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We model a quantum sensor network using techniques from quantum state discrimination. The
interaction between a qubit detector and the environment is described by a unitary operator, and
we will assume that at most one detector does interact. The task is to determine which one does or
if none do. This involves choosing an initial state of the detectors and a measurement. We consider
global measurements in which all detectors are measured simultaneously. We find that an entangled
initial state can improve the detection probability, but this advantage decreases as the number of
detectors increases.

PACS numbers:

I. INTRODUCTION

The question of whether quantum mechanics can im-
prove the behavior of sensor networks is one that is at-
tracting considerable attention. It is known that it can
be used to improve the performance of individual detec-
tors, perhaps the most spectacular example being the use
of squeezed states to improve the sensitivity of the LIGO
gravitational wave detector. When there is a network
of detectors, new questions arise, in particular, whether
entanglement between the detectors can enhance the per-
formance of the network. The answers so far are mixed.

Previous work on quantum sensor networks has studied
the following problem. The detectors, which are quan-
tum systems, have, as a result of their interaction with
the environment, parameters, encoded in their state. In
all cases, these parameters have been taken to be contin-
uous variables. For example, these parameters could be
the strength of a magnetic field at different locations. We
would like to estimate these parameters or some function
of them. The detectors can be qubits [1, 2], continuous
variable systems [5], or general quantum systems [3]. It
has been found that for finite-dimensional systems, en-
tanglement of the quantum systems does not provide an
advantage in estimating the individual parameters, but
does provide an advantage in estimating a function of
them [1–4]. It has been shown that entangled states in
optical networks can provide an advantage for distributed
sensing [5, 7]. Further studies have investigated whether
linear optical networks with unentangled inputs can give
a quantum advantage in distributed metrology [6], and
whether continuous-variable error correction can be use-
ful in protecting a network of continuous-variable sensors
from the effects of noise [8].

Suppose that instead of determining a parameter, one
is interested in whether a detector has detected some-
thing or which detector has detected something. This
kind of problem is described by discrete rather than con-
tinuous variables, and is a problem in channel discrimi-
nation [9–15]. Each detector in a network can receive an
input or no input. For example, the detectors could be

designed to detect magnetic fields, and if a field is present
at the location of a detector, its state would be altered.
Another possibility is that weak coherent states or light
could be sent out and reflected back, and if a transpar-
ent medium were present in the path, the coherent state
received back would be different than if no medium were
present. Now suppose the unitary operator U describes
the interaction between an input and a detector, and that
only one detector in the network has received an input,
but we do not know which one. For example, U could
describe the rotation of a spin caused by a magnetic field,
or a phase shift induced in a state of light by a transpar-
ent object. The different output states of the detector
will be produced by U from one of the detectors and the
identity from the rest acting on the initial state of the
detectors. We then want to measure the output state
in order to determine which detector received an input.
This means that we have to optimize over both the initial
state of the detectors, and the final measurement. The
related problem of picking out a target quantum channel
from a background of identical channels has been ana-
lyzed by Zhuang and Pirandola, and useful bounds on
channel discrimination have been derived [16–18].

We will begin by analyzing a two-detector network.
We will look at two measurement schemes for the final
state of the detectors, minimum error and unambiguous.
Minimum error discrimination always returns an answer,
but the answer can be wrong. The probability of making
a mistake is, however, minimized. In unambiguous dis-
crimination, there are no errors, but measurements can
fail. Which scheme is used depends on the relative cost
of making a mistake versus receiving no answer. The
case in which one detector has interacted and the mea-
surement is of the minimum-error type can be solved by
using a method developed in [11]. We will also examine
the case in which either no detectors have interacted or
only one has, and our task is to decide which of these two
alternatives has occurred. We next look at N detectors.
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II. TWO DETECTORS

A. Finding which detector interacted

We have 2 detectors, each of which is a qubit, ini-
tially in the two-qubit state |ψ〉. One of the detectors
has its state altered by an interaction with the environ-
ment, and we would like to know which. That means we
wish to discriminate between the states |φ1〉 = (U⊗I)|ψ〉
and |φ2〉 = (I ⊗ U)|ψ〉, where the unitary operator, U ,
describes the interaction. This leads to two questions.
How should we choose |ψ〉 and how should we choose a
measurement to accomplish this optimally? This leads
us to a channel discrimination problem, where we wish
to discriminate between U ⊗ I and I ⊗ U .
There are two possible ways to approach this problem.

In general, the states (U ⊗ I)|ψ〉 and (I ⊗U)|ψ〉 will not
be orthogonal, which means they cannot be distinguished
perfectly. One possibility, minimum-error discrimination,
is to have the possibility of making a mistake, but to min-
imize the probability that this occurs. The probability
of succeeding in that case is [19]

P (min)
s =

1

2

(

1 +
√

1− |〈ψ|(U ⊗ U−1)|ψ〉|2
)

. (1)

Another, unambiguous discrimination, is to never make
a mistake, but to allow the measurement to sometimes
fail, that is, give no answer. In this case, one minimizes
the failure probability. The optimal state |ψ〉 for both
strategies is the one that minimizes |〈ψ|(U ⊗ U−1)|ψ〉|
[20].
Our two-detector problem is easy to solve, but its so-

lution illustrates some of the features we expect to see in
more elaborate situations [11]. Without loss of generality
we can suppose that the eigenvalues and eigenvectors of
U are U |u±〉 = e±iθ|u±〉. The eigenvalues of U ⊗ U−1

are then e2iθ, e−2iθ, and 1 (twice), and throughout this
paper we will take θ to be in the range −π/4 ≤ θ ≤ π/4.
We can express |ψ〉 as

|ψ〉 = c++|u+〉|u+〉+ c+−|u+〉|u−〉+ c−+|u−〉|u+〉
+c−−|u−〉|u−〉, (2)

and let

z = 〈ψ|(U ⊗ U−1)|ψ〉
= |c+−|2e2iθ + (|c++|2 + |c−−|2) + |c−+|2e−2iθ.(3)

The possible values of z lie in the triangle in C whose
vertices are e±2iθ and 1. The states that minimize
|〈ψ|(U ⊗ U−1)|ψ〉| correspond to the value of z that is
closest to the origin [11]. For 0 ≤ θ ≤ π/4, this implies
that z is on the line connecting e2iθ and e−2iθ on the real
axis. Therefore, c++ = c−− = 0, and |c+−| = |c−+|, so
we can choose as the optimal |ψ〉, for both strategies, the
entangled state

|ψ〉 = 1√
2
(|u+〉|u−〉+ |u−〉|u+〉). (4)

The optimal measurements are global ones, that is, both
qubits are measured together, not individually, and the
operators describing the measurements are proportional
to projections onto entangled states. This is true for both
the minimum-error and unambiguous strategies, though
the measurement operators are different in the two cases.
In the minimum-error case, the measurement operators
are orthogonal projections and are given by [20]

Π1 = |v1〉〈v1|
Π2 = |v2〉〈v2|. (5)

where

|v1〉 =
1√
2
(|u+〉|u−〉 − i|u−〉|u+〉)

|v2〉 =
1√
2
(|u+〉|u−〉+ i|u−〉|u+〉). (6)

The success probability, that is, the probability of getting
the right answer, is

P (min)
s =

2
∑

j=1

1

2
〈φj |Πj |φj〉 =

1

2
[1 + sin(2θ)], (7)

where we have assumed that the two states are equally
likely. Note that in this case the measurement operators
project onto entangled states and are independent of θ.
This latter property means that the same initial state
and measurement can be used to determine which detec-
tor has interacted with the environment for a range of
interaction strengths or times.
For unambiguous discrimination we are also discrimi-

nating between the states |φ1〉 = (U ⊗ I)|ψ〉 and |φ2〉 =
(I ⊗ U)|ψ〉, with |ψ〉 given by Eq. (4). In order to con-
struct the measurement operators for unambiguous dis-
crimination in the case 0 ≤ θ ≤ π/4, we need to define
the states

|φ⊥1 〉 =
1√
2
(eiθ|u+〉|u−〉 − e−iθ|u−〉|u+〉)

|φ⊥2 〉 =
1√
2
(e−iθ|u+〉|u−〉 − eiθ|u−〉|u+〉). (8)

Note that 〈φ⊥1 |φ1〉 = 0 and 〈φ⊥2 |φ2〉 = 0. The operator Π1

which corresponds to detecting |φ1〉, is Π1 = d|φ⊥2 〉〈φ⊥2 |,
for some constant d, and Π2 which corresponds to detect-
ing |φ2〉, is Π2 = d|φ⊥1 〉〈φ⊥1 |, where we are assuming the
states have the same failure probability. The operator
corresponding to the measurement failing is given by

Πf = I −Π1 −Π2, (9)

and the constant d is determined by the requirement that
it be the largest value for which this operator is positive.
The operator |φ⊥1 〉〈φ⊥1 | + |φ⊥2 〉〈φ⊥2 | has eigenvalues λ =
1± cos(2θ), which implies that

d =
1

1 + cos(2θ)
. (10)
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Consequently, we have

Π1 =
1

1 + cos(2θ)
|φ⊥2 〉〈φ⊥2 |

Π2 =
1

1 + cos(2θ)
|φ⊥1 〉〈φ⊥1 |. (11)

The probability of the measurement succeeding is

P (un)
s = 1− | cos(2θ)|. (12)

B. One or none

The measurements made and the initial state of the de-
tectors depends on the question asked. As an illustration,
let us continue to look at two detectors but ask a differ-
ent question. Suppose we are only interested in whether
one of the detectors has fired or neither has. We will
assume that the probability of neither firing is p0, that
each detector has an equal probability of firing, that the
probability of both firing is sufficiently small that it can
be neglected, and that the probability that one or the
other detector fires is p1 = 1 − p0. This can be summa-
rized by saying that we want to discriminate between the
density matrices

ρ0 = |ψ〉〈ψ|

ρ1 =
1

2
[(U ⊗ I)|ψ〉〈ψ|(U † ⊗ I)

+(I ⊗ U)|ψ〉〈ψ|(I ⊗ U †)], (13)

where |ψ〉 is the initial state of the detectors, and ρ0
occurs with probability p0 and ρ1 occurs with probability
p1. The optimal success probability for the minimum
error measurement in this more general case is given by

P (min)
s =

1

2
(1 + ‖Λ‖1) (14)

where Λ = p0ρ0 − p1ρ1 and the norm is the trace norm
[19].
We are now faced with the problem of choosing |ψ〉.

Our strategy will be to choose it so that the over-
lap between |ψ〉 and either of the states (U ⊗ I)|ψ〉
or (I ⊗ U)|ψ〉 is as small as possible. This makes the
states where one detector has interacted and the state in
which none have as distinguishable as possible. Setting
|ψ〉 = ∑

j,k=± cjk|uj〉|uk〉, we have

〈ψ|(U ⊗ I)|ψ〉 = (|c++|2 + |c+−|2)eiθ
+(|c−+|2 + |c−−|2)e−iθ

〈ψ|(I ⊗ U)|ψ〉 = (|c++|2 + |c−+|2)eiθ
+(|c+−|2 + |c−−|2)e−iθ. (15)

For a fixed θ, the magnitudes of both of these expressions
are minimized when all of the cjk are the same, so that
for |ψ〉 we choose the product state

|ψ〉 = 1

2
(|u+〉+ |u−〉)(|u+〉+ |u−〉). (16)

We now have to compute the trace norm of Λ, which
means we have to diagonalize it. Defining |v±〉 =

(1/
√
2)(|u+〉 ± |u−〉) we can express Λ in the basis

{|v+〉|v+〉, |v+〉|v−〉, |v−〉|v+〉}

Λ =





p0 − p1c
2 iscp1/2 iscp1/2

−iscp1/2 −p1s2/2 0
−iscp1/2 0 −p1s2/2



 , (17)

where c = cos θ and s = sin θ. From this we can find the
eigenvalues, and from them we find that the trace norm
is

‖Λ‖1 =
1

2

[

p21(1 + c2)2 + 4p20 + 4p0p1(1 − 3c2)
]1/2

+
p1s

2

2
.

(18)
For small values of θ, the success probability is most
sensitive to θ at p0 = p1 = 1/2. There we find that

Ps
∼= (1/2)[1+ (θ/

√
2)]. Once we get away from equality

for the probabilities, the leading term in θ is quadratic
rather than linear. Note that this implies that the mea-
surement gives us the most information in the case in
which the classical information is least; if p0 = p1 = 1/2,
then a priori we have no information about which alter-
native occurred, and this is where the measurement helps
the most.
Note that this means that a given detector array can

be flexible. The physical array can remain the same, but
the best measurement and initial stated depend on the
desired question being asked.

III. N DETECTORS

A. Finding which detector interacted

Now let us look at the case ofN detectors, and initially
we will assume that only one has registered something,
and we want to find out which one. We are going to as-
sume that the state to which the detectors will be applied
is a symmetric state. A symmetric multi-qubit state is
one that is invariant under permutations of the qubits.
Our Hilbert space has a basis consisting of products of
N qubit states, where each qubit is in the state |u+〉 or
|u−〉. Now let |k;N〉 be a normalized state of N qubits
that is an equal superposition of all the basis elements
with k |u+〉 states. If our initial state is |k;N〉, the de-
tector states are given by the application of the operators
Fn = I⊗(n−1)⊗U⊗I⊗(N−n) to |k;N〉. The inner product
between two different detector states is

〈k;N |F †
nFm|k;N〉 = 1− 1

N(N − 1)
(2k)(N−k)(1−cos 2θ).

(19)
Note that this does not depend on m and n. As a func-
tion of k this is a minimum when k = N/2 for N even
and k = (N − 1)/2 (or (N + 1)/2) for N odd. This sug-
gests that among the states |k;N〉, this choice for k is the
best, because the resulting detector states are the most
distinguishable.
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It is useful to compare this choice of |ψ〉 to one that is
simply a product state,

|ψsep〉 =
(

1

2

)N/2

(|u+〉+ |u−〉)⊗N . (20)

In that case, we find that

〈ψsep|F †
nFm|ψsep〉 = 1− 1

2
(1− cos 2θ). (21)

Comparing this to Eq. (19) with N even and k = N/2
(see Eq. (22) below), we see that the inner product is
smaller for the entangled state, but this difference goes
to zero as N increases. That means the states resulting
from an initial entangled state are more distinguishable,
but it also suggests that the advantage of using entangled
states is greatest for a small number of detectors.
We are then reduced to the problem of discriminat-

ing a set of states any two of which have the same in-
ner product. Using the pretty-good measurement, this
problem has been solved in [21]. Adopting the nota-
tion in that paper, and assuming for simplicity that N
is even, let |Ej〉 = Fj |(N/2);N〉, for j = 1, 2, . . .N and

|H〉 = (1/N)
∑N

j=1 |Ej〉. Note that for j 6= k,

〈Ej |Ek〉 = 1− N

2(N − 1)
(1− cos 2θ). (22)

Define

r0 = 〈Ej |H〉 = 〈H |H〉 = 1

2
(1 + cos 2θ)

r1 = r0 − 〈Ej |Ek〉 for j 6= k

=
1

2(N − 1)
(1− cos 2θ), (23)

which allows us to write

〈Ej |Ek〉 = r0 − r1 + δjkNr1. (24)

In addition, we will need the orthonormal set ofN vectors

|ej〉 =
1√
Nr1

(|Ej〉 − |H〉) + 1√
Nr0

|H〉. (25)

The results in [21] yield the POVM operators Πj =
|ej〉〈ej | and the success probability

Ps =
1

N
(
√
r0 + (N − 1)

√
r1)

2

=
1

N

[

1 +
1

2
(N − 2)(1− cos 2θ) +

√
N − 1| sin 2θ|

]

.

(26)

In the large N limit, this goes to (1/2)(1− cos 2θ). If we
instead use the separable state, |ψsep〉, we find

r0 =
1

N
+
N − 1

2N
(1 + cos 2θ)

r1 =
1

2N
(1− cos 2θ), (27)

and the success probability for the separable state is

P (sep)
s =

1

N

{

1 +
(N − 1)(N − 2)

2N
(1− cos 2θ)

=
N − 1√
N

[sin2 2θ + (1/N)(1− cos 2θ)2]1/2
}

.(28)

We can compare the results of entangled and separable
states by looking first at a small N case, in particular
N = 2. We find

Ps =
1

2
(1 + | sin 2θ|)

P (sep)
s =

1

2

{

1 +
1√
2
[sin2 2θ + (1/2)(1− cos 2θ)2]1/2

}

,

(29)

(the success probability without the superscript is the
one from the entangled state) and we can verify that

Ps ≥ P
(sep)
s . In the large N limit, the difference between

the two goes to zero, in particular,

Ps → 1

2
(1− cos 2θ) +

1√
N

| sin 2θ|

+
1

N
− 1

N
(1− cos 2θ)

P (sep)
s → 1

2
(1− cos 2θ) +

1√
N

| sin 2θ|

+
1

N
− 3

2N
(1 − cos 2θ), (30)

where both expressions contain terms up to order 1/N .
Returning to the entangled state case, for unambiguous

discrimination, we define the vectors

|ēj〉 = |ej〉+
t− 1√
Nr0

|H〉, (31)

where 1 ≥ r0 > (1/N) > r1 and t =
√

r1/r0. The POVM
elements are Πj = |ēj〉〈ēj |, and the failure probability is

Pf =
Nr0 − 1

N − 1
= 1− N(1− cos 2θ)

2(N − 1)
, (32)

which goes to (1/2)(1 + cos 2θ) for N large.

B. Adding the no-interaction state

It is possible to add an additional state in the case
where the measurement can make errors. In particu-
lar, we will add the state in which no detectors fire,
|E0〉 = |(N/2);N〉. This cannot be done in the case
of unambiguous discrimination, because for that to be
possible, the states must be linearly independent. The
state |E0〉 is in the space, HE , spanned by the states
|Ej〉 = Fj |(N/2);N〉, j = 1, 2, . . .N . A short calculation

shows that
∑N

j=1 |〈ej |E0〉|2 = 1 and that

|E0〉 =
1 + e−iθ

2
√
r0

|H̃〉, (33)
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where |H̃〉 = (1/
√
r0)|H〉 is a normalized version of |H〉

(note that here r0 and r1 are given by Eq. (23)). We
will assume that the probability of no detectors firing is
p and that the probability of each of the detectors firing
is (1− p)/N . We will exclude the case of more than one
detector firing.

In order to find the POVM and success probability, we
will make use of the pretty-good measurement [22]. This
does not necessarily give an optimal measurement to dis-
criminate states, but it does give, as its name implies, a
pretty good measurement. If the states to be discrim-
inated are |φj〉, j = 1, 2, . . .M , where |φj〉 occurs with
probability pj, then the POVM elements are

Πj = pjρ
−1/2|φj〉〈φj |ρ−1/2, (34)

where ρ =
∑M

j=1 pj |φj〉〈φj |. In our case

ρ = p|H̃〉〈H̃ |+ 1− p

N

N
∑

j=1

|Ej〉〈Ej |

= [p+ (1− p)r0]|H̃〉〈H̃ |+ (1− p)r1P,

where P is the projection onto the subspace in HE or-
thogonal to |H̃〉. Defining

D0 =
1

[p+ (1− p)r0]1/2

D1 =
1

[(1 − p)r1]1/2
, (35)

we have that

ρ−1/2 = D0|H̃〉〈H̃ |+D1P

ρ−1/2|H̃〉 = D0|H̃〉
ρ−1/2|Ej〉 =

√
r0(D0 −D1)|H̃〉+D1|Ej〉. (36)

From these, we can construct the POVM

Π0 = pρ−1/2|H̃〉〈H̃ |ρ−1/2

Πj =
1− p

N
ρ−1/2|Ej〉〈Ej |ρ−1/2, (37)

and the success probability

Ps = p〈E0|Π0|E0〉+
1− p

N

N
∑

j=1

〈Ej |Πj |Ej〉

= p2D2
0 +

(1− p)2

N
(r0D0 + (1− r0)D1)

2. (38)

In the large N limit this becomes

Ps →
1

2
(1−p)(1− cos 2θ)+

p2

p+ (1/2)(1− p)(1 + cos 2θ)
.

(39)

IV. CONCLUSION

Two key issues in the study of quantum detector net-
works are the nature of the best measurements to gain
information about the question at hand and the nature of
the best initial state of the detectors. In particular, when
is an entangled state best? As noted in the Introduction,
in the case of parameter estimation, entanglement did not
provide an advantage is estimating parameters associated
with individual detectors, but did when estimating pa-
rameters associated with several detectors, for example,
the sum of parameters for individual detectors. We stud-
ied a different problem, and we have presented a model
of a detector network as a set of detectors that either
do, or don’t interact with the environment. Assuming at
most one detector does interact, we wish to determine
which detector has interacted. As noted, there are two
aspects to this problem. The first is choosing the initial
state of the detectors. In the case of two detectors, the
problem can be solved completely, and an entangled ini-
tial state is optimal. For more than two detectors, some
assumptions are in order, because exact solutions are not
known. We looked at the case of separable and entangled
initial states and found that the entangled state gave an
advantage, but its advantage decreased as the number of
detectors increased. Since entangled states are harder to
produce than separable ones, this suggests that for small
numbers of detectors the use of an entangled initial state
is worth the cost, but for larger numbers it is not. The
second aspect is choosing the measurement. We consid-
ered global measurements in which all of the detectors are
measured at once, and we made use of the pretty-good
measurement to find a POVM and the success proba-
bility. We found that the success probability went to a
finite limit as the number of detectors becomes large. If
we simply guessed which detector interacted, our proba-
bility of success would be 1/N , which goes to zero in the
large N limit, so the measurement is a major improve-
ment over the guessing result. In the case in which the
no-interaction state is included, for p > 1/(N + 1) the
guess probability is just p (just guess the most probable
state), and the success probability of the measurement is
greater. If p < 1/(N+1), the guess probability is between
1/N and 1/(N + 1), which goes to zero in the large N
limit, while the success probability of the measurement
goes to a constant.

In regard to the role of entanglement, we find that
whether it gives an advantage depends on the question
being asked and on the circumstances. In the case of de-
termining whether one of two detectors has interacted or
neither has, entanglement does not seem to help, whereas
if one is trying to determine which of two detectors has
interacted it does. For more than two detectors, there is
an advantage, but it decreases as the number of detectors
increases. This suggests that it would be worthwhile to
study other other situations, for example dividing the de-
tectors into sets and trying to determine in which set an
interacting detector is located. Does entanglement help
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here? This is reserved for future work.
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M. G. A. Paris and J. Řehaček (Springer Verlag, Berlin,
2004), and S. M. Barnett and S. Croke, Advances in Op-
tics and Photonics 1, 238 (2009) and arXiv:0810.1970.

[21] B. G. Englert and J. Řehaček, J. Mod. Opt. 57, 218
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