) with Eq. (25).

The main reason why working to leading order in
qlink and 1 − p2

mem allows us to derive Eq. (25), is that
in this approximation we can neglect the possibility of
multiple Bell states being generated at the same time.
For qlink � 1, the probability of more than one Bell
state being generated during a single round is very
small; most likely, there are many rounds between one
success and the next. Additionally, when 1− p2

mem � 1,
the drop in fidelity per extra round that qubits have to
wait in memory is small. If that were not the case, the
fidelity can be still high in case all Bell states succeed in
quick succession, including some at the same time, while
the fidelity would already be small in case there is some
waiting time between different successes. Therefore, the
contribution to the average fidelity of cases with multiple
simultaneous successes would be relatively large despite
them occurring with small probability, and neglecting
their contribution would be inaccurate.

We see in Appendix A that the real fidelity of Proto-
col 1 is typically larger than the leading-order expression
given by Eq. (25). This is explained by the fact that
we ignore cases where multiple Bell states are generated
simultaneously: we are effectively calculating the aver-
age of Frand over a sub-normalized probability distribu-
tion. However, this does not prove Eq. (25) is a lower
bound on the fidelity. The reason for this is that, in Ap-
pendix D, in order to work consistently at leading order
in qlink and 1 − pmem we have also neglected terms that
would lower the calculated fidelity if they were included,
and we do not know if these neglected terms generally
outweigh the terms corresponding to multiple simultane-
ously distributed Bell states. When not throwing these
higher-order terms out, a strict lower bound is obtained.
However, it typically approximates the real fidelity (far)
worse than the leading-order expression, as discussed be-
low. The bound is calculated in Appendix D (Eq. (D66))
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and yields〈∏
i∈U

(p2
mem)∆ni

〉
≥

N∏
k=1

(N + 1− k)qlink(1− qlink)N−k(1− p2
mem)|Uk|

1− (1− qlink)N+1−k(1− p2
mem)|Uk|

.

(27)

The lower bound on the fidelity is obtained by using Eq.
(27) to evaluate Eq. (23).

In Appendix A, we compare the analytical results
to a Monte Carlo simulation of Protocol 1. One such
comparison figure is also included here, see Figure 5. In
Appendix A, we find that both the leading-order expres-
sion and lower bound closely approximate simulation
results for small values of qlink and 1 − pmem. Remark-
ably, the leading-order expression remains reasonably
accurate all the way up to qlink ∼ 1, where deviations are
on the percent level. This can be explained by the fact
that as qlink grows, the effect of memory decoherence
slowly becomes negligible in case 1 − pmem � 1, and
the leading-order expression happens to be accurate up
to the point where the fidelity becomes approximately
constant. The lower bound however becomes very loose
for larger values of qlink. When instead 1 − pmem is
increased, we find that the leading-order expression stays
accurate and the lower bound remains tight until the
fidelity becomes close to that of a maximally mixed state.

To calculate both the approximate and bounded
values of F , we use a Python script that evaluates
Eq. (23) using either Eq. (25) (for an approxima-
tion) or Eq. (27) (for a lower bound). This script has
been made public and can be found in our repository [79].

IV. COMPARISON

In this section, we compare the performance of
GHZ-state distribution on a symmetric star-shaped
network (depicted in Figure 2) in case the central node
is a factory node to the performance in case the central
node is not a factory node. Specifically, we will compare
the performance of Protocol 1 as described in Section
II to the performance of Protocol 2, which requires the
central node to be a 2-switch. The 2-switch serves as an
intermediary in the creation of Bell states between end
nodes by performing BSMs on pairs of entangled qubits.
Protocol 2 is illustrated in Figure 6.

There are two differences between the factory-node
setup discussed in Section II, and the 2-switch setup
considered here. The first difference is in the central
node. The central node is the 2-switch, and it is able to
store a maximum of N qubits in quantum memory (one
per end node). The only way this node can manipulate

Figure 5. Comparison between simulation result and analyt-
ical expressions for the fidelity of Protocol 1. The parameters
are N = 5, qBSM = 0.95, pBSM = plink = 1 − 10−2 and
pmem = 1 − 10−4. GHZ states are locally prepared with a
fidelity of 0.9, which corresponds to pGHZ ≈ 0.872. The lower
bound is tight for small values of qlink, but not for larger val-
ues. The leading-order expression on the other hand stays
accurate also for larger values of qlink. Each data point repre-
sents the average over 10,000 simulated executions of Protocol
1. Error bars represent the standard deviation of the mean
and are smaller than the markers. Note that the lines show-
ing the leading-order result and the simulation result can be
hard to distinguish because of their overlap.

qubits, is through the execution of BSMs on any pair
of the qubits in its memory. When the node executes a
BSM between a qubit that is entangled to one end node
and a qubit that is entangled to another end node, this
results in a Bell state shared between the two end nodes.
The second difference is in the end nodes. As discussed
in Section I, end nodes that only have access to bipartite
entangled resource states among themselves cannot
create multipartite entangled states if they can only
store a single qubit. Therefore, in order to enable the
distribution of GHZ states through the use of a 2-switch,
end nodes in the 2-switch setup have a quantum memory
of two qubits each. Additionally, they are able to execute
CNOT gates and Z-basis measurements.

We model the 2-switch setup largely the same as
the factory-node setup. Each attempt at Bell-state
distribution takes a time ∆t. Exchanging a classical
message between the central node and an end node takes
time tcl, which we assume to be zero. An attempt at
Bell-state distribution succeeds with probability qlink, a
BSM succeeds with probability qBSM. Whenever a Bell
state is distributed by a quantum connection, the qubits
are depolarized with parameter plink. Qubits stored in
memory undergo depolarization with parameter pmem
once during each time unit ∆t. Finally, whenever a BSM
is executed, both qubits first undergo depolarization
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Figure 6. Illustration of GHZ-state distribution through a 2-switch, using Protocol 2. (a) There is one 2-switch, and there
are N = 3 end nodes. (b) Bell states are distributed between the 2-switch and end nodes (Step 1 of Protocol 2). (c) When
there are two Bell states, a BSM is executed (Step 2 of Protocol 2). (d) If the BSM was successful and the corresponding
Pauli corrections have been applied, the two end nodes now share a Bell state (Steps 3 and 4 of Protocol 2). (e) Bell states
are distributed until the 2-switch is entangled to two end nodes that are not themselves already entangled. A BSM is executed
on the corresponding entangled qubits (Steps 1 - 3 of Protocol 2). (f) If the BSM was successful and the corresponding Pauli
corrections have been applied, one end node is now entangled to the two other end nodes, but those other end nodes are not
themselves entangled to each other (Step 4 of Protocol 2). (g) A fusion operation (which involves a CNOT gate and Z-basis
measurement) is executed in the end node holding two qubits (Steps 5 and 6 of Protocol 2). (h) As a consequence of the fusion
operation, the three end nodes now share a GHZ state together.

with parameter pBSM. We model CNOT gates and
Z-basis measurements as noiseless.

Protocol 2: Bipartite GHZ-state distribution.

1. Repeatedly attempt Bell-state distribution over all
quantum connections for which there is a free qubit
at the 2-switch until the first success occurs.

2. At the 2-switch, execute BSMs randomly between
pairs of entangled qubits, on the condition that the
end nodes that are entangled to those qubits are
not yet part of the same (noisy) GHZ state. If no
BSMs are executed, go back to Step 1.

3. Send a classical message from the 2-switch to each
of the end nodes, informing them about which
BSMs have been executed, and what the results
of the measurements are.

4. Each end node that was entangled to a qubit that
has partaken in a BSM, checks the result of that
BSM. If the BSM failed, the qubit is reset. If it

succeeded, a Pauli correction (chosen based on the
outcome of the BSM) is applied to the qubit to
ensure this qubit and the qubit it is entangled with
are in the |φ00〉 Bell state (in the absence of noise).

5. Each end node that now holds two qubits in its
quantum memory executes a CNOT gate between
those qubits followed by a Z-basis measurement on
the target qubit.

6. Each end node that has executed a Z-basis mea-
surement sends a classical message with the result
to all other end nodes. These end nodes then per-
form single-qubit Pauli corrections, chosen based
on the measurement outcomes, to transform each
entangled state that is shared between end nodes
into a GHZ state (in the absence of noise).

7. If there is a GHZ state shared between all end
nodes, the protocol has finished. Otherwise, go
back to Step 1.

We now make some remarks about Protocol 2.
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• In Step 1 of Protocol 1, Bell-state distribution is at-
tempted until there has been one success for each
of the N quantum connections. In contrast, in Step
1 of Protocol 2, Bell-state distribution is only at-
tempted until there is a round during which as least
one success occurs.

• Steps 5 and 6 together implement a fusion oper-
ation [36]. Such an operation combines two GHZ
states into one, at the cost of measuring out a sin-
gle qubit. Here, the |φ00〉 Bell state is considered
a two-qubit GHZ state. Each time a fusion oper-
ation is executed, a larger GHZ state is created,
until eventually all N end nodes share in the GHZ
state.

• For each time Step 1 is executed, classical commu-
nication takes up a time 3tcl (one tcl to send BSM
results from the 2-switch to the end nodes, one tcl
to send Z-basis-measurement results from the end
nodes to the 2-switch, and one tcl to forward those
measurement results from the 2-switch to the end
nodes). When qlink � 1, Step 1 requires many
rounds and therefore both the completion time and
the qubit storage times are dominated by entangle-
ment distribution, assuming tcl is not much larger
than ∆t. The classical communication time can
then be safely neglected, just as for Protocol 1.
This motivates the choice to consistently set tcl = 0
throughout the paper.

• Protocol 2 is inefficient in terms of the amount of
classical communication it requires. Specifically,
the protocol could be altered such that all Pauli cor-
rections are only performed after creating a GHZ-
like state shared between all end nodes. Addition-
ally, in the case of deterministic BSMs, the 2-switch
does not need to inform the end nodes about the
success of the measurements. In this paper, how-
ever, we make the assumption that the exchange
of classical messages is instantaneous (tcl = 0).
Therefore, any inefficiency with respect to classical
communication does not affect the results presented
here.

We have studied the performance of Protocol 2
numerically using quantum-network simulator NetSquid
[38]. NetSquid is able to track time-dependent noise
accurately by jumping through a timeline consisting
of discrete events, at which quantum states are acted
upon to account for errors. On top of NetSquid, our
simulations utilize user-contributed NetSquid snippets
[80, 81]. Apart from using NetSquid to study Protocol 2,
we also set up a NetSquid simulation to study Protocol
1. This simulation model serves two purposes. First, it
is used to verify the accuracy of the analytical results
presented in Section III. This verification is described in
Appendix A. Second, simulations of Protocol 1 are used
in this section to compare the performance of Protocols
1 and 2. Note that it would also have been possible to

compare simulations of Protocol 2 to our leading-order
expressions for Protocol 1. Instead, we are comparing
simulations to simulations. This makes the results of
this section independent of the importance of subleading
terms that are not included in the leading-order expres-
sions.

Every numerical value that is reported in this paper,
either for Protocol 1 or for Protocol 2, is based on the
simulation of 10,000 protocol executions. Error bars on
the rate and fidelity represent the standard deviation of
the mean, and are sometimes smaller than the marker
size. Additionally, we remark that when simulating
Protocol 2, the network state is not reset between
executions of the protocol. It can happen that there
are Bell states in the network, generated during Step 1,
that never feed into a BSM during Step 2 and are thus
not used to create a GHZ state. Then, there are already
Bell states present in the network at the start of the
next protocol execution. This entanglement is used as a
resource to create the next GHZ state.

While comparing Protocols 1 and 2, we observe the
relative sensitivity of their performance to the various
parameters describing their setups. This comparison
can help us understand in what parameter regimes the
use of a factory node can be beneficial. Throughout
the comparison, we use ∆t = 1 to make the results
independent of specific time scales. As a result, the rate
is a dimensionless quantity, and can be interpreted as
“average number of GHZ states distributed per round”.
Our comparison will focus on the regime qlink � 1. Only
at the end of this Section will we briefly study what
happens for qlink ∼ 1.

First, we compare the rates of the two protocols.
Since noise parameters of the setups cannot affect the
rate at which GHZ states are distributed (only the
fidelity), we limit our attention to the effects of the
success probability of Bell-state distribution qlink, the
BSM success probability qBSM, and the number of end
nodes N . Their effects are shown in Figure 7. From this
figure, we must conclude that for small qlink Protocol 2
typically has a higher rate than Protocol 1. It is notable
that the difference in rate becomes large especially for
probabilistic BSMs, as the rate of Protocol 1 drops
exponentially as qBSM is decreased. However, also for
deterministic BSMs Protocol 1 tends to be slower than
Protocol 2, especially for larger values of N . This can
be surprising, considering that Protocol 2 requires a
larger total number of Bell states to be distributed than
Protocol 1 (2(N − 1), as opposed to N for Protocol 1).
The reason for this is that, as discussed above, Bell states
that are generated but not used during one execution of
Protocol 2 can still be used during the next execution.
In Protocol 2, BSMs are executed continuously at the
central node, thereby freeing up qubits. This allows
quantum connections to generate multiple Bell states
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during a single execution of Protocol 2, which is not the
case for Protocol 1. Combining this with the possibility
to distribute Bell states ahead of time for the next GHZ
state allows Protocol 2 to use its quantum connections
more efficiently than Protocol 1, to such a degree that
the larger number of Bell states can be distributed in a
smaller amount of time.

Now, we compare the fidelities of the two protocols.
From Figure 8, we see that Protocol 2 is more sensitive
to the noise parameter plink. This is explained by the
fact that it requires more Bell states between the central
node and end nodes to distribute a single GHZ state
(2(N − 1) instead of N). Additionally, we see that
Protocol 1 is more sensitive to pBSM. The reason for
this, is that the protocol executes more successful BSMs
per GHZ state than Protocol 2 (N vs N − 1). We
note though that Protocol 2 also requires the execution
of fusion operations at the end nodes, consisting of
a CNOT gate and one Z-basis measurement. As a
deterministic BSM can be implemented using a CNOT
gate, a Hadamard gate, and two Z-basis measurements,
it could very well be the case that the noise in the fusion
operations is of similar magnitude as the noise in the
BSMs. If we would have modeled the fusion operation
as also inflicting depolarizing channels with parameter
pBSM on the involved qubits, we would likely instead
have found that Protocol 2 is more sensitive to pBSM, as
it requires N − 1 successful BSMs and N − 2 fusions,
giving a total of 2N − 3 instances at which the noise is
suffered.

The final source of noise that the two setups have in
common is the memory decoherence, pmem. How much
decoherence enters into the final GHZ state depends on
the amount of time qubits are stored while executing
the protocol. Therefore, it is reasonable to expect that
the amount of memory decoherence behaves similar
to the rate. Comparing Figures 7 and 9 reveals that
indeed for both the rate and the memory decoherence,
both setups perform comparably well for small qlink,
N = 5 and qBSM = 1 (and small 1 − pmem). For the
rate, increasing N is in favor of Protocol 2. Similarly,
the amount of memory decoherence seems to scale more
favourably with N for Protocol 2 than for Protocol 1,
although the difference is not as pronounced as for the
rate. The effect of qBSM, however, is reversed between
the rate and memory decoherence. While the amount of
memory decoherence suffered in Protocol 1 is unaffected
by decreasing qBSM, it does affect the performance of
Protocol 2. The reason for this, is that while Protocol
1 is reset upon a failed BSM, the same is not true for
Protocol 2. This makes Protocol 2 more resilient to
failing BSMs in terms of rate, but less so in terms of
fidelity.

Finally, we observe what happens to both the rate and
the memory decoherence if qlink is increased beyond the

Figure 7. Sensitivity of the rate of Protocols 1 (“Factory”)
and 2 (“2-switch”) to the success probability of Bell-state dis-
tribution qlink, the number of end nodes N , and the BSM
success probability qBSM. When the parameters are not var-
ied over, their values are qlink = 0.01, N = 5 and qBSM = 1.
We see that for small values of qlink, the rates are of similar
magnitude for qBSM = 1 and N = 5, with Protocol 2 slightly
outperforming Protocol 1. If either qBSM is decreased or N
is increased, this difference becomes more pronounced. Note
that the lines in the top figure can be hard to distinguish be-
cause of their overlap. The rate is dimensionless as the round
time ∆t has been set to 1.
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Figure 8. Sensitivity of the fidelity of Protocols 1 (“Factory”)
and 2 (“2-switch”) to the noise in Bell states shared between
the central node and the end nodes (plink) and the noise in
BSMs (pBSM). Apart from the parameter varied over, there
are no sources of noise (plink = pBSM = pmem = pGHZ = 1).
The other parameters have the values qlink = 0.01, N = 5 and
qBSM = 1. While Protocol 1 is more resilient against noise in
Bell states, Protocol 2 is more resilient against noise in BSMs.

qlink � 1 regime we have studied so far. It is seen in Fig-
ure 10 that the similarity in performance for N = 5 and
qBSM = 1 observed for small values of qlink disappears for
larger values; here, Protocol 1 outperforms Protocol 2
with respect to both metrics. We note that for qlink = 1,
the rate of Protocol 1 becomes one, as it takes exactly one
round to distribute all N Bell states. On the other hand,
the rate of Protocol 2 becomes approximately one half,
as it takes one round to distribute N Bell states, and
then another round to distribute the remaining N − 2
Bell states. This also explains the difference in fidelity
for large values of qlink. Note that Protocol 2 had the
advantage of using quantum connections more efficiently
for small qlink because an excess number of Bell states
can be distributed during one protocol execution to be
used during the next. However, this advantage largely
disappears for large values of qlink. When all Bell states
required to create a GHZ state are generated in quick suc-
cession, there is not much “spare time” during which these

Figure 9. Sensitivity of the fidelity of Protocols 1 (“Fac-
tory”) and 2 (“2-switch”) to the memory depolarizing param-
eter pmem, the number of end nodes N , and the BSM success
probability qBSM, when the only source of noise is memory
decoherence (plink = pBSM = pGHZ = 1). When the param-
eters are not varied over, their values are pmem = 1 − 10−4,
qlink = 0.01, N = 5 and qBSM = 1. We see that when both
qlink and 1 − pmem are small, the fidelities are approximately
equal for qBSM = 1 and N = 5. When qBSM is decreased,
this is in favor of Protocol 1. However, if N is increased, this
is slightly in favor of Protocol 2. Note that the lines in the
top (and to lesser degree, the bottom) figure can be hard to
distinguish because of their overlap.
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excess Bell states can be generated. We remark that for
qlink ∼ 1, the classical-communication time tcl could have
a large effect on both the rate and the amount of memory
decoherence. We have assumed it to be zero because for
qlink � 1, the classical communication time becomes neg-
ligible compared to the time required to distribute a Bell
state successfully. This might or might not be true for
larger values of qlink. Therefore, we cannot draw defini-
tive conclusions about the relative performance between
the two protocols for large values of qlink from Figure 10.

Figure 10. Sensitivity of both the rate and fidelity of Proto-
cols 1 (“Factory”) and 2 (“2-switch”) to the success probability
of Bell-state distribution qlink, when the only source of noise is
memory decoherence (plink = pBSM = pGHZ = 1). The other
parameters are set to pmem = 1− 10−2, N = 5 and qBSM = 1.
We see that while both protocols have similar performance
for qlink � 1, Protocol 1 wins out both in terms of rate and
fidelity for qlink ∼ 1. The rate is dimensionless as the round
time ∆t has been set to 1.

V. PHYSICAL IMPLEMENTATION

In this section, we discuss different ways factory nodes
capable of creating GHZ states could be physically real-
ized. First, we discuss how they could be implemented
using trapped ions in Section VA, and then we discuss

in Section VB how they could be implemented using
nitrogen-vacancy centers in diamond.

A. Trapped Ions

The first physical implementation we discuss is based
on trapped ions [82]. In an ion trap, charged atoms
are suspended in an electromagnetic field. The energy
levels of the ions can be used to define qubits, and
these qubits can be manipulated by driving them with
laser pulses. Trapped ions have properties that would
make them suitable to implement a factory node, such
as long coherence times [83–85], high-fidelity state
preparation and readout [86–88], and a good optical
interface [7, 89–94] that has allows for the generation of
entanglement with remote nodes [64, 65, 95].

One quantum gate that can be executed on trapped
ions is the Mølmer-Sørensen (MS) gate [96, 97]. This
gate affects all qubits in the trap, and can be used to map
maximally entangled GHZ-like states to computational-
basis states. In combination with single-qubit Z-basis
measurements, the MS gate can therefore be used to
execute a GHZ-basis measurement on all qubits. We
note that throughout this paper we have assumed the
factory node creates a GHZ state locally, and then
executes BSMs between qubits of the GHZ state and
qubits that are entangled to qubits at the end nodes.
However, the same result is acquired (i.e., the creation
of a GHZ state shared between the end nodes) when
executing a GHZ-basis measurement on the qubits that
are entangled to the end nodes, given that appropriate
Pauli corrections are performed at the end nodes based
on the outcome of the measurement.

We note that an additional challenge when using
trapped ions to realize a factory node is that N different
ionic qubits in the same device need to participate in
simultaneous Bell-state distribution with end nodes.
One potential method to allow for a good photonic in-
terface with individual ions is to use shuttling techniques
[98–104]. This way, ions could be physically moved
to separate cavities, where they can be made to emit
entangled photons suitable for Bell-state distribution.
After ions have been successfully entangled, they can be
shuttled to an interaction region where the GHZ-basis
measurement is executed. This setup is illustrated in
Figure 11. Potentially, different ion species could be
used for generating and storing entanglement, such that
for each task the species can be selected with the most
favourable properties [105, 106].
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Figure 11. Implementation example of a factory node ca-
pable of distributing GHZ states based on trapped ions. (a)
Single ions in cavities provide optical interfaces, allowing for
Bell-state distribution with all N = 3 end nodes. After all
ions are entangled, they are shuttled to an interaction region.
(b)At the interaction region, a GHZ measurement is executed
using an MS gate and single-qubit measurements, which has
the effect of creating a GHZ state shared by the end nodes.

B. Nitrogen-Vacancy Centers

The second physical implementation of factory nodes
we discuss is based on nitrogen-vacancy (NV) centers in
diamond [8, 61–63, 107–109]. An NV center provides
an electronic communication qubit that can be used
as optical interface, and is surrounded by Carbon-13
nuclear spins that can be used as memory qubits. NV
centers were used to perform the first loophole-free Bell
test [108], have been used to demonstrate entanglement
distillation between remote nodes [63], and have recently
been used to construct the first three-node quantum
network [8].

A downside to NV centers is that they only provide
a single communication qubit. Although entanglement
can in principle be stored in N memory qubits, N
Bell states cannot be distributed simultaneously, which
is a prerequisite for Protocol 1. If the time required
to perform a single attempt at Bell-state distribution
with a remote node, ∆t, is much larger than the time
it takes to emit an entangled photon and transfer a
state to a carbon atom, temporal multiplexing could
potentially be used to perform N entangling attempts
during a single round [110]. After Bell states have
been established with all N end nodes, a GHZ-basis
measurement can be executed within the NV center [111].

If temporal multiplexing is not feasible, however, a fac-
tory node could be realized from N separate NV centers.
Each NV center can then be dedicated to creating and
storing Bell states with a single end node. When all Bell
states are in place, a GHZ state needs to be distributed
between the N NV centers, after which deterministic
BSMs can be executed. We here discern two methods of
generating this GHZ state. The first is to interfere and
measure entangled photons emitted by all N NV centers
[31, 52]. This is illustrated in Figure 12 (a). However,
the success probability of such schemes drops exponen-
tially with N , and thus many attempts may be needed
to generate a single GHZ state. Apart from having a
negative influence on the rate of GHZ-state distribution
for large N , this can also be expected to severely degrade
the fidelity of the final GHZ state, as the memory qubits
undergo decoherence each time the communication qubit
is interfaced with [112]. An alternative method that cir-
cumvents this exponential scaling, is to add one more
NV center to the factory node. After all Bell states are
in place, each of the N outward facing NV centers can
generate a Bell state with the extra NV center. Then, the
extra NV center can execute a GHZ-basis measurement
on the entangled qubits it has stored, thereby creating
a GHZ state between the N outward-facing NV centers.
Because Bell states can be generated with each outward-
facing NV center sequentially, the number of required
attempts will scale linearly with N . This can be thought
of as a “factory within a factory” approach, and is illus-
trated in Figure 12 (b). Using a single NV center as a
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factory within a factory could be feasible even when us-
ing a single NV center as the entire factory node is not.
The reason for this is that Bell-state distribution between
NV centers located within the same node can happen at
smaller time scales than with remote end nodes.

VI. CONCLUSION

In this paper, we have studied the distribution of
multipartite entangled states in networks through local
preparation of the target state at a factory node, and
subsequent quantum teleportation of the state to a set
of end nodes. We have presented two main results.
First, we have derived analytical results for the rate
and fidelity of GHZ-state distribution on a symmetrical
star-shaped network, with a factory node at the center.
Second, we have compared the rate and fidelity to what
is achievable on the same setup without a factory node,
using a 2-switch that is only capable of executing BSMs
instead.

From the comparison, we found that the use of a
factory node provides more resilience to noise in Bell
states that are distributed between the central node and
end nodes. Furthermore, when BSMs at the central
node are not deterministic, using a factory node provides
better protection against memory decoherence. We note
that two additional advantages of using a factory node
are that it only requires the end nodes to store a single
qubit, while using a 2-switch requires more quantum
capabilities of the end nodes, and that it can be used to
distribute any multipartite target state using the same
method, while the 2-switch protocol is specific to GHZ
states. However, the results are not all in favor of the
factory node. The 2-switch attains exponentially higher
rates when BSMs are probabilistic, is less sensitive
to noise in BSMs, and both the rate and (to lesser
extent) the sensitivity to memory decoherence scale
more favourably with the number of end nodes. We note
that no thorough search for an optimal protocol utilizing
a 2-switch has been performed, and doing so could
boost performance even further. For example, it might
be possible to increase performance by incorporating
cutoff times in the protocol, that is, by discarding Bell
states when they have undergone too much memory
decoherence [113–116]. Cutoff times are expected to
increase the fidelity, but at the cost of having a smaller
rate. However, it must be noted that we have also
not optimized the factory-node protocol. Also for this
protocol e.g. cutoff times could be introduced. As
discussed in Section I, various protocols and network
architectures that have been proposed in earlier work
make use of factory nodes. We conclude that when
hardware limitations are present, depending on the
nature and severity of those limitations, it could be
worthwhile to consider other types of central nodes
instead.

Figure 12. Implementation examples of factory nodes capa-
ble of distributing GHZ states based on NV centers in dia-
mond. Within the factory node, N = 3 NV centers distribute
and store entanglement with the end nodes. When all these
NV centers are entangled, a GHZ state is distributed between
them, after which each executes a BSM to teleport the GHZ
state to the end nodes. (a) The GHZ state can be distributed
between the NV centers by emitting entangled photons, in-
terfering these photons, and measuring them. (b) The GHZ
state can be distributed between the NV centers by first cre-
ating Bell states between all N NV centers and one additional
NV center. Then, a GHZ measurement is executed at this NV
center.
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One of our motivations for studying the factory node
is to allow for assessment of proposed schemes involving
factory nodes in the presence of hardware limitations.
We consider the analytical results presented in this
paper a first step towards better assessment. However,
we have made various assumptions that limit the scope
of applicability. Here, we discuss how some of these
assumptions could be removed. First, all the results in
this paper assume the star-shaped network is symmetric,
meaning that noise parameters are the same for each end
node (same coherence time, same Bell-state fidelity, and
same quality of BSMs), and that attempts at Bell-state
distribution take the same amount of time and have
the same success probability for each end node. With
respect to the calculation of fidelity, the assumption of
same noise parameters can straightforwardly be removed
within the framework of the analysis presented in this
paper. In Section III B, when evaluating Eq. (23), an
average should be taken over all possible orderings in
which end nodes generate a Bell state with the factory
node. Because of the assumption of symmetry, we were
able to avoid performing such an average explicitly, but
in principle there is nothing preventing us from doing so.
Then, each of the terms in this average can be evaluated
using the Eqs. (D59) and (D66) (or Eqs. (25) and (27)
in case pmem is the same for each qubit in the network).
On the other hand, it is a key assumption in the results
of Appendix D that the success probability of Bell-state
distribution is the same for each connection. Removing
this assumption, therefore, would be less straightforward
and could provide an interesting subject for future
research. The same holds for the assumption that the
attempt durations are the same for each connection.

Second, all the results in this paper are specific to
the distribution of GHZ states. However, Protocol 1
could also be used to distribute other states, as long
as they can be prepared locally and consist of exactly
one qubit per end node. The analytical results for the
rate that are presented in Section IIIA are applicable
for the distribution of any such state, as the time
that each step takes in Protocol 1 does not depend
on the specific quantum state, nor does the success
probability of the teleportation procedure. For the
analytical fidelity results that are presented in Section
III B, we note that the final distributed state will be
equal to the target state but with the individual qubits
depolarized with the parameters pi given by Eq. (17),
and the full state depolarized with a parameter that
was called pGHZ in the GHZ case (analogously to Eq.
(19)). The fidelity of this state as a random variable is a
weighted sum over products of depolarizing parameters
(analogously to Eqs. (22) and (24)). Here, the weights
depend on the fidelity of the state after specific sets
of qubits undergo depolarizing errors. The expected
values of these products of depolarizing parameters can
be evaluated using Eqs. (25) and (27). Therefore, the

only ingredient missing to determine the lower bound
or leading-order expression for the fidelity in case of a
different target state, are the weights that appear in the
fidelity. We note that in case the target state is not
invariant under qubit permutations, the symmetry of
the setup is broken. In that case, an explicit average
should be taken over the different orders in which Bell
states can be distributed, as discussed above.

The leading-order expressions and lower bounds
presented in this paper are accurate when the success
probability per attempt at Bell-state distribution (qlink)
is small, and when the probability of losing a qubit to the
environment when storing it in memory during a single
attempt (1− pmem) is small. When the first assumption
holds, the second typically also holds; otherwise, qubits
need to be stored in memory during many attempts as
new states are generated, and if the probability of losing
the qubit is large already for a single attempt, then
the final distributed state will not be entangled. The
parameter regime of small qlink but large 1 − pmem is
therefore not very interesting to study. E.g. for heralded
entanglement generation, the success probability per
attempt is expected to be small because of photon
(attenuation) losses. However, there are also physical
setups for which the assumption does not hold, such as
quantum-repeater chains making use of error correction
[56, 117–123] or massive multiplexing [70, 71, 124],
for which the success probability is close to one. For
such setups, the approximations presented in this paper
are not applicable, although we have found that our
leading-order expression for the fidelity is remarkably
accurate for large values of qlink. Additionally, we note
that setups for which the quantum connections are near
deterministic can be approximated by assuming they are
fully deterministic. In this case, the protocol becomes
easy to analyze, as no probabilities need to be accounted
for.

Now, we discuss how the techniques presented in
this paper can be used to study the performance of
quantum-network protocols different from the one we
have studied. An entanglement switch is a central node
that is able to generate Bell states shared with k end
nodes, and executes local GHZ-state measurements on
groups of n entangled qubits. As remarked in Section I,
the factory-node setup studied in this paper is equiva-
lent to an entanglement switch with n = k. A possible
extension of the calculations in this paper is to apply
them also to entanglement switches for which n < k. In
Appendix E, we present a leading-order expression for
the maximum switching rate for any value of n when
there is a single qubit of buffer memory per end node.
However, it would be especially interesting to study the
fidelity of states produced by the entanglement switch,
as there are almost no known results about this. Such
an extension of the fidelity calculation, assuming a
symmetric star-shaped network and one qubit of buffer
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memory per end node, could be realized by repeating the
calculation in Section III B and replacing the parameter
N (the number of end nodes, equal to k) by n < N
in Eq. (23), but not replacing it in Eq. (25) (which is
needed to evaluate Eq. (23)). Evaluating this expression
and verifying it (against a Monte Carlo simulation) is
beyond the scope of this paper.

Another possible extension of the work done in this
paper, is the approximation of the rate and fidelity of
Bell states distributed by specific types of quantum-
repeater chains. In the factory-node setup, there are N
Bell states that are distributed according to geometric
distributions. Entangled states that are established need
to be stored in memory until all states are distributed,
after which they are transformed into some target state
through BSMs. If any of the BSMs fails, the protocol is
restarted. The target state is a GHZ state. Now consider
a quantum-repeater chain consisting of N elementary
links, where entanglement swapping (i.e. BSMs) is only
executed after entangled states have been distributed
on all links. If any of the BSMs fail, all entanglement
is discarded and Bell-state distribution starts anew.
This is then exactly the same scenario as for the factory
node, only the target state is not a GHZ state but a
bipartite state. For the rate of such a repeater chain,
analytical results similar to ours already exist [37, 76, 77].

The fidelity of Bell states distributed by such a re-
peater protocol can however also be analyzed using the
techniques presented in this paper. The expression for
the state’s fidelity in terms of different depolarizing pa-
rameters (Eq. (23) for the factory node) will look dif-
ferent (simpler, as all depolarizing noise can be “moved”
to a single qubit), but the same type of expected val-
ues will need to be evaluated, allowing for the direct use
of Eqs. (25) and (27) to obtain a leading-order expres-
sion and a lower bound respectively. Examples of re-
peater protocols where swapping is only performed after
all links are present are schemes that use error correc-
tion to protect against operational errors in the repeater

nodes [125], such as the ones studied for NV centers in
[126]. In [126], it is remarked that accounting for de-
polarizing noise in individual memories is no easy task,
and the authors instead assume each qubit decoheres an
amount of time equal to the average waiting time. In con-
trast, our techniques, although approximate, do account
for the depolarizing noise in each individual qubit. A
similar approach to [126] is taken in [77], where the case
of all swaps occurring only in the end is considered to
calculate analytical bounds on the decoherence suffered
when swaps are performed earlier. This approximation
provides a lower bound on the fidelity by Jensen’s in-
equality. An interesting direction for further study is to
compare the tightness of Jensen’s inequality to the lower
bound presented in this paper.

VII. DATA AVAILABILITY

The data presented in this paper has been made
available at https://doi.org/10.4121/19235937 [127].
Scripts that generate all the plots presented in this paper
can also be found here.

VIII. CODE AVAILABILITY

All the code used to evaluate the analytical results
presented in this paper, and to perform NetSquid sim-
ulations of Protocol 1 and Protocol 2, has been made
available at https://gitlab.com/softwarequtech/
netsquid-snippets/netsquid-factory [79].
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Appendix A: Verification of Analytical Expressions for Rate and Fidelity

In this appendix we verify the analytical results for the rate and fidelity of Protocol 1, as presented in Section III,
against Monte Carlo simulations of the protocol. These simulations have been performed using the quantum-network
simulator NetSquid [38] and user-contributed NetSquid snippets [80, 81]. The simulation code can be found in the
public repository [79]. Just like in Section IV, we use ∆t = 1 to make the results independent of specific time scales,
each data point is the result of 10,000 simulated executions of the protocol, and error bars represent the standard
deviation of the mean. Often, the error bars are smaller than the marker size, making them hard to see.

There are three parameters that can influence the rate of GHZ-state distribution. These are the success prob-
ability of Bell-state distribution qlink, the number of end nodes N and the BSM success probability qBSM. First,
we examine the influence of qlink on the accuracy of the leading-order expression for the rate (Eq. (14)). On
the left in Figure 13 we verify that the difference between the leading-order expression and its simulated value
becomes negligible for qlink � 1. For larger values of qlink it is much larger, with a maximum deviation of a
factor ∼ 2 for qlink = 1. While not shown here, we have checked that the leading-order expression is accurate for
small values of qlink for the number of end nodes 3 ≤ N ≤ 8 (larger values become computationally demanding
to simulate). The corresponding data can be found in our data repository [127]. Finally, we note that our
treatment of the effect of qBSM on the rate in Section III is exact. Therefore, we do not explicitly investigate
the influence of this parameter on the accuracy of the leading-order result here. However, we do note that the
leading-order result is accurate for at least one nontrivial value of qBSM, as the parameter was set to 0.95 for Figure 13.

Figure 13. Comparison between simulation results and analytical expressions for the performance of Protocol 1 for different
values of qlink. On the left, the simulated rate is compared to the leading-order expression in Eq. (14). On the right, the
simulated fidelity is compared to the leading-order expression and lower bound from Section III B. The parameters are N = 5,
qBSM = 0.95, pBSM = plink = 1 − 10−2 and pmem = 1 − 10−4. GHZ states are locally prepared with a fidelity of 0.9, which
corresponds to pGHZ ≈ 0.872. We see that there is close agreement between analytical results for small values of qlink. As
qlink is increased up to a value of one, deviations in the rate grow up to a factor of ∼ 2 while the leading-order estimate for
the fidelity remains accurate. The lower bound for the fidelity is tight for approximately qlink ≤ 0.05 (which is hard to see in
this figure) but not for larger values, eventually even dropping below the fidelity of the maximally mixed state. The rate is
dimensionless as the round time ∆t has been set to 1. Note that the lines showing analytical results and simulation results can
sometimes be hard to distinguish because of their overlap.

On the right in Figure 13, we do the same but for the fidelity, but apart from the leading-order expression (obtained
from combining Eq. (23) with Eq. (25)) we also include the lower bound (obtained from combining Eq. (23) with
Eq. (27)). Again we see close agreement for the leading-order expression for small values of qlink. Remarkably, it
remains highly accurate even for qlink ∼ 1. The lower bound does not attain the same level of agreement. While it
is tight for very small values of qlink, the lower bound on the fidelity starts decreasing at qlink ≈ 0.015, even though
the fidelity itself is a monotonically increasing function. Consequently, the bound is very loose already for qlink ' 0.015.

On the left in Figure 14, the fidelity is considered as a function of pmem, for a small value of qlink (0.01). Both
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the leading-order expression and lower bound remain remarkably close as 1− pmem grows, up to the point where the
fidelity becomes close to that of a maximally-mixed state. This seems to suggest that as long as qlink is small, the
analytical expressions are accurate for all values of pmem that allow for the generation of useful entanglement. We
note that the other noise parameters, pGHZ, pBSM and plink, have a much simpler effect on the fidelity as their effect
does not depend on the times at which entanglement is distributed between the factory node and the different end
nodes. This has allowed our treatment of these parameters to be exact and therefore verification plots where these
parameters are varied are not required. We note though that in Figure 13 the accuracy of the analytical expressions
is verified for nontrivial values of these parameters.

Figure 14. Comparison between simulation result and the analytical leading-order expression and lower bound from Section
III B for the fidelity of Protocol 1. The parameters, when they are not varied over, are qlink = 0.01, N = 5, qBSM = 1,
pmem = 1 − 10−4 and pBSM = plink = pGHZ = 1. On the left, we see that when qlink is sufficiently small, the lower bound is
tight and the leading-order expression remains accurate as 1 − pmem becomes large, even as the fidelity becomes close to that
of a maximally mixed state. On the right, we see that while the lower bound is never very tight, the leading-order expression
remains accurate up to at least N = 8. Note that the lines showing the leading-order result, lower bound and the simulation
result can be hard to distinguish because of their overlap.

Finally, on the right in Figure 14, we consider the fidelity as a function of the number of end nodes N . We observe
that the leading-order expression is accurate in the range 3 ≤ N ≤ 8, while the lower bound deviates already for small
values of N . The lower bound becomes increasingly loose as N increases. As it is computationally demanding to
simulate large quantum states, we have not investigated the accuracy of the leading-order expression or lower bound
beyond N = 8.

Appendix B: Deriving the Density Matrix Created by Protocol 1

In this appendix, we formally derive the density matrix ρ that is shared after executing Protocol 1. To this end,
we first define three relevant Hilbert spaces. Let HA be the space spanned by the N qubits used by the factory node
to create GHZ states locally. Let HB be the space spanned by the N qubits used by the factory node to store Bell
states shared with end nodes. Finally, let HC be the space spanned by the N qubits at the N different end nodes.
Then, Protocol 1 does the following. First, a state σA ⊗ τBC is prepared, where σ is a noisy N -qubit GHZ state,
and where τ is a noisy entangled state between 2N qubits. Specifically, it contains depolarizing noise due to noise in
the distribution of Bell states and storage of those Bell states in noisy memory. Secondly, noisy BSMs are executed
between the qubits of HA and HB . The measurement outcomes are sent to the end nodes, where Pauli corrections
are performed in accordance with the measurement outcomes. The final state on HC shared between the end nodes
is ρC .

The four Bell states are defined by

|φij〉 = (1⊗XiZj) |φ00〉 = ±(XiZj ⊗ 1) |φ00〉 . (B1)
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for i, j = 0, 1. As is apparent from this equation, the Bell states have the special property that it does not matter
(up to a global sign) on which of the two qubits the Pauli operator XiZj acts. This means that Pauli operators in
the system can be “moved” through Bell states: (P ⊗ 1) |φij〉 = ±(1⊗P ) |φij〉 for any Pauli operator P . We combine
this with the fact that the single-qubit depolarizing channel is a Pauli channel. That is, its Kraus operators are Pauli
operators. The consequence is that also single-qubit depolarizing noise can be moved through Bell states. We can
make use of this in the following way:

1. When a BSM is executed between a pair of qubits (one in HA, one in HB), we use the measurement operators
(which are projectors onto the Bell states) to move all the single-qubit depolarizing noise from HA to HB .

2. Now, because before the measurement every qubit in HB is (up to single-qubit depolarizing noise) in the state
|φ00〉 with a qubit in HC , we move all single-qubit depolarizing noise and the operator XiZj in the definition
of each measurement operator from HB to HC .

At HC the operators XiZj from the measurement operators cancel exactly against the Pauli corrections that are
applied at Step 5 of Protocol 1, which are chosen to match the measurement outcome. Therefore, all measurement
operators effectively become the same projector on |φ00〉, and each BSM can therefore be modelled as a projection
of two qubits on the state |φ00〉. Additionally, as the probability of a measurement outcome occuring is determined
by the corresponding measurement operator and all outcomes effectively have the same measurement opertor, each
of the four outcomes must occur with equal probability 1

4 . This means that the normalization factor in the post-
measurement state is given by 4. We define the maximally entangled state |ω〉 as the tensor product of N copies of
|φ00〉, i.e.,

|ω〉 ≡ |φ00〉⊗N =
1

2N/2

∑
i∈{0,1}⊗2N

|i〉 ⊗ |i〉 . (B2)

Then, we can write the post-measurement state on HC (and thus the final state produced by the protocol) as

ρC = 22N 〈ω|AB σA ⊗ τBC |ω〉AB . (B3)

Furthermore, the effect of moving all the single-qubit depolarizing channels to the system HC results in the pre-
measurement states σ and τ to effectively become

σ = pGHZ |GHZ〉〈GHZ|+ 1

2N
(1− pGHZ)1, (B4)

τBC = EC
(
|ω〉〈ω|BC

)
, (B5)

where E is a quantum channel applying single-qubit depolarizing noise to N different qubits. This quantum channel
accounts for the noisy BSMs, the noisy distributed Bell states, and noise due to the storage of Bell states in memory.
As can be seen, the noise in the GHZ state prepared within the factory is the only source of noise that is not
contained in the channel E . Instead, this source of noise is contained by the expression for σ.

Now, we notice that the state τ is exactly the Choi state [128, 129] of the quantum channel E . Additionally, Eq.
(B3) is exactly the expression for the effect of a quantum channel in terms of its Choi state [130]. Therefore, we can
immediately conclude that

ρ = E(σ). (B6)

Using the fact that the maximally-mixed component of σ will remain maximally mixed by the effect of E , we can
write

ρ = pGHZE
(
|GHZ〉〈GHZ|

)
+

1− pGHZ

2N
1. (B7)

The final remaining step towards determining ρ is thus evaluating the quantum channel E .

Because depolarizing channels have the property

DHA,p1 ◦ DHA,p2 = DHA,p1p2 , (B8)
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all the depolarizing noise that has been moved to the qubits of HC can be combined into a single depolarizing channel
per qubit, giving

E
(
|GHZ〉〈GHZ|

)
= DH1,p1 ◦ DH2,p2 ◦ · · · ◦ DHN ,pN

(
|GHZ〉〈GHZ|

)
. (B9)

Here, ◦ indicates the composition (i.e., subsequent application) of the channels and Hi denotes the Hilbert space of
the qubit at the ith end node. The combined depolarizing parameter pi accounts for noise due to one BSM, one noisy
distributed Bell state and memory decoherence at both the factory node and the end node itself, and is given by Eq.
(17). Each depolarizing channel DHi,pi gives one term proportional to pi where nothing happens to the Hi subspace,
and one term proportional to 1− pi where Hi is traced out of the GHZ state and then put into the state 1i/2. Thus,
evaluating Eq. (B9) comes down to accounting for all different combinations of terms. Tracing out one qubit from a
GHZ state results in

Tri

(
|GHZ〉〈GHZ|

)
1,2,...,k

=
1

2
P1,2,...,i−1,i+1,...,k, (B10)

where P is the classically correlated, unnormalized state defined in Eq. (20). Tracing out a qubit from P yields

Tri P1,2,...,k = P1,2,...,i−1,i+1,...,k, (B11)

unless k = 1, in which case

Tr1 P1 = Tr1 11 = 2. (B12)

Now, we define the set N = {1, 2, . . . , N} as the set of all qubit indices. Working out the combinatorics, we find

ρ =
1− pGHZ

2N
1N + pGHZ

[ ∏
i∈N

pi
(
|GHZ〉〈GHZ|

)
N +

∏
i∈N

1− pi
2

1N

+
1

2

∑
U⊂N

1<|U |<N

∏
i∈U

1− pi
2

∏
j∈N\U

pj

1U ⊗ PN\U

]
.

(B13)

Note that due to the factors appearing when taking traces in Eqs. (B10), (B11), and (B12), the terms where more
than 0 but less than N of the qubits are traced out effectively have an “extra” factor of 1

2 .

Appendix C: Coefficients of Fidelity Function

In this appendix, we derive the coefficients in the expression for the fidelity of GHZ states distributed by Protocol 1.
That is, we show that Eq. (22) can be rewritten into the form of Eq. (23), with the coefficients A|U | given by Eq. (24).

First, we collect products of pi’s such that we may write

∑
U⊆N

2δ|U|,0+δ|U|,N−1

〈∏
i∈U

1− pi
2

∏
j∈N\U

pj

〉
=
∑
U⊆N

BU

〈∏
i∈U

pi

〉
(C1)

for some constants BU . To find these constants, we start by expanding

∏
i∈W

1− pi
2

=

(
1

2

)|W | ∑
V⊆W

(−1)|V |
∏
i∈V

pi, (C2)

giving

∑
W⊆N

2δ|W |,0+δ|W |,N−1

〈∏
i∈W

1− pi
2

∏
j∈N\W

pj

〉
=
∑
W⊆N

2δ|W |,0+δ|W |,N−1−|W |
∑
V⊆W

(−1)|V |

〈 ∏
i∈V ∪(N\W )

pi

〉
. (C3)

We now equate Eqs. (C1) and (C3). Each is the expected value of a polynomial in the independent random variables
pi. They are equal if the coefficients of all terms in the polynomial are equal. Therefore, we determine BU by collecting
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all parts of the sum in Eq. (C3) that are proportional to
〈∏

i∈U pi
〉
and thus contribute to the same term. Writing

as a shorthand W = N \W , this gives

BU =
∑
W⊆N

2δ|W |,0+δ|W |,N−1−|W |
∑
V⊆W

(−1)|V |δV ∪W,U , (C4)

where we are slightly abusing notation by using the Kronecker delta for two sets. It is defined by

δU,V =

{
1 for U = V,

0 otherwise,
(C5)

where U and V are sets. The delta function ensures that we are adding together exactly those coefficients of (C4)
that contribute to the right term of the polynomial.

We note that the equation V ∪W = U implies that W ⊆ U . Therefore, the Kronecker delta will always be zero
when this condition does not hold, allowing us to refine the summation limit and write

BU =
∑
W

W⊆U

2δ|W |,0+δ|W |,N−1−|W |
∑
V⊆W

(−1)|V |δV ∪W,U . (C6)

The Kronecker delta now limits the sum to values of V and W where V ∪W = U holds. Because V ⊆W for all terms
in the sum, it always holds that V ∩W = ∅, i.e. there is no overlap between the two sets. Therefore, the equation
V ∪W = U implies that V = U \W . Additionally, because W ⊆ U for all terms in the sum, the equation V = U \W
implies that V ∪W = U . It follows that the two equations are equivalent given the conditions imposed on V and W
by the summation limits, and we can safely rewrite the Kronecker delta function to obtain

BU =
∑
W

W⊆U

2δ|W |,0+δ|W |,N−1−|W |
∑
V⊆W

(−1)|V |δV,U\W . (C7)

Since U \W contains only elements not in W , and since W contains all elements in N that are not in W , it follows
that U \W ⊆W . If this were not always the case, it could be the case for some W that the sum over V ⊆W contains
no terms for which the delta function is nonzero. But since it is the case, for every W there is exactly one value of V ,
namely V = U \W , for which the delta function has a nonzero value. For this value, |V | = |U | − |W |, and therefore
the equation becomes

BU =
∑
W

W⊆U

2δ|W |,0+δ|W |,N−1−|W |(−1)|U |−|W |. (C8)

To further resolve the equation, we note that when the cardinality of W is equal to |W | = i, there are exactly |U |
choose i different ways W can be chosen from U . Since only the cardinalities of W and W (with |W | = N − i) appear
in the sums, this allows us to write

BU =

|U |∑
i=0

(
|U |
i

)
2δN−i,0+δN−i,N−1−N+i(−1)|U |−i =

|U |∑
i=0

(
|U |
i

)
2δi,N+δi,0−1−N+i(−1)|U |−i. (C9)

Now, we make a change of variable, i → |U | − i. Conveniently, the binomial coefficient is invariant under this
transformation, giving

BU =

|U |∑
i=0

(
|U |
i

)
2δ|U|−i,N+δ|U|−i,0−1−N+|U |−i(−1)i =

(
1

2

)N+1−|U | |U |∑
i=0

(
|U |
i

)
2δ|U|,Nδi,0+δi,|U|

(−1

2

)i
. (C10)

By the binomial theorem,

|U |∑
i=0

(
|U |
i

)(
−1

2

)i
=

(
1− 1

2

)|U |
=

(
1

2

)|U |
. (C11)
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By adding the contributions from when the delta functions are nonzero separately on top of that, we find

BU =

(
1

2

)N+1−|U |
{(

1

2

)|U |
+ δ|U |,N +

(
−1

2

)|U |}
, (C12)

which can be rewritten as (using the fact that N − |U | = 0 whenever the remaining delta function is nonzero)

BU =

(
1

2

)N+1 (
1 + (−1)|U |

)
+

1

2
δ|U |,N . (C13)

Noticing furthermore that the value of BU only depends on the cardinality of the set U , we write

B|U | =

{
1

2N + 1
2δ|U |,N if |U | is even,

1
2δ|U |,N if |U | is odd.

(C14)

Now, we can derive the coefficients A|U | in Eq. (23). To this end, we substitute Eq. (17) into Eq. (C1) to find

∑
U⊆N

2δ|U|,0+δ|U|,N−1

〈∏
i∈U

1− pi
2

∏
j∈N\U

pj

〉
=
∑
U⊆N

B|U |
(
plinkp

2
BSM

)|U |〈∏
i∈U

(
p2
mem

)∆ni

〉

=
∑
U⊆N

A|U |

〈∏
i∈U

(
p2
mem

)∆ni

〉 (C15)

where A|U | is exactly as defined in Eq. (24). Therefore, Eq. (23) indeed follows from Eq. (22).

Appendix D: Expected Values for Memory Decoherence

In this appendix, we derive both a leading-order expression and a lower bound for the effect of memory decoherence
on the fidelity of GHZ states produced using Protocol 1. These results allow us to write down a leading-order
expression for the fidelity of states produced using this protocol (Eq. (25)), and a lower bound ((27)). To this
end, we first derive more general results for the case where the decoherence rate is different for each quantum memory.

1. Indices

Trying to establish a Bell state happens according to discrete rounds, with the probability of succeeding during
each round being qlink for all end nodes. When all Bell states are in place, a GHZ state is generated locally and
then teleported by the factory node towards the end nodes after which, in case all BSMs are successful, the protocol
terminates. While the BSM success probability influences the rate with which GHZ states can be distributed
(see Section IIIA), it will not influence the fidelity, since all states are discarded whenever a BSM fails and the
protocols starts again from the beginning. Therefore, without loss of generality, we will henceforth assume BSMs
are deterministic. In that case, each execution of the protocol is uniquely defined by which end node established a
Bell state during which attempt. This can be described by assigning indices i ∈ N to the different end nodes (where
N = {1, · · · , N} as before), and denoting the round during which end node i established a Bell state by ni.

For any given realization of the protocol, an ordering can be imposed on the indices in correspondence with the
order in which the different Bell states were distributed. We denote the ordered index corresponding to end node i
by di, and they have the property

ni ≥ nj if di > dj . (D1)

for i, j = 1, 2, ..., N . That means that if d5 = 1, end node with label 5 was the first end node to share a Bell state
with the factory node, while if d1 = N , end node with label 1 was the last to do so.
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What we want to calculate, are expected values including only the waiting times of a specific subset of the end
nodes. We denote this subset V ⊆ N , with |V | ≡M , and define the indices v1, v2, · · · , vM as the ordered elements of
the subset V . That is, V = {v1, v2, ..., vM} and

dvi+1
> dvi (D2)

for i = 1, 2, · · · ,M − 1. To simplify our notation, we now introduce the symbols

ci ≡ dvi ,
mi ≡ nvi .

(D3)

We note that Eq. (D1) and (D2) together imply that

mi+1 ≥ mi (D4)

for i = 1, 2, · · · ,M − 1.

An example of the values these different indices can take, let us consider the case N = 4. For a specific realization
of the protocol, it might be that the end node with index 2 shared a Bell state with the factory node first during
n2 = 3, then 3 during n3 = 5, then 1 at n1 = 10 and finally 4 at n4 = 17. In that case, d2 = 1, d3 = 2, d1 = 3, and
d4 = 4. Now, if we take V = {1, 3}, then v1 = 3 and v2 = 1. This gives, c1 = d3 = 2 and c2 = d1 = 3, which correctly
satisfies c2 > c1. Furthermore, m1 = n3 = 5 and m2 = n1 = 10.

2. Probability Building Blocks

At the start of Protocol 1, there are N quantum connections simultaneously distributing Bell states between the
factory node and end nodes 1, 2, · · · , N . Each of these will follow a geometric distribution. That is,

Pr
(
Bell state i is successfully distributed during round n

)
= qlink(1− qlink)n−1, (D5)

for i = 1, 2, ..., N , and n = 1, 2, 3, ... .

Now, we introduce some probabilities based on this that will be useful later on:

Pi/N (n) ≡ Pr
(
during round n, the ith Bell state is distributed, given that there were zero before round 1,

and distribution takes place on N quantum connections
)
,

(D6)

P ′i/N (n) ≡ Pr
(
after round n, exactly i Bell states are distributed, given that there were zero before round 1,

and distribution takes place on N quantum connections;

the ith Bell state was established during round n
)
.

(D7)

Note that the difference between Pi/N (n) and P ′i/N (n) is that the first also includes the probability for the case that,
during round n, more Bell states are simultaneously established than was required to reach i. The first of these two
is a properly normalized probability distribution, and has the random variable ni/N associated to it, representing the
number of rounds needed to distribute i Bell states using N quantum connections. A special case is the variable n1/N ,
as it is a geometrically distributed random variable. The reason for this is that the probability that the first Bell state
is distributed during round n, is equal to the probability that all quantum connections failed up until round n, and
that not all quantum connections fail during round n. That is,

P1/N (n) = [1− (1− qlink)N ](1− qlink)N(n−1), (D8)

which is geometric with 1/
〈
n1/N

〉
= 1− (1− qlink)N .
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Furthermore, we define

P ji/N (n) ≡ Pr
(
after round n, exactly i Bell states are distributed, given that there were zero before round 1,

and distribution takes place on N quantum connections;

j of those i Bell states were distributed during round n
)
.

(D9)

Here, j ≤ i ≤ N , and j ≥ 1. This allows us to be more specific about the number of success events during the last
round. Since for P ′i/N (n) the number of success events at round n can be any number larger than zero (and, of course,
smaller or equal to i), we can write down the relation

P ′i/N (n) =

i∑
l=1

P li/N (n). (D10)

Similar, since Pi/N (n) is the same as P ′i/N (n) but also includes to possibility that “too many” successes occurred
during round n, bringing the number of entangled states above i, we can write

Pi/N (n) =

N−i∑
k=0

i∑
l=1

P k+l
(i+k)/N (n) = P ′i/N (n) +

N−i∑
k=1

i∑
l=1

P k+l
(i+k)/N (n). (D11)

Note however that both equations only hold for i > 0.

It is possible to derive a recursive relation for P ji/N (n). We can express the probability as

P ji/N (n) =

(
N − (i− j)

j

)
Pr
(
during round n, out of N − (i− j) quantum connections

trying to establish a Bell state, exactly j succeed
)

× Pr
(
after round n− 1, there were i− j Bell states

)
.

(D12)

The first probability is simply qjlink(1− qlink)N−i. The second probability depends on what i− j is. If it is zero, it is
simply the probability that there have been no success events up to and including round n− 1, i.e. (1− qlink)N(n−1).
If i− j 6= 0, we must distinguish between the different cases in which the final Bell state is established during different
rounds. This gives

Pr
(
after round n− 1, there were i− j Bell states

)
=

n−1∑
n′=1

P ′(i−j)/N (n′)× Pr
(
none out of N − (i− j) active quantum connections distribute a

Bell state after round n′ up to round n− 1
)

=

n−1∑
n′=1

P ′(i−j)/N (n′)(1− qlink)[N−(i−j)][(n−1)−n′].

(D13)

Now, we note that the definition of P ′i/N (n) is somewhat ambiguous for i = 0 and n = 0. Therefore, we here define
it explicitly for these values, in such a way that we can extend the above relation to the cases j = i and n = 1. The
definition is as follows:

P ′0/N (n) ≡ δn,0. (D14)

This allows us to extend the above sum to include n′ = 0, which gives exactly what we need for j = i and vanishes
anyway for j < i, i.e.

P ji/N (n) =

(
N − i+ j

j

) n−1∑
n′=0

qjlink(1− qlink)(n−n′)(N−i+j)−jP ′(i−j)/N (n′). (D15)
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We can rewrite this equation into a form that makes it easier to deal with later on. Using Eq. (D8) we can write

P ji/N (n) =

(
N − i+ j

j

)
qjlink(1− qlink)N−i

1− (1− qlink)N−i+j

n−1∑
n′=0

P1/(N−i+j)(n− n′)P ′(i−j)/N (n′). (D16)

Furthermore, to turn this into a true recursion relation, we also fill in Eq. (D10) to find

P ji/N (n) =

(
N − i+ j

j

)
qjlink(1− qlink)N−i

1− (1− qlink)N−i+j

n−1∑
n′=0

P1/(N−i+j)(n− n′)
i∑
l=1

P li/N (n). (D17)

However, we must be aware of the fact that this equation only covers the i > 0 cases. If i = j = 0, there are no
Bell states distributed at all, and thus we can also not split up the success events as we did in our arguing above.
Analogues to P ′0/N (n) = δn,0, we define P 0

0/N (n) = δn,0. Furthermore, while P ji/N (n) is technically undefined for
j = 0 and i > 0, we define it to be zero for later convenience. Note that therefore P 0

i/N (n) for i > 0 is not equal to
the probability that there are i Bell states after round n, of which there where 0 distributed during round n, since
this would be a nonzero quantity.

Finally, we will abuse notation to write

∞∑
n=0

nP ji/N (n) =
〈
nji/N

〉
, (D18)

even though P ji/N (n) is not a normalized probability distribution and thus nji/N is not a well-defined random variable.

3. Probability Distribution of Links

Now, we introduce the probability distribution

P (m1 = m′1,m2 = m′2, · · · ,mM = m′M ), (D19)

which is the probability that, if Protocol 1 is executed once, and labels are defined and ordered as described
above, that mi has the value m′i for each i = 1, 2, · · · ,M . Below, we will use this probability distribution to write
down expected values of the type we need to account for memory decoherence. First, we will investigate what the
probability distribution looks like.

Then, what is the probability that Bell state ci is distributed at round mi? Consider the fact that Bell state ci−1

was distributed at round mi−1. During this round, many Bell states could have been distributed simultaneously, as
multiple quantum connections are attempting to distribute them in parallel. However, assume for the moment that
only Bell state ci−1 was distributed at round mi−1. In that case, the probability that ci succeeds during round mi

is equal to the probability that ci − ci−1 Bell states are distributed using N − ci−1 parallel quantum connections in
mi − mi−1 rounds, which is the probability P(ci−ci−1)/(N−ci−1)(mi − mi−1) defined above. Now assume that there
were in fact multiple successes during round mi−1. Specifically, let it be such that there were so many successes that
after round mi−1, the number of distributed Bell states is ci−1 + ki−1. That is, ki−1 is the “overshoot” during round
mi−1. Then, we can distinguish two different cases. In the first case, ki−1 < ci − ci−1, and Bell state number ci is
not yet distributed after round mi−1. We can then repeat the logic above: the probability of distributing Bell state
ci during round mi is P(ci−ci−1−ki−1)/(N−ci−1−ki−1)(mi −mi−1). However, in the second case, ki−1 ≥ ci − ci−1; the
overshoot is so large that Bell state ci was already distributed during round mi−1, and the probability can be written
as the Kronecker delta function δmi,mi−1 .

Using this logic, the probability distribution can be completely characterized using P ji/N (n)-type probabilities that
were defined above. For each ci, we can put a Heaviside step function θ(ci − ci−1 − ki−1 − 1) to account for the case
where the overshoot was small enough to ensure mi 6= mi−1, and θ(ci−1 + ki − 1− ci) when they are the same. The
Heaviside step function is defined as

θ(x) =

{
0 if x < 0,

1 if x ≥ 0.
(D20)
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There are just two additional aspects we need to consider. First of all, the number of successes during round mi−1 is
not necessarily equal to ki−1; ki−1 is just the overshoot. It could e.g. be the case that ci−1 = 6 and ki−1 = 3. That
means that after mi−1, the number of distributed Bell states is 9. But it says nothing about the number of Bell states
before that round. It could e.g. be 4, in which case there were 5 successes during round mi−1. We denote the number
of “additional” successes that did not go into the overshoot by li−1. Thus, the number of successes during round mi−1

is li−1 + ki−1. In the example, li−1 = 2. Secondly, we need to consider the fact that if ki−1 is large enough that
mi = mi−1, then the overshoot ki must be equal to ki−1 − (ci − ci−1), which can be accounted for using a Kronecker
delta. Combining all this into a single equation, we find

Pr(m1 = m′1,m2 = m′2, · · · ,mM = m′M )

=

M∏
i=1

N−ci∑
ki=0

[
θ(ci − ci−1 − ki−1 − 1)

ci−ci−1−ki−1∑
li=1

P ki+li(ci+ki−ci−1−ki−1)/(N−ci−1−ki−1)(m
′
i −m′i−1)

+ θ(ci−1 + ki−1 − ci)δki,ci−1+ki−1−ciδm′i,m′i−1

]
=

M∏
i=1

[N−ci∑
ki=0

ci−ci−1−ki−1∑
li=−ki

(
θ(li − 1) + δki,ci−1+ki−1−ci

)
× P ki+li(ci+ki−ci−1−ki−1)/(N−ci−1−ki−1)(m

′
i −m′i−1)

]
,

(D21)

where we set m′0 ≡ c0 ≡ k0 ≡ 0 by definition to allow for the more compact form of the equation.

4. Expected Value

In order to calculate the expected values for the amount of decoherence in quantum memory, what we need is a
probability distribution not for at what time each Bell state was distributed, but for how long each Bell state had
to sit in memory before Protocol 1 terminated. Luckily, the second can be easily obtained from the first. First, we
define nf to be the round during which the final Bell state is distributed. Then, we define ∆mi = nf −mi as the
number of rounds Bell state vi waits in memory until all Bell states are distributed. The probability distribution we
are then interested in is

Pr(∆m1 = ∆m′1,∆m2 = ∆m′2, · · · ,∆mM = ∆m′M ), (D22)

which can be written as

Pr(∆m1 = ∆m′1,∆m2 = ∆m′2, · · · ,∆mM = ∆m′M )

=

∞∑
n′f=1

M∏
i=1

( ∞∑
m′i=1

δn′f−m′i,∆m′i

)
Pr(m1 = m′1,m2 = m′2, · · · ,mM = m′M , nf = n′f ).

(D23)

The latter probability distribution is the one from Eq. D21, except for the additional condition nf = n′f . However,
this condition can be easily incorporated by extending the set V of end nodes under consideration slightly, such that
we include vM+1 which corresponds to the last Bell state that is distributed. That is,

cM+1 = N, (D24)

and mN+1 = nf . In that case, we can directly use Eq. D21 to write down

Pr(∆m1 = ∆m′1,∆m2 = ∆m′2, · · · ,∆mM = ∆m′M )

=

∞∑
m′M+1=1

M∏
i=1

( ∞∑
m′i=1

δn′f−m′i,∆m′i

)
Pr(m1 = m′1,m2 = m′2, · · · ,mM = m′M ,mM+1 = m′M+1)

=

∞∑
m′M+1=1

M∏
i=1

( ∞∑
m′i=1

δm′M+1−m′i,∆m′i

)M+1∏
i=1

[N−ci∑
ki=0

ci−ci−1−ki−1∑
li=−ki

(
θ(li − 1) + δki,ci−1+ki−1−ci

)
× P ki+li(ci+ki−ci−1−ki−1)/(N−ci−1−ki−1)(m

′
i −m′i−1)

]
.

(D25)
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First, we resolve the Kronecker delta functions. If ∆m′i = m′M+1 −m′i, then m′i −m′i−1 = ∆mi−1 −∆mi. Therefore,
if we define ∆m′M+1 ≡ 0 and write ∆m′0 = m′M+1, we find

Pr(∆m1 = ∆m′1,∆m2 = ∆m′2, · · · ,∆mM = ∆m′M )

=

∞∑
∆m′0=0

M+1∏
i=1

[
N−ci∑
ki=0

ci−ci−1−ki−1∑
li=−ki

(
θ(li − 1) + δki,ci−1+ki−1−ci

)

× P ki+li(ci+ki−ci−1−ki−1)/(N−ci−1−ki−1)(∆m
′
i−1 −∆m′i)

]
.

(D26)

Now, we will use these results to calculate the expected value

G(r1, r2, · · · , rM ) ≡

〈
M∏
i=1

(1− ri)∆mi

〉

=

M∏
i=1

[ ∞∑
∆m′i=0

(1− ri)∆m′i

]
Pr(∆m1 = ∆m′1,∆m2 = ∆m′2, · · · ,∆mM = ∆m′M )

(D27)

Here, the ri are some numbers between zero and one. The fidelity of GHZ states created by Protocol 1 is expressed as
a sum over such expected values in Eq. (23). Therefore, if we are able to evaluate Eq. (D27), we are able to evaluate
the fidelity using the substitution ri = 1 − p2

mem for all i (i.e. ri becomes the probability that a quantum state is
lost in memory per round of Bell-state distribution). We make two remarks about the expected value G. First, an
evaluation of G is a more general result than what we need to calculate the fidelity, as here we allow each ri to take a
different value. As discussed in Section VI, this makes such a result suitable to study asymmetric quantum networks.
Second, in the definition of G, a product over quantities of the form 1− ri appears. We could just as well make the
redefinition ri → 1 − ri. This would make the definition of G more compact, and would lead to the perhaps more
natural mapping ri = p2

mem in order to calculate the fidelity. However, we are ultimately interested in the regime
1− p2

mem � 1, where the probability of losing a quantum state when storing it in memory for a single round is small.
This translates here to ri � 1. Therefore, if we want to calculate the fidelity to leading order in 1 − p2

mem, we need
to evaluate G to leading order in the variables ri. This is easier to do than working to leading order in 1− ri.

First of all, we substitute Eq. (D26) into Eq. (D27). By defining r0 ≡ 0, we can conveniently write the result as

G(r1, r2, · · · , rM )

=

∞∑
∆m′0,∆m

′
1,··· ,∆m′M=0

M+1∏
i=1

[
N−mi∑
ki=0

mi−mi−1−ki−1∑
li=−ki

(
θ(li − 1) + δki,mi−1+ki−1−mi

)

× (1− ri−1)∆ni−1P ki+li(mi+ki−mi−1−ki−1)/(N−mi−1−ki−1)(∆m
′
i−1 −∆m′i)

]
,

(D28)

To evaluate it, we can make use of the fact that probability P ji/N (n) is only nonzero for n ≥ 0, and that the sum only
contains terms for which ∆m′i ≥ 0. Thus, for some number 0 < a < 1,

∞∑
∆m′i−1=0

a∆m′i−1P ji/N (∆m′i−1 −∆m′i)

=

∞∑
∆m′i−1=∆m′i

a∆m′i−1P ji/N (∆m′i−1 −∆m′i)

=

∞∑
n=0

an+∆m′iP ji/N (n)

=
〈
a
nj
i/N

〉
a∆m′i .

(D29)

This shows that the summation over ∆m′i cannot be resolved independently from the summation over ∆m′i−1. How-
ever, the summation over ∆m′i−1 can be safely performed before the summation over ∆m′i, as shown above. Thus,
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our strategy is to sum over the ∆m′i’s in the order of their index (i.e. ∆m′0 first, ∆m′M last). For ∆m′0, we get〈
(1− r0)

n
k1+l1
m1+k1−m0−k0/(N−m0−k0)

〉
(1− r0)∆m′1 . (D30)

Before performing the sum over ∆m′1, we must remember to also include the (1− r0)∆m′1 that came out of the sum
over ∆m′0 and thus we get〈

[(1− r0)(1− r1)]
n
k2+l2
m2+k2−m1−k1/(N−m1−k1)

〉
[(1− r0)(1− r1)]∆m

′
2 . (D31)

Then, for the sum over ∆m′3, we should not forget to add the [(1− r0)(1− r1)]∆m
′
2 to the (1− r2)∆m′2 already present.

And so on. The result is
G(r1, r2, ..., rM )

=

M+1∏
i=1

[
N−ci∑
ki=0

ci−ci−1−ki−1∑
li=−ki

(
θ(li − 1) + δki,ci−1+ki−1−ci

)

×

〈( i−1∏
j=0

(1− rj)
)nki+li

(ci+ki−ci−1−ki−1)/(N−ci−1−ki−1)

〉]

=

M+1∏
i=1

[
N−ci∑
ki=0

ci−ci−1−ki−1∑
li=−ki

(
θ(li − 1) + δki,ci−1+ki−1−ci

)
×
〈(

1− r̄i−1

)nki+li
(ci+ki−ci−1−ki−1)/(N−ci−1−ki−1)

〉]
,

(D32)

where we defined

r̄i = 1−
i∏

j=0

(1− rj). (D33)

The next step is to calculate the expected values of the form encountered in the above equation. That is, we need
to calculate 〈

(1− r)n
j
i/N

〉
=

∞∑
n=0

P ji/N (n)(1− r)n. (D34)

We can use equation (D17) to write down the recursive relation〈
(1− r)n

j
i/N

〉
=

(
N − i+ j

j

)
qjlink(1− qlink)N−i

1− (1− qlink)N−i+j

∞∑
n=0

n−1∑
n′=0

(1− r)nP1/(N−i+j)(n− n′)
i−j∑
l=0

P l(i−j)/N (n′)

=

(
N − i+ j

j

)
qjlink(1− qlink)N−i

1− (1− qlink)N−i+j

i−j∑
l=0

∞∑
∆n=1

∞∑
n′=0

(1− r)n
′+∆nP1/(N−i+j)(∆n)P l(i−j)/N (n′)

=

(
N − i+ j

j

)
qjlink(1− qlink)N−i

1− (1− qlink)N−i+j
〈(1− r)n1/(N−i+j)〉

i−j∑
l=0

〈
(1− r)n

l
(i−j)/N

〉
.

(D35)

Since n1/N is geometric with 1/
〈
n1/N

〉
= 1− (1− qlink)N , and since

〈ax〉 = aq/(1− a[1− q]) (D36)

for any geometric variable x with 1/ 〈x〉 = q and 0 < a < 1, we can write〈
(1− r)n

j
i/N

〉
=

(
N − i+ j

j

)
qjlink(1− qlink)N−i(1− r)

1− (1− r)(1− qlink)N−i+j

i−j∑
l=0

〈
(1− r)n

l
(i−j)/N

〉
. (D37)

for i > 0.
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5. Recursive Relation

We will now proceed in the limit qlink, r � 1, since this is the regime that we are mostly interested in, and since
this allows for some convenient approximations. Throwing out higher-order terms in both r and qlink, we get

〈
(1− r)n

j
i/N

〉
≈
(
N − i+ j

j

)
qjlink

r + (N − i+ j)qlink

i−j∑
l=0

〈
(1− r)n

l
(i−j)/N

〉
. (D38)

Now, we will argue that to leading order in qlink and r, we only need to consider the term for which l = 1, making it
much easier to resolve the recurrence relation.

Let us for the moment represent
〈

(1− r)n
b
a/N

〉
schematically by the tuple (a, b). Then, any (i, j) is expressed

as a sum over (i − j, l1)’s, for l1 = 0, 1, ..., i − j. In turn each (i − j, l1) will be a sum over (i − j − l1, l2)’s for
l2 = 0, 1, ..., i− j − l1. Therefore, each term in the sum can be represented by a sequence

term in sum =
(

(a0, b0), (a1, b1), (a2, b2), · · ·
)

(D39)

following the rule ai+1 = ai − bi and the boundary condition a0 = i, b0 = j. Now, since〈
(1− r)n

0
i /N
〉

=

∞∑
n=0

P 0
i/N (n)(1− r)n =

∞∑
n=0

δi,0δn,0(1− r)n = δi,0, (D40)

tuples of the form (a, 0) can only occur in the sequence if a = 0. That means bi > 0 for each tuple where ai 6= 0. As
a result, ai+1 ≤ ai − 1 unless ai = 0. Furthermore, the (0, 0) term itself does not contain a reference other (a, b); it
simply has the value one. Thus, the recurrence relation terminates when ai = 0 is reached.

As a consequence, we can rewrite the sequence above as

term in sum =
(

(i, j), (i− j, l1), (i− j − l1, l2), · · · , (i− j −
K−1∑
i=1

li, lK), (0, 0)
)
, (D41)

for some li > 0 for i = 1, 2, · · · ,K and for some value K. This sequence can be thought of as a “path” from (i, j) to
(0, 0). Each path is uniquely defined by a sequence (l1, l2, · · · , lK), and each such sequence uniquely defines a path as
long as it satisfies the condition

K∑
i=1

li = i− j. (D42)

Note that as li ≥ 1, this automatically imposes K ≤ i − j. We denote the set of all sequences (l1, l2, · · · , lK) that
define a path from (i, j) to (0, 0) by Li,j , which allows us to expand the recurrence relation as

〈
(1− r)n

j
i/N

〉
≈

∑
(l1,...,lK)∈Li,j

(
N − i+ j

j

)
qjlink

r + (N − i+ j)qlink

〈
(1− r)n

0
0/N

〉

×
K∏
k=1

(
N − (i− j −

∑k−1
a=1 la) + lk

lk

)
qlklink

r + (N − (i− j −
∑k−1
a=1 la) + lk)qlink

=
∑

(l1,...,lK)∈Li,j

q
j+

∑K
k=1 lk

link
r + (N − i+ j)qlink

K∏
k=1

1

r + (N − (i− j −
∑k−1
a=1 la) + lk)qlink

×
(
N − i+ j

j

) K∏
k=1

[(N − (i− j −
∑k−1
a=1 la) + lk

lk

)
=

∑
(l1,...,lK)∈Li,j

qilink

O
(

(r + qlink)K
) ×O(r0q0

link).

(D43)
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For r, qlink � 1, this sum will be dominated by paths that have the largest K. As explained above, the maximum
value that K can take is i − j. Furthermore, there is exactly one path that realizes this value, which is defined by
la = 1 for a = 1, 2, · · · , i− j. When we keep only this path in the above equation, we find〈

(1− r)n
j
i/N

〉
≈
(
N − i+ j

j

)
qilink

r + (N − i+ j)qlink

×
i−j∏
k=1

(
N − (i− j − (k − 1)) + 1

1

)
1

r + (N − (i− j − (k − 1)) + 1)qlink

=

(
N − i+ j

j

)
qj−1
link

N − i+ j

N∏
k=N−i+j

kqlink

r + kqlink
.

(D44)

We must note that all of the above is only valid for i > 0, since the recursive relation (D37) is not applicable for i = 0.
In order to also incorporate equation (D40), we write

〈
(1− r)n

j
i/N

〉
≈
(
θ(j − 1) + (r +Nqlink)δi,0

)(N − i+ j

j

)
qj−1
link

N − i+ j

N∏
k=N−i+j

kqlink

r + kqlink
. (D45)

How can we interpret the dominance of terms corresponding to the “longest path”? What it means is that
realizations of Protocol 1 for which multiple successes occur during the same round occur with suppressed probability,
as shown by the fact that we only include P ji/N ’s for which j = 1. This can also be intuitively expected: if for each
quantum connection the probability of distributing a Bell state per round is very small (qlink � 1), there will be a
large spread in the rounds during which the different Bell states are distributed. It will then be very unlikely that
two Bell states are distributed during the exact same round. However, when r is large (close to 1), the quantity
(1− n)n will decrease very quickly with n. The average will then have much larger weight for small n than for large
n. However, these terms with small n are exactly those that are excluded by the large spread implied by qlink � 1.
In fact, if r = 1− ε with ε� 1, the only linear term in the average is the one corresponding to n = 1, which implies
all Bell states being distributed collectively during the first round ( P ji/N with j = i). This explains why neglecting
simultaneous successes requires both qlink and r to be small.

Finally, before we move on, we are interested to know whether equation (D45) also holds for r = 0. This does not
follow from the above, because the use of equation (D36) required 0 < r < 1. For r = 0, Eq. (D34) yields〈

(1− r)n
j
i/N

∣∣∣
r=0

〉
=

∞∑
n=0

P ji/N (n). (D46)

Using again equation (D17) we find

〈
(1− r)n

j
i/N

∣∣∣
r=0

〉
=

(
N − i+ j

j

)
qjlink(1− qlink)N−i

1− (1− qlink)N−i+j

∞∑
n=0

n−1∑
n′=0

P1/(N−i+j)(n− n′)P ′(i−j)/N (n′)

=

(
N − i+ j

j

)
qjlink(1− qlink)N−i

1− (1− qlink)N−i+j

∞∑
∆n=0

P1/(N−i+j)(∆n)

i−j∑
l=0

∞∑
n′=0

P l(i−j)/N (n′)

=

(
N − i+ j

j

)
qjlink(1− qlink)N−i

1− (1− qlink)N−i+j

i−j∑
l=0

〈
(1− r)n

l
(i−j)/N

∣∣∣
r=0

〉
(D47)

which is exactly recursive relation (D37) but with r = 0. Because〈
(1− r)n

0
i /N
∣∣∣
r=0

〉
= δi,0, (D48)

the recursive relation expresses any (i, j) in terms of (0, 0)’s, and these are expressed the same for both r = 0 and
0 < r < 1. Because both the recursive relation and the final term (0, 0) can be written the same, we conclude that it
does not matter whether r is set to zero before or after resolving the recursion relation. Therefore,〈

(1− r)n
j
i/N |r=0

〉
=
〈

(1− r)n
j
i/N
∣∣∣
0<r<1

〉∣∣∣
r=0

. (D49)
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Thus, equation (D45) is valid for 0 ≤ r � 1. This means that we do not need to treat the r0 that we defined to be
zero before any differently from the other ri’s when calculating G((r1, r2, · · · , rM ), and our results are still valid if
ri = 0 for some 0 < i < M .

6. Counting Orders

Now, we can in principle substitute Eq. (D45) into Eq. (D32). However, if we limit ourselves to leading order in
qlink and the various ri variables (which we denote as all being of order O(r)), this allows us to disregard part of the
summation. In this section, we count orders to find that only li = 1 and ki = 0 terms contribute to G at leading
order. This allows us to more easily calculate G to leading order in the next section.

First of all, note that

r̄i ≡ 1−
i∏

j=0

(1− rj) =

i∑
j=0

rj +O(r2). (D50)

Therefore, each r̄i is of order O(r). Furthermore, from Eq. (D45) we see that

〈
(1− r)n

j
i/N

〉
=
(
θ(j − 1) + δi,0O(r + qlink)

)
O
( qilink

(r + qlink)i−j+1

)
. (D51)

Substituting this into equation (D32) yields

G(r1, r2, · · · , rM )

=

M+1∏
i=1

[
N−ci∑
ki=0

ci−ci−1−ki−1∑
li=−ki

(
θ(li − 1) + δki,ci−1+ki−1−ci

)
×
(
θ(ki + li − 1) + δci+ki−ci−1−ki−1,0O(r + qlink)

)
×O

( q
ci+ki−ci−1−ki−1

link
(r + qlink)ci−ci−1−ki−1−li+1

)]

=

M+1∏
i=1

[
N−ci∑
ki=0

ci−ci−1−ki−1∑
li=−ki

(
θ(li − 1) + δki,ci−1+ki−1−ciO(r + qlink)

)
×O

( q
ci+ki−ci−1−ki−1

link
(r + qlink)ci−ci−1−ki−1−li+1

)]
.

(D52)

Here, we have used the fact that for every term in the sum, ki ≥ 0, and thus θ(li − 1)θ(ki + li − 1) = θ(li − 1).
Furthermore, the delta functions are the same, and squaring it gives the same delta function again. Cross terms θ× δ
vanish, because the only term for which the delta function does not vanish has li = −ki ≤ 0, making the step function
vanish. Now, we make use of the identity

N∏
i

(∑
xi

f(xi)

)
=
∑
x1

∑
x2

· · ·
∑
xN

f(x1)f(x2) · · · f(xN ) =
∏
i

(∑
xi

)∏
i

(
f(xi)

)
(D53)

to split the product in “three parts” and hence collect part of the order counting in a way that is very convenient,
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giving

G(r1, r2, · · · , rM )

=

M+1∏
i=1

[
N−ci∑
ki=0

]
M+1∏
i=1

[
O

((
qlink

r + qlink

)ci+ki−ci−1−ki−1
)]

×
M+1∏
i=1

[
ci−ci−1−ki−1∑

li=−ki

(
θ(li − 1) + δki,ci−1+ki−1−ciO(r + qlink)

)
O
(

(r + qlink)li+ki−1
)]

=

M+1∏
i=1

[N−ci∑
ki=0

]
O

((
qlink

r + qlink

)∑M+1
i=1 (ci+ki−ci−1−ki−1))

)

×
M+1∏
i=1

ci−ci−1−ki−1∑
li=−ki

(
θ(li − 1) + δki,ci−1+ki−1−ciO(r + qlink)

)
O
(

(r + qlink)li+ki−1
)
.

(D54)

This then allows us to make use of

M+1∑
i=1

(ci + ki − ci−1 − ki−1) = cM+1 + kM+1 − c0 − k0 = N, (D55)

since we manually defined m0 = k0 = 0 and mM+1 = N , and since the sum over kM+1 only runs over kM+1 = 0 (the
last success cannot “overshoot” as all Bell states are already in place). Thus, this quantity is the same for every term
and can safely be taken out of the sum.

Now, working out the θ and δ parts separately, we get

G(r1, r2, · · · , rM )

= O

((
qlink

r + qlink

)N )M+1∏
i=1

[N−ci∑
ki=0

]M+1∏
i=1

[
ci−ci−1−ki−1∑

li=1

O
(

(r + qlink)li+ki−1
)

+ δki,ci−1+ki−1−ci

]
.

(D56)

The part where we sum over li now is clearly dominated by the term for which li is lowest, since a larger li means a
larger order in r + qlink. Since this is li = 1, we find

G(r1, r2, · · · , rM )

= O

((
qlink

r + qlink

)N )M+1∏
i=1

[N−ci∑
ki=0

]M+1∏
i=1

[

θ(ci − ci−1 − ki−1 − 1)O
(

(r + qlink)ki
)

+ δki,ci−1+ki−1−ci

]
,

(D57)

where the step function is due to the summation over li being empty and hence zero for ci − ci−1 − ki−1 < 1. This
quantity will be dominated by terms which are products of δ’s, and of θ’s with ki = 0, since these terms do not carry
an additional O(r + qlink). Now note that the Kronecker δ function δki,ci−1+ki−1−ci enforces ki−1 ≥ ci − ci−1 > 0.
This implies two things. Firstly, it implies that any term that contains a θ(ci − ci−1 − ki−1 − 1) for i = j but a
δki,ci−1+ki−1−ci for i = j + 1 will be of higher order in r + qlink. Secondly, because k0 = 0 by definition, it implies
that all nonzero terms of the sum must “start” with a θ, i.e. include a θ(ci − ci−1 − ki−1 − 1) for i = 1. Together,
these two implications mean any leading terms cannot contain a δ; they only contain θ’s. The only leading term with
only θ’s is the one for which all ki’s are 0. Combining this with what we found for the li’s, we can conclude that the
leading contribution to G has li = 1 and ki = 0 for i = 0, 1, 2, ...,M + 1. This can again be interpreted as neglecting
the possibility that multiple Bell states are distributed simultaneously.
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7. Calculating G

Now, we are ready to calculate G to leading order. Only keeping li = 1, ki = 0 in Eq. (D32) and then filling in Eq.
(D45), we find

G(r1, r2, · · · , rM )

≈
M+1∏
i=1

〈(
1− r̄i−1

)n1
(ci−ci−1)/(N−ci−1)

〉
≈
M+1∏
i=1

[(
θ(1− 1) + (r̄i−1 +Nqlink)δci−ci−1,0

)

×
(
N − ci + 1

1

)
1

N − ci + 1

N−ci−1∏
k=N−ci+1

kqlink

r̄i−1 + kqlink

]

=

M∏
i=1

ci+1∏
k=ci+1

(N + 1− k)qlink

r̄i + (N + 1− k)qlink

≈
M∏
i=1

ci+1∏
k=ci+1

(N + 1− k)qlink∑i
j=1 rj + (N + 1− k)qlink

.

(D58)

Here, we have used the fact that r0 ≡ 0 (and thus r̄1 = 0) to drop the lowest term in the product. This can also be
rewritten as

G(r1, r2, · · · , rM ) ≈
N∏
k=1

(N + 1− k)qlink∑
ci<k

ri + (N + 1− k)qlink
. (D59)

8. Lower Bound

Apart from the leading-order approximation of the function G derived above, we can also derive a lower bound.
At the core of the approximation lies the fact that, to leading order in qlink and r, we are able to ignore all events for
which multiple Bell states are distributed during the same round. That function G obtained by ignoring these events
is an average over a sub-normalized probability distribution, and thus provides a lower bound on the real function.
In turn, using a lower bound of the function G to evaluate the fidelity (Eq. (23)) gives a lower bound on the real
fidelity. Even so, the result Eq. (D59) is not necessarily a lower bound on the function G. The reason for this is
that, in order to work consistently at leading order, we have thrown out some additional terms that are not linked
to ignoring multiple simultaneous successes. Some of these terms would lower the function G if they were kept, and
thus Eq. (D59) is only a lower bound if the effect of throwing out these terms is smaller than the effect of throwing
out events corresponding to multiple simultaneous successes. We do not know if this is generally the case.

In this section, we derive a lower bound by repeating the above calculation without throwing out these additional
terms. That means that we are not working at leading order, but just deriving a lower bound by throwing out
all contributions to G due to multiple distributed Bell states during the same round. We start by lower-bounding
the expected value

〈
(1− r)n

j
i/N

〉
. To this end, we use the recursive relation Eq. (D37). Because the factor in

front of the summation is a positive quantity, and because each term of the sum is ultimately expressed in terms of〈
(1− r)n0

0/N
〉

= 1 (see Eq. (D40)), we can conclude that

〈
(1− r)n

j
i/N

〉
≥ 0. (D60)

Because of this, Eq. (D37) tells us

〈
(1− r)n

j
i/N

〉
≥
(
N − i+ j

j

)
qjlink(1− qlink)N−i(1− r)

1− (1− r)(1− qlink)N−i+j

〈
(1− r)n

1
(i−j)/N

〉
. (D61)
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This inequality can be applied recursively until reaching〈
(1− r)n

1
1/N

〉
=

1

N

qlink(1− qlink)N−1(1− r)
1− (1− r)(1− qlink)N

. (D62)

This is exactly the “leading order path” discussed in Section D5 and yields, in analogue to Eq. (D44),〈
(1− r)n

j
i/N

〉
≥
(
N − i+ j

j

)
qjlink(1− qlink)N−i(1− r)

1− (1− r)(1− qlink)N−i+j

×
i−j∏
k=1

(
N − i+ j + k

1

)
qlink(1− qlink)N−i+j+k−1(1− r)

1− (1− r)(1− qlink)N−i+j+k
.

(D63)

We will now focus on the case j = 1, since this will ultimately be the only type of term occurring in the lower bound
for G (after all, j > 1 would correspond to distributing multiple Bell states during the same round). We then find

〈
(1− r)n

1
i/N

〉
≥

i−j∏
k=0

(N − i+ k + 1)
qlink(1− qlink)N−i+k(1− r)

1− (1− r)(1− qlink)N−i+k+1

=

N∏
k=N−i+1

kqlink(1− qlink)k−1(1− r)
1− (1− r)(1− qlink)k

.

(D64)

Now, we can use Eq. (D64) in combination with Eq. (D32) to bound G. Because all terms in the sum of Eq. (D32)
are positive, we can write (analogously to Eq. (D58))

G(r1, r2, · · · , rM ) ≥
M+1∏
i=1

〈(
1− r̄i−1

)n1
(ci−ci−1)/(N−ci−1)

〉

≥
M+1∏
i=1

N−ci−1∏
k=N−ci+1

kqlink(1− qlink)k−1(1− r̄i−1)

1− (1− r̄i−1)(1− qlink)k

=

M∏
i=0

ci+1∏
k=ci+1

(N + 1− k)qlink(1− qlink)N−k(1− r̄i)
1− (1− r̄i)(1− qlink)N+1−k .

(D65)

This can be rewritten as

G(r1, r2, · · · , rM ) ≥
M∏
k=1

(N + 1− k)qlink(1− qlink)N−k
∏
ci<k

(1− ri)
1− (1− qlink)N+1−k∏

ci<k
(1− ri)

. (D66)

Appendix E: Expected Value of Distribution Time

In this appendix, we use the tools developed in Appendix D to prove the equation

〈
ni/N

〉
≈ 1

qlink

N∑
k=N+1−i

1

k
(E1)

is true up to leading order in qlink. Here, ni/N is the number of rounds required to distribute i Bell states over N
quantum connections. That is, it is the ith largest value out of {n1, n2, ..., nN}, where we remind the reader that each
nj is a geometrically-distributed random variable with mean 1

qlink
. Additionally, we provide the upper bound

〈
ni/N

〉
≤

N∑
k=N+1−i

1

1− (1− qlink)k
. (E2)

We note that it directly follows from Eq. (E1) that〈
nN/N

〉
≡ 〈nall〉 ≡ 〈max{n1, n2, ..., nN}〉 ≈

HN

qlink
, (E3)
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where HN is the N th harmonic number, is valid up to leading order in qlink. This is a well-known result [37, 76, 77].
Additionally, Eq. (E2) can be used to upper bound

〈
nN/N

〉
. However, the bound is less tight than the existing

bound given in Eq. (15).

We now explain the intuition behind Eq. (E1). If k > 1 connections try to establish entanglement, the first success
will occur sooner than when only one connection is trying. For one connection, the time it takes is on average 1

qlink

(this is the expected value of the geometric distribution). But when there are k connections trying, there is a “boost
factor”; entanglement is generated exactly k times faster, and therefore the time required is on average only 1

kqlink
. In

the limit qlink → 0, it is very unlikely that multiple Bell states are distributed during the same round, and therefore
one can repeatedly use this argument to go from success to success. The rest of this appendix is dedicated to proving
Eq. (E1), thereby making the intuitive argument exact.

1. Exact Recursion Relation

The random variable ni/N follows the probability distribution Pi/N defined in Eq. (D6). Key to deriving Eq. (E1),
is to determine the difference between

〈
n(i+1)/N

〉
and

〈
ni/N

〉
, as it allows us to write a recursion relation. To this

end, we first take the difference between their probability distributions. Using Eq. (D11) yields

P(i+1)/N − Pi/N =
N−i−1∑
k=0

i+1∑
l=1

P k+l
(k+i+1)/N −

N−i∑
k=0

i∑
l=1

P k+l
(k+i)/N

=

N−i∑
k=1

P k(k+i)/N −
i∑
l=1

P li/N

=

N−i∑
k=1

P k(k+i)/N − P
′
i/N .

(E4)

From linearity of the average, it then follows directly that

〈
n(i+1)/N

〉
−
〈
ni/N

〉
=

N−i∑
k=1

〈
nk(k+1)/N

〉
−
〈
n′i/N

〉
. (E5)

To evaluate Eq. (E5), we first give an expression for
〈
nk(k+1)/N

〉
. We use Eq. (D17) to write

〈
nji/N

〉
=

(
N − i+ j

j

)
qjlink(1− qlink)N−i

1− (1− qlink)N−i+j

∞∑
n=1

n−1∑
n′=0

nP1/(N−i+j)(n− n′)P ′(i−j)/N (n′). (E6)

This can be calculated by making the change of variables n = n′ + ∆n and using the fact that P1/(N−i+j)(n) is a
normalized probability distribution, giving〈

nji/N

〉
=

(
N − i+ j

j

)
qjlink(1− qlink)N−i

1− (1− qlink)N−i+j

∞∑
n′=0

∞∑
∆n=1

(n′ + ∆n)P1/(N−i+j)(∆n)P ′(i−j)/N (n′)

=

(
N − i+ j

j

)
qjlink(1− qlink)N−i

1− (1− qlink)N−i+j

( 〈
n1/(N−i+j)

〉
T(i−j)/N +

〈
n′(i−j)/N

〉)
.

(E7)

Here, we have defined

Ti/N ≡
∞∑
n=0

P ′i/N (n), (E8)

which is the total probability mass of the sub-normalized probability distribution P ′i/N (and therefore always smaller
than one). Then, resolving the summation in Eq. (E5) yields

N−i∑
k=1

〈
nk(k+1)/N

〉
=
( 〈
n1/(N−i)

〉
Ti/N +

〈
n′i/N

〉)N−i∑
k=1

(
N − i
k

)
qklink(1− qlink)N−i−k

1− (1− qlink)N−i
. (E9)
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To deal with the final summation, we use the binomial theorem to write

N−i∑
k=0

(
N − i
k

)
qklink(1− qlink)N−i−k =

(
qlink + (1− qlink)

)N−i
= 1. (E10)

Therefore,

N−i∑
k=1

(
N − i
k

)
qklink(1− qlink)N−i−k = 1− q0

link(1− qlink)N−i−0 = 1− (1− qlink)N−i (E11)

(note that the lower limit of the summation is one here as opposed to zero). From this, we conclude conveniently that

N−i∑
k=1

(
N − i
k

)
qklink(1− qlink)N−i−k

1− (1− qlink)N−i
= 1. (E12)

This brings Eq. (E5) into the form 〈
n(i+1)/N

〉
−
〈
ni/N

〉
=
〈
n1/(N−i)

〉
Ti/N . (E13)

This recursive relation can be written down in a closed form, as long as we leave the Ti/N explicit. We then find

〈
ni/N

〉
=
〈
n1/N

〉
+

i−1∑
k=1

Tk/N
〈
n1/N−k

〉
. (E14)

It was remarked in Section D2 that
〈
n1/N

〉
is geometrically distributed with 1/

〈
n1/N

〉
= 1− (1− qlink)N . Therefore,

we can also write this result at

〈
ni/N

〉
=

1

1− (1− qlink)N
+

i−1∑
k=1

Tk/N

1− (1− qlink)N−k
. (E15)

2. Upper Bound

Now, we use Eq. (E15) to derive an upper bound on
〈
ni/N

〉
. Because Ti/N is the total probability mass of a

sub-normalized probability function, we have Ti/N ≤ 1. From this, it follows directly that Eq. (E2) is true.

3. Leading Order

Finally, we use Eq. (E15) to show that Eq. (E1) is valid up to leading order in qlink. Because, to leading order,

1

1− (1− qlink)N
≈ 1

Nqlink
, (E16)

to leading order we can write Eq. (E15) as

〈
ni/N

〉
≈ 1

qlink

( 1

N
+

i−1∑
k=1

Tk/N

N − k

)
. (E17)

This exactly reduces to Eq. (E1) if we can show that Tk/N ≈ 1 to leading order in qlink.

To calculate Ti/N , we use yet another recursion relation. First, using Eq. (D10), we can write (for i ≥ 1)

Ti/N =

i∑
l=1

∞∑
n=1

P li/N (n). (E18)
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Then, using Eq. (D17), making once more the change in variables n→ n′+ ∆n, and making use of the normalization
of P1/N (n),

Ti/N =

i∑
l=1

(
N − i+ l

l

)
qllink(1− qlink)N−i

1− (1− qlink)N−i+l

∞∑
n=1

∞∑
n′=0

P1/(N−i+l)(n− n′)P ′(i−l)/N (n′)

=

i∑
l=1

(
N − i+ l

l

)
qllink(1− qlink)N−i

1− (1− qlink)N−i+l

∞∑
∆n=1

P1/(N−i+l)(∆n)

∞∑
n′=0

P ′(i−l)/N (n′)

=

i∑
l=1

(
N − i+ l

l

)
qllink(1− qlink)N−i

1− (1− qlink)N−i+l
T(i−l)/N .

(E19)

This recursion relation can be completely resolved if T0/N is known. From the definition of P ′0/N (Eq. (D14)), we
have

T0/N =

∞∑
n=0

δn,0 = 1. (E20)

Now we will resolve the recursion relation to leading order in qlink. We note that

(1− qlink)N−i

1− (1− qlink)N−i+l
=

1

(N − i+ l)qlink
+O(q0

link), (E21)

and therefore

Ti/N =
(

1 +O(qlink)
)
T(i−1)/N +

i∑
l=2

O(qlink)T(i−l)/N . (E22)

Thus,

Ti/N ≈ T(i−1)/N (E23)

to leading order. This holds for every i ≥ 1 until we hit T0/N = 1. Therefore,

Ti/N ≈ 1 (E24)

up to leading order in qlink. This is exactly what we needed to show, and therefore we can conclude that Eq. (E1) is
indeed valid up to leading order in qlink.
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