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This paper establishes single-letter formulas for the exact entanglement cost of simulating quan-
tum channels under free quantum operations that completely preserve positivity of the partial trans-
pose (PPT). First, we introduce the κ-entanglement measure for point-to-point quantum channels,
based on the idea of the κ-entanglement of bipartite states, and we establish several fundamental
properties for it, including amortization collapse, monotonicity under PPT superchannels, addi-
tivity, normalization, faithfulness, and non-convexity. Second, we introduce and solve the exact
entanglement cost for simulating quantum channels in both the parallel and sequential settings,
along with the assistance of free PPT-preserving operations. In particular, we establish that the
entanglement cost in both cases is given by the same single-letter formula, the κ-entanglement mea-
sure of a quantum channel. We further show that this cost is equal to the largest κ-entanglement
that can be shared or generated by the sender and receiver of the channel. This formula is calculable
by a semidefinite program, thus allowing for an efficiently computable solution for general quantum
channels. Noting that the sequential regime is more powerful than the parallel regime, another no-
table implication of our result is that both regimes have the same power for exact quantum channel
simulation, when PPT superchannels are free. For several basic Gaussian quantum channels, we
show that the exact entanglement cost is given by the Holevo–Werner formula [Holevo and Werner,
Phys. Rev. A 63, 032312 (2001)], giving an operational meaning of the Holevo-Werner quantity for
these channels.

I. INTRODUCTION

A. Background

Quantum entanglement, the most nonclassical mani-
festation of quantum mechanics, has found use in a vari-
ety of physical tasks in quantum information processing,
quantum cryptography, thermodynamics, and quantum
computing [1]. A natural and fundamental problem is to
develop a theoretical framework to quantify and describe
it. In spite of remarkable recent progress in the resource
theory of entanglement (for reviews see, e.g., [1, 2]), many
fundamental challenges have remained open.

One of the most important aspects of the resource the-
ory of entanglement consists of the interconversions of
states, with respect to a class of free operations. In par-
ticular, the problem of entanglement dilution [3] asks:
given a target bipartite state ρAB and a canonical unit
of entanglement represented by the Bell state (or ebit)

Φ2 ≡ |Φ2〉〈Φ2|, where |Φ2〉 = (|00〉 + |11〉)/
√

2, what is
the minimum rate at which we can produce copies of ρAB
from copies of Φ2 under a chosen set of free operations?

The entanglement cost [4] was introduced to quantify
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the minimal rate R of converting Φ⊗nR2 to ρ⊗nAB with
an arbitrarily high fidelity in the limit as n becomes
large. When local operations and classical communi-
cation (LOCC) are allowed for free, the authors of [5]
proved that the entanglement cost is equal to the regu-
larized entanglement of formation [4]. When the free op-
erations consist of quantum operations that completely
preserve positivity of the partial transpose (the PPT-
preserving operations of [6, 7]), it is known that the en-
tanglement cost is not equal to the regularized entangle-
ment of formation [8–10].

The exact entanglement cost [8] is an alternative and
natural way to quantify the cost of entanglement dilution,
being defined as the smallest asymptotic rate R at which
Φ⊗nR2 is required in order to reproduce ρ⊗nAB exactly.
The exact entanglement cost under PPT-preserving op-
erations (PPT entanglement cost) was introduced and
solved for a large class of quantum states in [8], but it has
hitherto remained unknown for general quantum states
until the recent solutions in [11, 12] (note that [12] is a
companion paper of the original announcement in [11]).

The above resource-theoretic problems can alterna-
tively be phrased as simulation problems: How many
copies of Φ2 are needed to simulate n copies of a given
bipartite state ρAB? As discussed above, the simulation
can be either approximate, such that a verifier has lit-
tle chance of distinguishing the simulation from the ideal
case, while it can also be exact, such that a verifier has
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no chance at all for distinguishing the simulation from
the ideal case.

With this perspective, it is also natural to consider the
simulation of a quantum channel, when allowing some
set of operations for free and metering the entanglement
cost of the simulation. The authors of [13] defined the
entanglement cost of a channel to be the smallest rate
R at which Φ⊗nR2 is needed, along with the free assis-
tance of LOCC, in order to simulate the channel N⊗n,
in such a way that a verifier would have little chance of
distinguishing the simulation from the ideal case of N⊗n.
In [13], it was shown that the regularized entanglement
of formation of the channel is equal to its entanglement
cost, thus extending the result of [5] in a natural way.

In a recent work [14], it was observed that the chan-
nel simulation task defined in [13] is actually a partic-
ular kind of simulation, called a parallel channel simu-
lation. The paper [14] then defined an alternative no-
tion of channel simulation, called sequential channel sim-
ulation, in which the goal is to simulate n uses of the
channel N in such a way that the most general verifi-
cation strategy would have little chance of distinguish-
ing the simulation from the ideal n uses of the channel.
Although a general formula for the entanglement cost in
this scenario was not found, it was determined for several
key channel models, including erasure, dephasing, three-
dimensional Holevo–Werner, and single-mode pure-loss
and pure-amplifier bosonic Gaussian channels.

B. Summary of results

In this paper, we solve significant questions in the
resource theory of entanglement, one of which has re-
mained open since the inception of entanglement theory
over two decades ago. Namely, we prove that the exact
PPT-entanglement cost for quantum channels has an ef-
ficiently computable, single-letter formula, reflecting the
fundamental entanglement structure of bipartite quan-
tum states and channels. Along with this claim, we prove
that the exact parallel and sequential entanglement costs
of quantum channels are given by the same efficiently
computable, single-letter formula.

We note here that all of our results apply to the re-
source theory of NPT (non-positive partial transpose)
entanglement, introduced in [6, 7] and considered in [8],
rather than to the more standard resource theory of en-
tanglement, as introduced in [4]. The key difference
is that the free operations allowed here are completely
PPT-preserving (C-PPT-P) operations, whereas the free
operations allowed in the standard resource theory are
LOCC. Since LOCC is contained in the set of C-PPT-
P operations, the operational quantities considered here
provide bounds on operational quantities in the standard
resource theory.

Our paper is structured as follows. We first introduce
the κ-entanglement measure of a bipartite state and re-
view its desirable properties [15], including monotonic-

ity under completely-PPT-preserving channels, additiv-
ity, normalization, faithfulness, non-convexity, and non-
monogamy. For finite-dimensional states, it is also effi-
ciently computable by means of a semi-definite program.
In particular, the κ-entanglement is equal to the exact en-
tanglement cost of a quantum state. We further evaluate
the κ-entanglement (and the exact entanglement cost)
for several bipartite states of interest (cf. Section II B),
including isotropic states, Werner states, maximally cor-
related states, some states supported on the 3 × 3 anti-
symmetric subspace, and all bosonic Gaussian states.

In Section III, we extend the κ-entanglement measure
from bipartite states to point-to-point quantum channels.
We prove that it also satisfies several desirable properties,
including non-increase under amortization, monotonic-
ity under a class of PPT superchannels, additivity, nor-
malization, faithfulness, and non-convexity. For finite-
dimensional channels, it is also efficiently computable by
means of a semi-definite program.

In Section IV, we prove that the κ-entanglement of
channels has a direct operational meaning as the entan-
glement cost of both parallel and sequential channel sim-
ulation. Thus, the theory of channel simulation signifi-
cantly simplifies for the setting in which completely-PPT-
preserving channels are allowed for free. In addition to all
of the properties that it satisfies, this operational inter-
pretation solidifies the κ-entanglement of a channel as a
foundational measure of the entanglement of a quantum
channel.

As a last contribution of this paper (cf., Sections V
and VI), we evaluate the κ-entanglement (and exact en-
tanglement cost) of several important channel models,
including erasure, depolarizing, dephasing, and ampli-
tude damping channels. We also leverage recent results
in the literature [16], regarding the teleportation simula-
tion of bosonic Gaussian channels, in order to evaluate
the κ-entanglement and exact entanglement cost for sev-
eral fundamental bosonic Gaussian channels. We remark
that these latter results provide a direct operational in-
terpretation of the Holevo–Werner quantity [17] for these
channels.

Finally, we conclude with a summary and some open
questions.

II. κ-ENTANGLEMENT MEASURE AND
EXACT ENTANGLEMENT COST OF QUANTUM

STATES

A. κ-entanglement measure and its operational
meaning

We first recall an entanglement measure called the κ-
entanglement measure for a bipartite state, which was
introduced and analyzed in the original arXiv version
of this paper in 2018 and published in the companion
paper [12]. Here, we review the important properties of
this entanglement measure and its operational meaning
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as the exact entanglement cost.

Definition 1 (κ-entanglement measure [12]) Let
ρAB be a bipartite state acting on a separable Hilbert
space. The κ-entanglement measure is defined as follows:

Eκ(ρAB) := inf
SAB≥0

{log TrSAB : −STBAB ≤ ρTBAB ≤ STBAB}.
(1)

In the case that the state ρAB acts on a finite-
dimensional Hilbert space, then Eκ(ρAB) is calculable by
a semi-definite program, and it is thus efficiently com-
putable with respect to the dimension of the Hilbert
space. Throughout this paper, we consider completely-
PPT-preserving operations [6, 7], defined as a bipartite
operation PAB→A′B′ (completely positive map) such that
the map TB′ ◦PAB→A′B′ ◦TB is also completely positive,
where TB and TB′ denote the partial transpose map act-
ing on the input system B and the output system B′,
respectively. If PAB→A′B′ is also trace preserving, such
that it is a quantum channel, and TB′ ◦ PAB→A′B′ ◦ TB
is also completely positive, then we say that PAB→A′B′
is a completely-PPT-preserving channel.

Monotonicity under completely-PPT-
preserving channels. The most important property
of the κ-entanglement measure is that it does not in-
crease under the action of a completely-PPT-preserving
channel. Note that an LOCC channel [4, 18], as
considered in entanglement theory, is a special kind
of completely-PPT-preserving channel, as observed in
[6, 7].

Theorem 1 (Monotonicity [12]) Let ρAB be a quan-
tum state acting on a separable Hilbert space, and
let {PxAB→A′B′}x be a set of completely positive, trace
non-increasing maps that are each completely PPT-
preserving, such that the sum map

∑
x PxAB→A′B′ is

quantum channel. Then the following entanglement
monotonicity inequality holds

Eκ(ρAB) ≥
∑

x : p(x)>0

p(x)Eκ

(PxAB→A′B′(ρAB)

p(x)

)
, (2)

where p(x) := TrPxAB→A′B′(ρAB). In particular, for a
completely-PPT-preserving quantum channel PAB→A′B′ ,
the following inequality holds

Eκ(ρAB) ≥ Eκ(PAB→A′B′(ρAB)) . (3)

Dual representation and additivity. The opti-
mization problem dual to Eκ(ρAB) in Definition 1 is as
follows:

Edual
κ (ρAB) := sup

V
TB
AB ,W

TB
AB≥0

{log Tr ρAB(VAB −WAB) :

VAB +WAB ≤ 1AB}, (4)

which can be found by the Lagrange multiplier method
(see, e.g., [19, Section 1.2.2]). By weak duality [19, Sec-
tion 1.2.2], we have for every bipartite state ρAB acting

on a separable Hilbert space that

Edual
κ (ρAB) ≤ Eκ(ρAB). (5)

For all finite-dimensional states ρAB , strong duality
holds, so that

Eκ(ρAB) = Edual
κ (ρAB). (6)

This follows as a consequence of Slater’s theorem. By
employing the strong duality equality in (6) for the finite-
dimensional case, along with the approach from [20], we
conclude that the following equality holds for all bipartite
states ρAB acting on a separable Hilbert space:

Eκ(ρAB) = Edual
κ (ρAB). (7)

We provide an explicit proof of (7) in Appendix A. Both
the primal and dual SDPs for Eκ are important, as the
combination of them allows for proving the following ad-
ditivity of Eκ with respect to tensor-product states.

Proposition 2 (Additivity [12]) For all bipartite
states ρAB and ωA′B′ acting on separable Hilbert spaces,
the following additivity identity holds

Eκ(ρAB ⊗ ωA′B′) = Eκ(ρAB) + Eκ(ωA′B′). (8)

Relation to logarithmic negativity. There is an
inequality relating Eκ to the logarithmic negativity [21,
22], defined as

EN (ρAB) := log
∥∥∥ρTBAB∥∥∥

1
. (9)

Let ρAB be a bipartite state acting on a separable Hilbert
space. Then

Eκ(ρAB) ≥ EN (ρAB). (10)

If ρAB satisfies the binegativity condition

|ρTBAB |TB ≥ 0, (11)

then

Eκ(ρAB) = EN (ρAB). (12)

Normalization. Eκ is normalized on maximally
entangled states, and for finite-dimensional states, it
achieves its largest value on maximally entangled states.

Proposition 3 (Normalization [12]) Let ΦMAB be a
maximally entangled state of Schmidt rank M . Then

Eκ(ΦMAB) = logM. (13)

Furthermore, for every bipartite state ρAB, the following
bound holds

Eκ(ρAB) ≤ log min{dA, dB}, (14)

where dA and dB denote the dimensions of systems A
and B, respectively.



4

Faithfulness. Eκ is faithful, in the sense that it is
non-negative and equal to zero if and only if the state
is a PPT state. To be specific, the following proposition
holds.

Proposition 4 (Faithfulness [12]) For a state ρAB
acting on a separable Hilbert space, we have that
Eκ(ρAB) ≥ 0 and Eκ(ρAB) = 0 if and only if ρTBAB ≥ 0.

No convexity. The κ-entanglement measure is not
generally convex. Due to (12) and the fact that the bineg-
ativity condition in (11) holds for every two-qubit state
[23], the non-convexity of Eκ boils down to finding a two-
qubit example for which the logarithmic negativity is not
convex. In particular, let us choose the two-qubit states

ρ1 = Φ2, ρ2 =
1

2
(|00〉〈00|+ |11〉〈11|), (15)

and their average ρ = 1
2 (ρ1 + ρ2). By direct calculation,

we have

Eκ(ρ) >
1

2
(Eκ(ρ1) + Eκ(ρ2)), (16)

which implies that the κ-entanglement is not convex.
No monogamy. If an entanglement measure E

is monogamous [24–26], then the following inequality
should be satisfied for every tripartite state ρABC :

E(ρAB) + E(ρAC) ≤ E(ρA(BC)), (17)

where the entanglement in E(ρA(BC)) is understood to
be with respect to the bipartite cut between systems A
and BC. It is known that some entanglement measures
satisfy the monogamy inequality above [24, 26]. How-
ever, the κ-entanglement measure is not generally monog-
amous. Consider a state |ψ〉〈ψ|ABC of three qubits, where

|ψ〉ABC = 1
2 (|000〉ABC + |011〉ABC +

√
2|110〉ABC). Due

the fact that |ψ〉ABC can be written as

|ψ〉ABC = [|0〉A ⊗ |Φ〉BC + |1〉A ⊗ |10〉BC ]/
√

2, (18)

where |Φ〉BC = [|00〉BC + |11〉BC ]/
√

2, this state is lo-
cally equivalent to |Φ〉AB ⊗ |0〉C with respect to the bi-
partite cut A|BC. One then finds that Eκ(ψA(BC)) =
Eκ(ΦAB) = EN (ΦAB) = 1. Furthermore, we have
that Eκ(ψAB) = EN (ψAB) = log 3

2 , and Eκ(ψAC) =

EN (ψAC) = log 3
2 , which implies that

Eκ(ψAB) + Eκ(ψAC) > Eκ(ψA(BC)). (19)

κ-entanglement measure is equal to the exact
PPT-entanglement cost. The κ-entanglement of a bi-
partite state is equal to its exact entanglement cost, when
completely-PPT-preserving channels are allowed for free.
Let Ω represent a set of free channels, which can be either
LOCC or PPT. The one-shot exact entanglement cost of
a state ρAB , under the Ω channels, is defined as

E
(1)
Ω (ρAB) = inf

Λ∈Ω

{
log d : ρAB = ΛÂB̂→AB(Φd

ÂB̂
)
}
,

(20)

where Φd
ÂB̂

= [1/d]
∑d
i,j=1 |ii〉〈jj|ÂB̂ represents the stan-

dard maximally entangled state of Schmidt rank d. The
exact entanglement cost of a bipartite state ρAB , under
the Ω operations, is defined as

EΩ(ρAB) = lim sup
n→∞

1

n
E

(1)
Ω (ρ⊗nAB). (21)

The exact entanglement cost under LOCC operations
was previously considered in [10, 27–29], while the exact
entanglement cost under PPT operations was considered
in [8, 30].

In [8], the following bounds were given for EPPT:

EN (ρAB) ≤ EPPT(ρAB) ≤ logZ(ρAB), (22)

the lower bound being the logarithmic negativity recalled
in (9), and the upper bound defined as

Z(ρAB) := Tr |ρTBAB |+dim(ρAB) max{0,−λmin(|ρTBAB |TB )}.
(23)

Due to the presence of the dimension factor dim(ρAB),
the upper bound in (22) clearly only applies in the case
that ρAB is finite-dimensional.

In what follows, we first recast E
(1)
PPT(ρAB) as an opti-

mization problem, by building on previous developments

in [8, 30]. After that, we bound E
(1)
PPT(ρAB) in terms of

Eκ, by observing that Eκ is a relaxation of the optimiza-

tion problem for E
(1)
PPT(ρAB). We then finally prove that

EPPT(ρAB) is equal to Eκ.

Theorem 5 ([12]) Let ρAB be a bipartite state acting
on a separable Hilbert space. Then the one-shot exact

PPT-entanglement cost E
(1)
PPT(ρAB) is given by the fol-

lowing optimization:

E
(1)
PPT(ρAB) = inf

{
log2m :

− (m− 1)GTBAB ≤ ρTBAB ≤ (m+ 1)GTBAB ,

GAB ≥ 0, TrGAB = 1
}
. (24)

Theorem 6 (Operational meaning [12]) Let ρAB be
a bipartite state acting on a separable Hilbert space. Then
the exact PPT-entanglement cost of ρAB is given by

EPPT(ρAB) = Eκ(ρAB). (25)

Note that Theorem 6 constitutes a significant develop-
ment for entanglement theory, representing the first time
that it has been shown that an entanglement measure is
not only efficiently computable but also possesses a di-
rect operational meaning. In the work of [31, 32], it was
established that the regularized relative entropy of entan-
glement is equal to the entanglement cost and distillable
entanglement of a bipartite quantum state, with the set
of free operations being asymptotically non-entangling
maps. However, in spite of the fact that the work of
[31, 32] gave a direct operational meaning to the regular-
ized relative entropy of entanglement, this entanglement
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measure arguably has limited application beyond being a
formal expression, due to the fact that there is no known
efficient procedure for computing it.

Furthermore, in prior work, most discussions about the
structure and properties of entanglement are based on en-
tanglement measures. However, none of these measures,
with the exception of the regularized relative entropy
of entanglement, possesses a direct operational meaning.
Thus, the connection made by Theorem 6 allows for the
study of the structure of entanglement via an entangle-
ment measure possessing a direct operational meaning.
Given that Eκ = EPPT is neither convex nor monoga-
mous, this raises questions of whether these properties
should really be required or necessary for measures of
entanglement, in contrast to the discussions put forward
in [1, 25] based on intuition. Furthermore, Eκ is additive
(Proposition 2), so that Theorem 6 implies that EPPT is
additive as well:

EPPT(ρAB⊗ωA′B′) = EPPT(ρAB)+EPPT(ωA′B′). (26)

Thus, EPPT is the only known example of an operational
quantity in entanglement theory for which the optimal
rate is additive as a function of general quantum states.

B. Exact entanglement cost of particular bipartite
states

To have a better understanding of exact entanglement
cost, we evaluate the exact entanglement cost for par-
ticular bipartite states of interest, including isotropic
states [33], Werner states [34], maximally correlated
states [6, 7], some states supported on the 3 × 3 anti-
symmetric subspace, and bosonic Gaussian states [35].
For the isotropic and Werner states, the exact PPT-
entanglement cost was already determined [8, 10], and
so we recall these developments here.

Let A and B be quantum systems, each of dimension d.
For t ∈ [0, 1] and d ≥ 2, an isotropic state is defined as
follows [33]:

ρ
(t,d)
AB := tΦdAB + (1− t)1AB − ΦdAB

d2 − 1
. (27)

An isotropic state is PPT if and only if t ≤ 1/d. It

was shown in [10, Exercise 8.73] that ρ
(t,d)
AB satisfies the

binegativity condition: |(ρ(t,d)
AB )TB |TB ≥ 0. By applying

(22), this implies that

EPPT(ρ
(t,d)
AB ) = EN (ρ

(t,d)
AB ) (28)

=

{
log dt if t > 1

d

0 if t ≤ 1
d ,

(29)

with the second equality shown in [10, 36].
Let A and B be quantum systems, each of dimension d.

A Werner state is defined for p ∈ [0, 1] as [34]

W
(p,d)
AB := (1− p) 2

d (d+ 1)
ΠSAB + p

2

d (d− 1)
ΠAAB , (30)

where ΠSAB := (1AB + FAB) /2 and ΠAAB :=
(1AB − FAB) /2 are the projections onto the symmet-
ric and antisymmetric subspaces of A and B, respec-
tively, with FAB denoting the swap operator. A Werner
state is PPT if and only if p ≤ 1/2. It was shown

in [8] that W
(p,d)
AB satisfies the binegativity condition:

|(W (p,d)
AB )TB |TB ≥ 0. By applying (22), this implies

that [8]

EPPT(W
(p,d)
AB ) = EN (W

(p,d)
AB ) (31)

=

{
log
[

2
d (2p− 1) + 1

]
if p > 1/2

0 if p ≤ 1/2,

(32)

with the second equality shown in [10, 36].
A maximally correlated state is defined as [6, 7]

ρcAB :=

d−1∑
i,j=0

cij |ii〉〈jj|, (33)

with the complex coefficients c := {cij}i,j being chosen

such that
∑d−1
i,j=0 cij |i〉〈j| is a legitimate quantum state.

Noting that (ρcAB)TB =
∑d−1
i,j=0 cij |ij〉〈ji|, a direct calcu-

lation reveals that

|(ρcAB)TB | =
d−1∑
i,j=0

|cij ||ij〉〈ij|. (34)

Considering that |(ρcAB)TB |TB = |(ρcAB)TB | ≥ 0, we have
that

EPPT(ρcAB) = EN (ρcAB) = log

∑
i,j

|cij |

 . (35)

The maximally correlated state ω̂α was considered re-
cently in [29]:

ω̂αAB := αΦ2
AB +

1− α
2

(|00〉〈00|AB + |11〉〈11|AB) (36)

=
α

2
|00〉〈11|AB +

α

2
|11〉〈00|AB

+
1

2
|00〉〈00|AB +

1

2
|11〉〈11|AB , (37)

where α ∈ [0, 1]. The authors of [29] showed that the
exact entanglement cost under LOCC is bounded as⌊

1

log(α+ 1)

⌋−1

≥ ELOCC(ω̂αAB) ≥ log(α+ 1), (38)

for 0 < α <
√

2 − 1. However, under PPT-preserving
operations, by (35), it holds that

EPPT(ω̂αAB) = log(α+ 1). (39)

for α ∈ [0, 1]. This demonstrates that the lower bound
in (38) can be understood as arising from the fact that
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the inequality ELOCC ≥ EPPT generally holds for an ar-
bitrary bipartite state.

The next example indicates the irreversibility of exact
PPT entanglement manipulation, and it also implies that
EPPT is generally not equal to the logarithmic negativity
EN . Consider the following rank-two state supported on
the 3× 3 antisymmetric subspace [37]:

ρv =
1

2
(|v1〉〈v1|+ |v2〉〈v2|), (40)

with |v1〉 = (|01〉− |10〉)/
√

2 and |v2〉 = (|02〉− |20〉)/
√

2.
For the state ρv, it holds that

Rmax(ρv) = EN (ρv) = log

(
1 +

1√
2

)
< EPPT(ρv) = 1

< logZ(ρ) = log

(
1 +

13

4
√

2

)
, (41)

where Rmax(ρv) denotes the max-Rains relative entropy
[38]. The strict inequalities in (41) also imply that both
the lower and upper bounds from (22), i.e., from [8], are
generally not tight.

The last examples that we consider are bosonic
Gaussian states [35]. As shown in [8], all bosonic
Gaussian states ρGAB satisfy the binegativity condition
|(ρGAB)TB |TB ≥ 0. Thus, as a consequence of Theorem 6
and Eq. (12), we conclude that

EPPT(ρGAB) = EN (ρGAB) (42)

for every bosonic Gaussian state ρGAB . Note that an
explicit expression for the logarithmic negativity of a
bosonic Gaussian state is available in [39, Eq. (15)]. We
stress again that it is not clear whether the equality in
(42) follows from the upper bound in (22), given that the
dimension of a bosonic Gaussian state is generally equal
to infinity.

III. κ-ENTANGLEMENT MEASURE FOR
QUANTUM CHANNELS

Quantum channels underlie the dynamics of quantum
systems and they enable the manipulation of quantum
states. In order to better effectively exploit quantum re-
sources, it is important to understand the resource cost
of quantum channels. In this section, we extend the κ-
entanglement measure from bipartite states to point-to-
point quantum channels. We establish several properties
of the κ-entanglement of quantum channels, including the
fact that it does not increase under amortization, that it
is monotone under the action of a class of PPT super-
channels, that it is additive, normalized, faithful, and
that it is generally not convex. The fact that it is mono-
tone under the action of a class of PPT superchannels is
a basic property that we would expect to hold for a good
measure of the entanglement of a quantum channel.

In what follows, we consider a channel NA→B that
takes density operators acting on a separable Hilbert

space HA to those acting on a separable Hilbert space
HB . We refer to such channels simply as quantum
channels, regardless of whether HA or HB is finite-
dimensional. If the Hilbert spaces HA and HB are both
finite-dimensional, then we specifically refer to NA→B as
a finite-dimensional channel.

We also make use of the Choi operator JNRB [40, 41] of
the channel NA→B , defined as

JNRB := NA→B(ΓRA) :=
∑
i,j

|i〉〈j|R ⊗NA→B(|i〉〈j|A),

(43)
where R is isomorphic to the channel input A, we employ
the shorthand ΓRA ≡ |Γ〉〈Γ|RA, and |Γ〉RA denotes the
unnormalized maximally entangled vector:

|Γ〉RA :=
∑
i

|i〉R ⊗ |i〉A, (44)

where {|i〉R}i and {|i〉A}i are orthonormal bases for the
Hilbert spaces HR and HA.

Definition 2 (κ-entanglement of a channel) Let
NA→B be a quantum channel. Then the κ-entanglement
of the channel NA→B is defined as

Eκ(NA→B) := inf
QAB≥0

{log ‖TrB [QAB ]‖∞ :

−QTBAB ≤ (JNAB)TB ≤ QTBAB}. (45)

Proposition 7 Let NA→B be a quantum channel. Then

Eκ(NA→B) = sup
ρRA

Eκ(NA→B(ρRA)), (46)

where the supremum is with respect to all states ρRA with
system R arbitrary.

Proof. Due to Proposition 1, i.e., the fact that
Eκ for states is monotone non-increasing with respect
to completely-PPT-preserving channels (with one such
channel being a local partial trace), it follows from purifi-
cation, the Schmidt decomposition, and this local data
processing, that it suffices to optimize with respect to
pure states ρRA with system R isomorphic to system A.
Thus, we conclude that

sup
ρRA

Eκ(NA→B(ρRA)) = sup
φRA

Eκ(NA→B(φRA)), (47)

where φRA is pure and R ' A.
By definition, and using the fact that every pure state

φRA of the form mentioned above can be represented as

XRΓRAX
†
R with ‖XR‖2 = 1, we have that

sup
φRA

Eκ(NA→B(φRA))

= log sup
XR:‖XR‖2=1,|XR|>0

inf
SRB≥0

{TrSRB :

− STBRB ≤ XR[JNRB ]TBX†R ≤ STBRB}, (48)
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where the equality follows because the set of operators
XR satisfying ‖XR‖2 = 1 and |XR| > 0 is dense in the
set of all operators satisfying ‖XR‖2 = 1. Now defining

QRB in terms of SRB = XRQRBX
†
R, and using the facts

that

− STBRB ≤ XR[JNRB ]TBX†R ≤ STBRB ⇔
−QTBRB ≤ [JNRB ]TB ≤ QTBRB , (49)

SRB ≥ 0 ⇔ QRB ≥ 0, (50)

for operators XR satisfying |XR| > 0, we find that

sup
XR:‖XR‖2=1,|XR|>0

inf
SRB≥0

{TrSRB : −STBRB ≤ XR[JNRB ]TBX†R ≤ STBRB}

= sup
XR:‖XR‖2=1,|XR|>0

inf
QRB≥0

{TrXRQRBX
†
R : −QTBRB ≤ [JNRB ]TB ≤ QTBRB}

= sup
ρR:Tr ρR=1,ρR>0

inf
QRB≥0

{Tr[ρR TrB [QRB ]] : −QTBRB ≤ [JNRB ]TB ≤ QTBRB}

= sup
ρR:Tr ρR=1,ρR≥0

inf
QRB≥0

{Tr[ρR TrB [QRB ]] : −QTBRB ≤ [JNRB ]TB ≤ QTBRB}

= inf
QRB≥0

[
sup

ρR:Tr ρR=1,ρR>0
{Tr[ρR TrB [QRB ]] : −QTBRB ≤ [JNRB ]TB ≤ QTBRB}

]
= inf
QRB≥0

{‖TrB [QRB ]‖∞ : −QTBRB ≤ [JNRB ]TB ≤ QTBRB}. (51)

The fourth equality follows from an application of the
Sion minimax theorem [42], given that the set of opera-
tors satisfying Tr ρR = 1 and ρR ≥ 0 is compact and both
sets over which we are optimizing are convex. Putting
everything together, we conclude (46). �

A. Amortization collapse and monotonicity under
a class of PPT superchannels

In this subsection, we prove that the κ-entanglement
of a quantum channel does not increase under amortiza-
tion, which is a property that holds for the squashed en-
tanglement of a channel [43, 44], a channel’s max-relative
entropy of entanglement [45], and the max-Rains infor-
mation of a channel [46]. We additionally prove that
this property implies that the κ-entanglement of a quan-
tum channel does not increase under the action of a class
of PPT superchannels. A PPT superchannel ΘPPT is a
physical transformation of a quantum channel. The class
of PPT superchannels that we consider realizes the fol-
lowing transformation of a channel MÂ→B̂ to a channel
NA→B in terms of completely-PPT-preserving channels

Ppre

A→ÂAMBM
and Ppost

AM B̂BM
:

NA→B = ΘPPT(MÂ→B̂) :=

Ppost

AM B̂BM
◦MÂ→B̂ ◦ P

pre

A→ÂAMBM
. (52)

We also state that the same property holds for the max-
Rains information of a quantum channel, due to the main
result of [46], while a channel’s squashed entanglement
and max-relative entropy of entanglement do not increase
under the action of an LOCC superchannel.

We begin our development with the following amorti-
zation inequality:

Proposition 8 (Amortization inequality) Let
ρA′AB′ be a quantum state acting on a separable Hilbert
space and let NA→B be a quantum channel. Then the
following amortization inequality holds

Eκ(NA→B(ρA′AB′))− Eκ(ρA′AB′) ≤ Eκ(NA→B). (53)

Proof. A proof for this inequality follows similarly to
the proof of [46, Proposition 1]. We first rewrite the
desired inequality as

Eκ(NA→B(ρA′AB′)) ≤ Eκ(NA→B) + Eκ(ρA′AB′), (54)

and then once again as

2Eκ(NA→B(ρA′AB′ )) ≤ 2Eκ(NA→B) · 2Eκ(ρA′AB′ ). (55)

Consider that



8

2Eκ(ρA′AB′ ) = inf
{

TrSA′AB′ : −STB′A′AB′ ≤ ρ
TB′
A′AB′ ≤ S

TB′
A′AB′ , SA′AB′ ≥ 0

}
, (56)

2Eκ(NA→B) = inf
{
‖TrB QRB‖∞ : −QTBRB ≤

[
JNRB

]TB ≤ QTBRB , QRB ≥ 0
}
. (57)

Let SA′AB′ be an arbitrary operator satisfying

− STB′A′AB′ ≤ ρA′AB′ ≤ S
TB′
A′AB′ , SA′AB′ ≥ 0, (58)

and let QRB be an arbitrary operator satisfying

−QTBRB ≤ JNRB ≤ QTBRB , QRB ≥ 0. (59)

Then let

FA′BB′ = 〈Γ|RA(SA′AB′ ⊗QRB)|Γ〉RA, (60)

where |Γ〉RA denotes the unnormalized maximally en-
tangled vector. It follows that FA′BB′ ≥ 0 because
SA′AB′ ≥ 0 and QRB ≥ 0. Furthermore, we have from
(58) and (59) that

F
TBB′
A′BB′ = [〈Γ|RA(SA′AB′ ⊗QRB)|Γ〉RA]

TBB′ (61)

= 〈Γ|RA(S
TB′
A′AB′ ⊗QTBRB)|Γ〉RA (62)

≥ 〈Γ|RA(ρ
TB′
A′AB′ ⊗

[
JNRB

]TB
)|Γ〉RA (63)

=
[
〈Γ|RA(ρA′AB′ ⊗ JNRB)|Γ〉RA

]TBB′ (64)

= [NA→B(ρA′AB′)]
TBB′ . (65)

Similarly, we have that

− FTBB′A′BB′ ≤ [NA→B(ρA′AB′)]
TBB′ , (66)

by using −STB′A′AB′ ≤ ρ
TB′
A′AB′ and −QTBRB ≤

[
JNRB

]TB
.

Thus, FA′BB′ is feasible for 2Eκ(NA→B(ρA′AB′ )).
Finally, consider that

2Eκ(NA→B(ρA′AB′ ))

≤ TrFA′BB′ (67)

= Tr〈Γ|RA(SA′AB′ ⊗QRB)|Γ〉RA (68)

= TrSA′AB′Q
TA
AB (69)

= Tr
[
SA′AB′ TrB Q

TA
AB

]
(70)

≤ TrSA′AB′
∥∥∥TrB Q

TA
AB

∥∥∥
∞

(71)

= TrSA′AB′ ‖TrB QAB‖∞ . (72)

The inequality above follows from Hölder’s inequality.
The last equality follows because the spectrum of an op-
erator remains invariant under the action of a transpose.
Since the inequality above holds for all SA′AB′ and QRB
satisfying (58) and (59), respectively, we conclude the
inequality in (55). �

Definition 3 (Amortized κ-entanglement of a channel)
Following [47], we define the amortized κ-entanglement
of a quantum channel NA→B as

EAκ (NA→B) := sup
ρA′AB′

[Eκ(NA→B(ρA′AB′))−Eκ(ρA′AB′)].

(73)
where the supremum is with respect to every state ρA′AB′ ,
with the A′ and B′ systems arbitrary.

In spite of the possibility that amortization might in-
crease Eκ, a consequence of Proposition 8 is that in fact
it does not:

Proposition 9 Let NA→B be a quantum channel. Then
the κ-entanglement of a channel does not increase under
amortization:

EAκ (NA→B) = Eκ(NA→B). (74)

Proof. The inequality EAκ (NA→B) ≥ Eκ(NA→B) fol-
lows from Proposition 7, by identifying A′ with R, setting
B′ to be a trivial system, and noting that Eκ(ρA′AB′)
vanishes for this choice. The opposite inequality is a di-
rect consequence of Proposition 8. �

Theorem 10 (Monotonicity) Let MÂ→B̂ be a quan-

tum channel and ΘPPT a completely-PPT-preserving su-
perchannel of the form in (52). The channel measure Eκ
is monotone under the action of the superchannel ΘPPT,
in the sense that

Eκ(MÂ→B̂) ≥ Eκ(ΘPPT(MÂ→B̂)). (75)

Proof. The proof is similar to that of [48, Proposi-
tion 6]. Let ρA′AB′ be an arbitrary input state. Then we
have that

Eκ(NA→B(ρA′AB′))− Eκ(ρA′AB′)

= Eκ((Ppost

AM B̂BM
◦MÂ→B̂ ◦ P

pre

A→ÂAMBM
)(ρA′AB′))

− Eκ(ρA′AB′) (76)

≤ Eκ((Ppost

AM B̂BM
◦MÂ→B̂ ◦ P

pre

A→ÂAMBM
)(ρA′AB′))

− Eκ(Ppre

A→ÂAMBM
(ρA′AB′)) (77)

≤ Eκ((MÂ→B̂ ◦ P
pre

A→ÂAMBM
)(ρA′AB′))

− Eκ(Ppre

A→ÂAMBM
(ρA′AB′)) (78)

≤ EAκ (MÂ→B̂) (79)

= Eκ(MÂ→B̂). (80)
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The first inequality follows because
Eκ(Ppre

A→ÂAMBM
(ρA′AB′)) ≤ Eκ(ρA′AB′), given that

Eκ does not increase under the action of the completely
PPT-preserving channel Ppre

A→ÂAMBM
(Proposition 1).

The second inequality follows from a similar reasoning,
but with respect to the completely-PPT-preserving
channel Ppost

AM B̂BM
. The last inequality follows because

Ppre

A→ÂAMBM
(ρA′AB′) is a particular bipartite state

to consider at the input of the channel MÂ→B̂ , but

the quantity EAκ involves an optimization over all
such states. The final equality is a consequence of
Proposition 9. �

Remark 1 We remark here that the same inequal-
ity holds for the max-Rains information of a channel
Rmax(N ), defined in [49, 50] and considered further in
[46] (see also [51]). That is, forMÂ→B̂ a quantum chan-

nel and ΘPPT a completely-PPT-preserving superchannel
of the form in (52), the following inequality holds

Rmax(MÂ→B̂) ≥ Rmax(ΘPPT(MÂ→B̂)). (81)

This follows because Rmax does not increase under amor-
tization, as shown in [46], and because the max-Rains
relative entropy does not increase under the action of a
completely-PPT-preserving channel [38].

Furthermore, a similar inequality holds for the
squashed entanglement Esq of a channel and for a chan-
nel’s max-relative entropy of entanglement Emax. In
particular, let ΘLOCC denote an LOCC superchannel,
which realizes the following transformation of a channel
MÂ→B̂ to a channel NA→B in terms of LOCC channels

Lpre

A→ÂAMBM
and Lpost

AM B̂BM
:

NA→B = ΘLOCC(MÂ→B̂) (82)

:= Lpost

AM B̂BM
◦MÂ→B̂ ◦ L

pre

A→ÂAMBM
. (83)

Then the following inequalities hold:

Esq(MÂ→B̂) ≥ Esq(ΘLOCC(MÂ→B̂)) (84)

Emax(MÂ→B̂) ≥ Emax(ΘLOCC(MÂ→B̂)), (85)

with both inequalities following because these measures do
not increase under amortization, as shown in [43, 44] and
[45], respectively, and the squashed entanglement [52] and
max-relative entropy of entanglement of states [53, 54] do
not increase under LOCC channels.

B. Dual representation and additivity

The optimization that is dual to (45) is as follows:

Edual
κ (NA→B) :=

sup
V
TB
AB ,W

TB
AB ,ρA≥0

{log Tr JNAB(VAB −WAB) :

VAB +WAB ≤ ρA ⊗ 1B , Tr ρA = 1}. (86)

This follows from applying the Lagrange multiplier
method. By weak duality, we have that

Edual
κ (NA→B) ≤ Eκ(NA→B). (87)

If the channel NA→B is finite-dimensional, then strong
duality holds, so that

Edual
κ (NA→B) = Eκ(NA→B). (88)

Furthermore, by employing the fact that Edual
κ (NA→B) =

supρRA E
dual
κ (NA→B(ρRA)), Proposition 7, and (7), we

conclude that the following equality holds for a quantum
channel NA→B :

Edual
κ (NA→B) = Eκ(NA→B). (89)

The additivity of Eκ with respect to tensor-product
channels follows from both the primal and dual repre-
sentations of Eκ(N ).

Proposition 11 (Additivity) Given two quantum
channels NA→B and MA′→B′ , it holds that

Eκ(NA→B ⊗MA′→B′) = Eκ(NA→B) + Eκ(MA′→B′).
(90)

Proof. The proof is similar to that of Proposition 2. To
be self-contained, we show the details as follows. First,
by definition, we can write Eκ(NA→B) as

Eκ(NA→B) = inf
QAB≥0

{log ‖TrB QAB‖∞ :

−QTBAB ≤ (JNAB)TB ≤ QTBAB}. (91)

Let QAB be an arbitrary operator satisfying −QTBAB ≤
(JNAB)TB ≤ QTBAB , QAB ≥ 0, and let PA′B′ be an

arbitrary operator satisfying −PTB′A′B′ ≤ (JMA′B′)
TB′ ≤

P
TB′
A′B′ , PA′B′ ≥ 0. Then QAB ⊗ PA′B′ satisfies

−(QAB ⊗ PA′B′)TBB′ ≤ (JNAB ⊗ JMA′B′)TBB′

≤ (QAB ⊗ PA′B′)TBB′ , (92)

QAB ⊗ PA′B′ ≥ 0, (93)

so that

Eκ(NA→B ⊗MA′→B′)

≤ log ‖TrBB′ QAB ⊗ PA′B′‖∞ (94)

= log ‖TrB QAB‖∞ + log ‖TrB′ PA′B′‖∞. (95)

Since the inequality holds for all QAB and PA′B′ satisfy-
ing the above conditions, we conclude that

Eκ(N ⊗M) ≤ Eκ(N ) + Eκ(M). (96)

To see the super-additivity of Eκ for quantum
channels, let us suppose that {V 1

AB ,W
1
AB , ρ

1
A} and

{V 2
A′B′ ,W

2
A′B′ , ρ

2
A′} are arbitrary operators satisfying the
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conditions in (86) for NA→B and MA′→B′ , respectively.
Now we choose

RABA′B′ = V 1
AB ⊗ V 2

A′B′ +W 1
AB ⊗W 2

A′B′ , (97)

SABA′B′ = V 1
AB ⊗W 2

A′B′ +W 1
AB ⊗ V 2

A′B′ . (98)

One can verify from (86) that

R
TBB′
ABA′B′ , S

TBB′
ABA′B′ ≥ 0, (99)

RABA′B′ + SABA′B′ = (V 1
AB +W 1

AB)⊗ (V 2
A′B′ +W 2

A′B′)

≤ ρ1
A ⊗ ρ2

A′ ⊗ 1BB′ , (100)

which implies that {RABA′B′ , SABA′B′ , ρ1
A ⊗ ρ2

A′} is fea-
sible for Eκ(NA→B ⊗MA′→B′) in (86). Thus, we have
that

Edual
κ (NA→B ⊗MA′→B′)

≥ log Tr(JNAB ⊗ JMA′B′)(RABA′B′ − SABA′B′) (101)

= log[Tr JNAB(V 1
AB −W 1

AB) · TrJMA′B′(V
2
A′B′ −W 2

A′B′)]
(102)

= log(Tr JNAB(V 1
AB −W 1

AB))

+ log(Tr JMA′B′(V
2
A′B′ −W 2

A′B′)). (103)

Since the inequality has been shown for arbitrary
{V 1

AB ,W
1
AB , ρ

1
A} and {V 2

A′B′ ,W
2
A′B′ , ρ

2
A′} satisfying the

conditions in (86) for NA→B and MA′→B′ , respectively,
we conclude that

Edual
κ (NA→B ⊗MA′→B′) ≥ Edual

κ (NA→B)

+ Edual
κ (MA′→B′). (104)

The proof is concluded by combining (96), (104), and
(89). �

C. Normalization, faithfulness, and no convexity

In this subsection, we prove that the κ-entanglement of
a quantum channel is normalized, faithful, and generally
not convex.

Proposition 12 (Normalization) Let idMA→B be a
noiseless quantum channel with dimension dA = dB =
M . Then

Eκ(idM ) = logM. (105)

Moreover, for every finite-dimensional quantum channel
NA→B,

Eκ(NA→B) ≤ min{log dA, log dB}. (106)

Proof. By Propositions 3 and 7, we have

Eκ(NA→B) = sup
ρRA

Eκ(NA→B(ρRA)) (107)

= sup
ψRA

Eκ(NA→B(ψRA)) (108)

≤ log min{dA, dB}, (109)

where, in the second equality, the optimization is with
respect to pure states with system R isomorphic to the
channel input system A.

This implies that Eκ(idM ) ≤ logM . Furthermore,

Eκ(idM ) ≥ Eκ(idA→B(ΦMRA)) = logM, (110)

where ΦMRA denotes a maximally entangled state of
Schmidt rank M and the second equality follows from
Proposition 3. �

Proposition 13 (Faithfulness) Let NA→B be a quan-
tum channel. Then Eκ(NA→B) ≥ 0 and Eκ(NA→B) = 0
if and only if NA→B is a PPT entanglement binding
channel [55].

Proof. To see that Eκ(NA→B) ≥ 0, we could utilize
the dual representation in (86) and the equality in (89),
or alternatively employ Propositions 4 and 7 to find that

Eκ(NA→B) = sup
ρRA

Eκ(NA→B(ρRA)) ≥ 0. (111)

Now if NA→B is a PPT entanglement binding channel
(as defined in [55]), then the state NA→B(ρRA) is PPT
for every input state ρRA. Thus, Eκ(NA→B) = 0. On
the other hand, if Eκ(NA→B) = 0, then for every ρRA it
holds that Eκ(NA→B(ρRA)) = 0. By Proposition 4, we
conclude that NA→B(ρRA) is PPT for every state ρRA,
and thus NA→B is a PPT entanglement binding channel.
�

Proposition 14 (No convexity) The κ-entanglement
of quantum channel is not generally convex.

Proof. To see this, we construct channels with Choi
states given by the examples in Eq. (15). Let us choose
the following qubit channels:

N1(ρ) = ρ, (112)

N2(ρ) = |0〉〈0|ρ|0〉〈0|+ |1〉〈1|ρ|1〉〈1|. (113)

Since N1 is a qubit noiseless channel, Proposition 12 im-
plies that Eκ(N1) = 1. Noting that N2 is a PPT en-
tanglement binding channel, Proposition 13 implies that
Eκ(N2) = 0.

Let N = 1
2 (N1 + N2) denote the uniform mixture of

the two channels. The mixed channel N is actually a
dephasing channel with dephasing parameter 1/2. Then
we have that Eκ(N ) ≥ log 3

2 , which follows by inputting
one share of the maximally entangled state. Thus, we
find that

Eκ(N ) >
1

2
(Eκ(N1) + Eκ(N1)). (114)

This concludes the proof. �
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IV. EXACT ENTANGLEMENT COST OF
QUANTUM CHANNELS

In this section, we introduce two channel simulation
tasks. First, we consider the exact parallel simulation
of a quantum channel, when completely-PPT-preserving
channels are allowed for free and the goal is to meter
the entanglement cost. We also consider the exact se-
quential simulation of a quantum channel. In both cases,
the entanglement cost is equal to the κ-entanglement of
the channel, thus endowing it with a direct operational
meaning. After these results are established, we focus on
PPT-simulable [47] and resource-seizable [14] channels,
demonstrating that the theory significantly simplifies for
these kinds of channels.

A. Exact parallel simulation of quantum channels

Another fundamental problem is to quantify the entan-
glement required for an exact simulation of an arbitrary
quantum channel, via free channels (LOCC or PPT) and
by making use of an entangled resource state. Recall that
Ω represents the set of free channels. Also, two quantum
channels NA→B andMA→B are equal if for orthonormal
bases {|i〉A}i and {|k〉B}k, the following equalities hold
for all i, j, k, l ∈ N:

〈k|BNA→B(|i〉A〈j|A)|l〉B = 〈k|BMA→B(|i〉A〈j|A)|l〉B .
(115)

This is equivalent to the Choi operators of the channels
being equal:

NA→B(ΓRA) =MA→B(ΓRA). (116)

Furthermore, the following identity holds for an arbitrary
state ρCS with S ' R ' A:

〈Γ|SR[ρCS ⊗NA→B(ΓRA)]|Γ〉SR = NA→B(ρCA), (117)

understood intuitively as a post-selected variant [56, 57]
of quantum teleportation [58]. From the identity in (117),
we conclude that if two channels are equal in the sense
of (115) and (116), then there is no physical procedure
that can distinguish them.

We define the one-shot exact entanglement cost of a
quantum channel NA→B , under the Ω channels, as

E
(1)
Ω (NA→B) = inf

Λ∈Ω

{
log d :

NA→B(ΓRA) = ΛÂB̂→AB(ΓRA ⊗ Φd
ÂB̂

)
}
. (118)

The exact parallel entanglement cost of quantum channel
NA→B , under the Ω channels, is defined as

E
(p)
Ω (NA→B) = lim sup

n→∞

1

n
E

(1)
Ω (N⊗nA→B). (119)

𝐴 𝐵

𝐴 𝐵

𝐵

መ𝐴

m

FIG. 1. Simulating the quantum channel N via a free channel
FAÂB̂→B and a maximally entangled state Φm.

Theorem 15 The one-shot exact PPT-entanglement

cost E
(1)
PPT(NA→B) of a quantum channel NA→B is given

by the following optimization:

E
(1)
PPT(NA→B) = inf

m∈Z+,QAB≥0

{
logm : TrB QAB = 1A,

− (m− 1)QTBAB ≤ (JNAB)TB ≤ (m+ 1)QTBAB
}
. (120)

Proof. The proof is somewhat similar to the proof of
Theorem 5, which is available in [12]. The achievabil-
ity part features a construction of a completely-PPT-
preserving channel PÂB̂→AB such that PAÂB̂→B(XA ⊗
Φm
ÂB̂

) = NA→B(XA) for every input operator XA (in-

cluding density operators), and then the converse part
demonstrates that the constructed channel is essentially
the only form that is needed to consider for the one-shot
exact PPT-entanglement cost task.

First, in order to have an exact simulation of a channel,
it is only necessary to check the simulation on a single
input, the maximally entangled vector |Γ〉RA. So we re-
quire that

PAÂB̂→B(ΓRA ⊗ Φm
ÂB̂

) = NA→B(ΓRA), (121)

where ΓRA is the unnormalized maximally entangled op-
erator.

We now prove the achievability part. Let m ≥ 1 be a
positive integer and QAB a Choi operator for a quantum
channel (i.e., QAB ≥ 0, TrB QAB = 1A) such that the
following inequalities hold

− (m− 1)QTBAB ≤ (JNAB)TB ≤ (m+ 1)QTBAB . (122)

Then we take the completely-PPT-preserving channel
PAÂB̂→B to have a Choi operator given by

JP
AÂB̂B

= JNAB ⊗ Φm
ÂB̂

+QAB ⊗ (1ÂB̂ − Φm
ÂB̂

). (123)

Observe that JP
AÂB̂B

≥ 0. Furthermore, we have that

TrB J
P
AÂB̂B

= TrB J
N
AB ⊗ Φm

ÂB̂
+ TrB QAB ⊗ (1ÂB̂ − Φm

ÂB̂
) (124)

= 1A ⊗ Φm
ÂB̂

+ 1A ⊗ (1ÂB̂ − Φm
ÂB̂

) (125)

= 1AÂB̂ . (126)
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Thus, PAÂB̂→B is a quantum channel. Setting |Γ〉AA′ÂÂ′B̂B̂′ := |Γ〉AA′ ⊗ |Γ〉ÂÂ′ ⊗ |Γ〉B̂B̂′ , its action on
the input ΓRA ⊗ Φm

ÂB̂
is given by

〈Γ|AA′ÂÂ′B̂B̂′
(
ΓRA ⊗ Φm

ÂB̂
⊗ JP

A′Â′B̂′B

)
|Γ〉AA′ÂÂ′B̂B̂′

= 〈Γ|AA′ÂÂ′B̂B̂′
(
ΓRA ⊗ Φm

ÂB̂
⊗ JNA′B ⊗ Φm

Â′B̂′

)
|Γ〉AA′ÂÂ′B̂B̂′

+ 〈Γ|AA′ÂÂ′B̂B̂′
(
ΓRA ⊗ Φm

ÂB̂
⊗QA′B ⊗ (1Â′B̂′ − Φm

Â′B̂′
)
)
|Γ〉AA′ÂÂ′B̂B̂′ (127)

= 〈Γ|AA′(ΓRA ⊗ JNA′B)|Γ〉AA′ (128)

= NA→B(ΓRA). (129)

The second equality follows because(
〈Γ|ÂÂ′ ⊗ 〈Γ|B̂B̂′

) (
Φm
ÂB̂
⊗ Φm

Â′B̂′

) (
|Γ〉ÂÂ′ ⊗ |Γ〉B̂B̂′

)
= Tr Φm

ÂB̂
Φm
ÂB̂

= 1, (130)(
〈Γ|ÂÂ′ ⊗ 〈Γ|B̂B̂′

) (
Φm
ÂB̂
⊗ 1Â′B̂′

) (
|Γ〉ÂÂ′ ⊗ |Γ〉B̂B̂′

)
= Tr Φm

ÂB̂
= 1. (131)

Thus, for the constructed channel, we have that (121) holds. Finally, we need to show that the constructed channel
PAÂB̂→B is completely-PPT-preserving:

(JP
AÂB̂B

)TB̂B ≥ 0. (132)

Consider that

(JP
AÂB̂B

)TB̂B = (JNAB)TB ⊗ (Φm
ÂB̂

)TB̂ +QTBAB ⊗ (1ÂB̂ − Φm
ÂB̂

)TB̂ (133)

=
1

m
(JNAB)TB ⊗ (FÂB̂) +QTBAB ⊗ (1ÂB̂ −

1

m
FÂB̂) (134)

=
1

m
(JNAB)TB ⊗ (ΠS

ÂB̂
−ΠA

ÂB̂
) +QTBAB ⊗ (ΠS

ÂB̂
+ ΠA

ÂB̂
− 1

m
[ΠS
ÂB̂
−ΠA

ÂB̂
]) (135)

=

[
1

m
(JNAB)TB +

(
1− 1

m

)
QTBAB

]
⊗ΠS

ÂB̂
+

[(
1 +

1

m

)
QTBAB −

1

m
(JNAB)TB

]
⊗ΠA

ÂB̂
(136)

=
1

m

[
(JNAB)TB + (m− 1)QTBAB

]
⊗ΠS

ÂB̂
+

1

m

[
(m+ 1)QTBAB − (JNAB)TB

]
⊗ΠA

ÂB̂
. (137)

Applying the condition in (122), we conclude (132).
Thus, we have shown that for all m and QAB satisfy-
ing (122) and QAB ≥ 0, TrB QAB = 1A, there exists a
completely-PPT-preserving channel PAÂB̂→B such that
(121) holds. Now taking an infimum over all such m and
QAB , we conclude that the right-hand side of (120) is

greater than or equal to E
(1)
PPT(NA→B).

To see the opposite inequality, let PAÂB̂→B be
a completely-PPT-preserving channel such that (121)
holds. Then preceding PAÂB̂→B by the isotropic twirling
channel TÂB̂ results in a completely-PPT-preserving
channel P ′

AÂB̂→B = PAÂB̂→B ◦ TÂB̂ achieving the same

simulation task, and so it suffices to focus on the chan-
nel P ′

AÂB̂→B in order to establish an expression for the

one-shot exact PPT-entanglement cost. Consider that

JP
′

RÂ′B̂′B
= P ′

AÂB̂→B(ΓRA ⊗ ΓÂ′Â ⊗ ΓB̂′B̂)

= (PAÂB̂→B ◦ TÂB̂)(ΓRA ⊗ ΓÂ′Â ⊗ ΓB̂′B̂).
(138)

Considering that

TÂB̂(ΓÂ′Â ⊗ ΓB̂′B̂)

= Φm
ÂB̂
⊗ TrÂB̂ [Φm

ÂB̂
(ΓÂ′Â ⊗ ΓB̂′B̂)]

+
1ÂB̂ − Φm

ÂB̂

m2 − 1
TrÂB̂ [(1ÂB̂ − Φm

ÂB̂
)(ΓÂ′Â ⊗ ΓB̂′B̂)]

(139)

= Φm
ÂB̂
⊗ Φm

Â′B̂′
+
1ÂB̂ − Φm

ÂB̂

m2 − 1
⊗ (1ÂB̂ − Φm

ÂB̂
), (140)

with the equalities understood in terms of entanglement
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swapping [58], we conclude that

(PAÂB̂→B ◦ TÂB̂)(ΓRA ⊗ ΓÂ′Â ⊗ ΓB̂′B̂)

= PAÂB̂→B(ΓRA ⊗ Φm
ÂB̂

)⊗ Φm
Â′B̂′

+ PAÂB̂→B
(

ΓRA ⊗
1ÂB̂ − Φm

ÂB̂

m2 − 1

)
⊗ (1ÂB̂ − Φm

ÂB̂
)

(141)

= NA→B(ΓRA)⊗ Φm
Â′B̂′

+

PAÂB̂→B
(

ΓRA ⊗
1ÂB̂ − Φm

ÂB̂

m2 − 1

)
⊗ (1Â′B̂′ − Φm

Â′B̂′
)

(142)

= JNRB ⊗ Φm
Â′B̂′

+QRB ⊗ (1Â′B̂′ − Φm
Â′B̂′

). (143)

where we have used the assumption that (121) holds and
set

QRB = PAÂB̂→B
(

ΓRA ⊗
1ÂB̂ − Φm

ÂB̂

m2 − 1

)
, (144)

from which it follows that QRB ≥ 0 and TrB QRB = 1R.
In order for the channel P ′

AÂB̂→B to be completely-PPT-

preserving, it is necessary that

(JP
′

RÂ′B̂′B
)TB̂′B ≥ 0. (145)

Writing this out and using calculations given above, we
find that it is necessary that the following operator is
positive semi-definite:

1

m

[
(JNAB)TB + (m− 1)QTBAB

]
⊗ΠS

ÂB̂

+
1

m

[
(m+ 1)QTBAB − (JNAB)TB

]
⊗ΠA

ÂB̂
. (146)

Since ΠS
ÂB̂

and ΠA
ÂB̂

project onto orthogonal subspaces,

we find that the condition (122) is necessary. Thus, it
follows that the quantity on the right-hand side of (120)

is less than or equal to E
(1)
PPT(NA→B). �

Proposition 16 Let NA→B be a quantum channel.
Then

log(2Eκ(N ) − 1) ≤ E(1)
PPT(NA→B) ≤ log(2Eκ(N ) + 2).

(147)

Proof. The idea of the proof is to use the technique of
SDP relaxation. Consider that

E
(1)
PPT(NA→B) = inf

{
logm : − (m− 1)QTBAB ≤ (JNAB)TB ≤ (m+ 1)QTBAB , QAB ≥ 0, TrB QAB = 1A

}
≥ inf

{
logm : − (m+ 1)QTBAB ≤ (JNAB)TB ≤ (m+ 1)QTBAB , QAB ≥ 0, TrB QAB = 1A

}
= inf

{
logm : −RTBAB ≤ (JNAB)TB ≤ RTBAB , RAB ≥ 0, TrB RAB = (m+ 1)1A

}
= inf

{
log(‖TrB RAB‖∞ − 1) : −RTBAB ≤ (JNAB)TB ≤ RTBAB , RAB ≥ 0

}
= log(2Eκ(N ) − 1). (148)

The first inequality follows by relaxing the constraint − (m− 1)QTBAB ≤ (JNAB)TB to − (m+ 1)QTBAB ≤ (JNAB)TB . The
second equality follows by absorbing m into QAB and setting RAB = (m+ 1)QAB . The last equality follows from
the definition of Eκ(N ).

Similarly, we have that E
(1)
PPT(NA→B) ≤ log(2Eκ(N ) + 2) following the chain of inequalities:

E
(1)
PPT(NA→B) = inf

{
logm : − (m− 1)QTBAB ≤ (JNAB)TB ≤ (m+ 1)QTBAB , QAB ≥ 0, TrB QAB = 1A,m ∈ N,m ≥ 2

}
≤ inf

{
logm : − (m− 1)QTBAB ≤ (JNAB)TB ≤ (m− 1)QTBAB , QAB ≥ 0, TrB QAB = 1A,m ∈ N,m ≥ 2

}
= inf

{
log bµc : − (bµc − 1)QTBAB ≤ (JNAB)TB ≤ (bµc − 1)QTBAB , QAB ≥ 0, TrB QAB = 1A, µ ≥ 2

}
≤ inf

{
log bµc : − (µ− 2)QTBAB ≤ (JNAB)TB ≤ (µ− 2)QTBAB , QAB ≥ 0, TrB QAB = 1A, µ ≥ 2

}
≤ inf

{
logµ : − (µ− 2)QTBAB ≤ (JNAB)TB ≤ (µ− 2)QTBAB , QAB ≥ 0, TrB QAB = 1A, µ ≥ 2

}
= inf

{
log(‖TrB RAB‖∞ + 2) : −RTBAB ≤ (JNAB)TB ≤ RTBAB , RAB ≥ 0

}
= log(2Eκ(N ) + 2). (149)

The first inequality follows since we choose more restricted condition (m− 1)QTBAB ≤ (JNAB)TB ≤
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(m− 1)QTBAB . The second inequality follows since
−(bµc− 1) ≤ −(µ− 2) and µ− 2 ≤ bµc− 1. In this case,
the set over which we are optimizing becomes smaller.
The third inequality follows since bµc ≤ µ in the loss
function. We also take RAB = (µ − 2)QAB to simplify
the optimization and then arrive at the final equality fol-
lowing the definition of Eκ(N ). �

Theorem 17 (Exact parallel cost) Let NA→B be a
quantum channel. Then the exact parallel entanglement
cost of NA→B is equal to its κ-entanglement:

E
(p)
PPT(NA→B) = Eκ(NA→B). (150)

Proof. The main idea behind the proof is to employ the
one-shot bound in Proposition 16 and then the additivity
relation from Proposition 11. Consider that

E
(p)
PPT(NA→B) = lim sup

n→∞

1

n
E

(1)
PPT(N⊗nA→B) (151)

≤ lim sup
n→∞

1

n
log(2Eκ(N⊗n) + 2) (152)

= lim sup
n→∞

1

n
log(2nEκ(N ) + 2) (153)

= Eκ(NA→B). (154)

Similarly, EPPT(NA→B) ≥ Eκ(NA→B). �

B. Exact sequential simulation of quantum
channels

A more general notion of channel simulation, called se-
quential channel simulation, was recently proposed and

studied in [14]. In this section, we define and character-
ize exact sequential channel simulation, as opposed to the
approximate sequential channel simulation focused on in
[14]. For concreteness, we set the free channels Ω to be
completely-PPT-preserving channels. The main idea be-
hind sequential channel simulation is to simulate n uses
of the channel NA→B in such a way that they can be
called in an arbitrary order, i.e., on demand when they
are needed. An (n,M) exact sequential channel simu-
lation code consists of a maximally entangled resource
state ΦM

A0B0
of Schmidt rank M and a set

{P(i)

AiAi−1Bi−1→BiAiBi
}ni=1 (155)

of completely-PPT-preserving channels. Note that the
systems AnBn of the final completely-PPT-preserving

channel P(n)

AnAn−1Bn−1→BnAnBn
can be taken trivial with-

out loss of generality. As before, Alice has access to all
systems labeled by A, Bob has access to all systems la-
beled by B, and they are in distant laboratories. The
structure of this simulation protocol is intended to be
compatible with a discrimination strategy that can test
the actual n channels versus the above simulation in a
sequential way, along the lines discussed in [59, 60] and
[61].

We define the simulation to be exact if the follow-
ing equalities hold for orthonormal bases {|i〉A}A and
{|k〉B}k and for all i1, j1, k1, l1, . . . , in, jn, kn, ln ∈ N:

p{ir,jr,kr,lr}
n
r=1 =

n∏
r=1

〈kr|BrNAr→Br (|ir〉〈jr|Ar )|lr〉Br , (156)

where

P i1,j1,k1,l1
A1B1

:= 〈k1|B1

[
P(1)

A1A0B0→B1A1B1
(|i1〉〈j1|A1

⊗ ΦM
A0B0

)
]
|l1〉B1

, (157)

P i2,j2,k2,l2,i1,j1,k1,l1
A2B2

:= 〈k2|B2

[
P(2)

A2A1B1→B2A2B2
(|i2〉〈j2|A2

⊗ P i1,j1,k1,l1
A1B1

)
]
|l2〉B2

, (158)

...

P
{ir,jr,kr,lr}n−1

r=1

An−1Bn−1
:= 〈kn−1|Bn−1

[P(n−1)

An−1An−2Bn−2→Bn−1An−1Bn−1
(|in−1〉〈jn−1|An−1

⊗ P {ir,jr,kr,lr}
n−2
r=1

An−2Bn−2
)]|ln−1〉Bn−1 , (159)

p{ir,jr,kr,lr}
n
r=1 := 〈kn|Bn

[
P(n)

AnAn−1Bn−1→Bn
(|in〉〈jn|An ⊗ P

{ir,jr,kr,lr}n−1
r=1

An−1Bn−1
)
]
|ln〉Bn . (160)

Figure 2 depicts the channel simulation and the exact
simulation condition in (156).

By defining the completely-PPT-preserving quantum
channel PAnA0B0→Bn as the serial composition of the
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B3A3A2B1NA1 B2N N

B3A3A2B1A1 B2

Vs.

P1 P2 P3A0 A1 A2

B0 B1 B2

FIG. 2. The top part of the figure depicts the n = 3 sequen-
tial uses of the channel NA→B that should be simulated. The
bottom part of the figure depicts the simulation. The simu-
lation is considered to be exact, as written in (156), if, after
inputting the operator |ir〉〈jr|Ar to the input system Ar and
contracting the output system Br in terms of 〈kr|Br (·)|lr〉Br ,
the resulting numbers are the same for both the original
channels and their simulation, for all possible |ir〉Ar , |jr〉Ar ,
|kr〉Br , and |lr〉Br and for r ∈ {1, . . . , n}.

B3A3

A2

B1

A1

B2A0

A1

A2

B0

B1

B2

P1

P2

P3

FIG. 3. The channel in (161), defined as the serial composi-
tion of the completely-PPT-preserving channels in the simu-
lation.

individual channels in (155) (depicted in Figure 3)

PAnA0B0→Bn := (P(n)

AnAn−1Bn−1→Bn
◦

P(n−1)

An−1An−2Bn−2→Bn−1An−1Bn−1
◦ · · · ◦

P(2)

A2A1B1→B2A2B2
◦ P(1)

A1A0B0→B1A1B1
), (161)

we conclude that the condition in (156) is equivalent to
the following condition:

(NA→B)⊗n(ΓRnAn) = PAnA0B0→Bn(ΓRnAn ⊗ ΦM
A0B0

),

(162)

where ΓRnAn :=
n⊗
i=1

ΓRiAi . This latter condition is de-

picted in Figure 4.

The n-shot exact sequential simulation cost of the

B3A3A2B1NA1 B2N N

R1 R2 R3

B3A3A2B1A1 B2

R1 R2 R3

Vs.

P1 P2 P3A0 A1 A2

B0 B1 B2

FIG. 4. The exact channel simulation condition in (156) is
equivalent to the condition that the Choi operators as de-
picted above are equal, as written in (162).

channel NA→B is then defined as

EPPT(NA→B , n) := inf
{

logM :

(NA→B)⊗n(ΓRnAn) = PAnA0B0→Bn(ΓRnAn⊗ΦM
A0B0

)
}
,

(163)

where the optimization is with respect to sequential pro-
tocols of the form in (155) and the channel PAnA0B0→Bn
is defined as in (161). The exact (sequential) simulation
cost of the channel NA→B is defined as

EPPT(NA→B) := lim sup
n→∞

1

n
EPPT(NA→B , n). (164)

The condition in (162) illustrates that a sequential sim-
ulation is a particular kind of parallel simulation, but
with more constraints. That is, in a parallel simulation,
the channel PAnA0B0→Bn can be arbitrary, whereas in a
sequential simulation, it is constrained to have the form
in (155). For this reason, we can immediately conclude
the following bound for all integer n ≥ 1:

E
(1)
PPT((NA→B)⊗n) ≤ EPPT(NA→B , n), (165)

which in turn implies that

E
(p)
PPT(NA→B) ≤ EPPT(NA→B). (166)

C. Physical justification for definition of exact
sequential channel simulation

The most general method for distinguishing the n
channel uses from its simulation is with an adaptive
discrimination strategy. Such a strategy was described
in [14] and consists of an initial state ρR1A1

, a set

{A(i)
RiBi→Ri+1Ai+1

}n−1
i=1 of adaptive channels, and a quan-

tum measurement {QRnBn ,1RnBn − QRnBn}. Let us
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B3A3A2B1NA1 B2

A1

N
A2

N

R1 R2 R3

B3A3A2B1A1 B2

A1 A2
R1 R2 R3

Vs.

Q

Q

P1 P2 P3A0 A1 A2

B0 B1 B2

FIG. 5. An adaptive protocol for discriminating the original
channels (top) from their simulation (bottom).

employ the shorthand {ρ,A, Q} to abbreviate such a dis-
crimination strategy. Note that, in performing a discrim-
ination strategy, the discriminator has a full description
of the channel NA→B and the simulation protocol, which
consists of ΦA0B0

and the set in (155). If this discrimi-
nation strategy is performed on the n uses of the actual
channel NA→B , the relevant states involved are

ρRi+1Ai+1
:= A(i)

RiBi→Ri+1Ai+1
(ρRiBi), (167)

for i ∈ {1, . . . , n− 1} and

ρRiBi := NAi→Bi(ρRiAi), (168)

for i ∈ {1, . . . , n}. If this discrimination strategy is per-
formed on the simulation protocol discussed above, then
the relevant states involved are

τR1B1A1B1
:= P(1)

A1A0B0→B1A1B1
(τR1A1

⊗ ΦA0B0
),

τRi+1Ai+1AiBi
:= A(i)

RiBi→Ri+1Ai+1
(τRiBiAiBi), (169)

for i ∈ {1, . . . , n− 1}, where τR1A1
= ρR1A1

, and

τRiBiAiBi := P(i)

AiAi−1Bi−1→BiAiBi
(τRiAiAi−1Bi−1

),

(170)
for i ∈ {2, . . . , n}. The discriminator then performs the
measurement {QRnBn ,1RnBn−QRnBn} and guesses “ac-
tual channel” if the outcome isQRnBn and “simulation” if
the outcome is 1RnBn−QRnBn . Figure 5 depicts the dis-
crimination strategy in the case that the actual channel
is called n = 3 times and in the case that the simulation
is performed.

From the physical point of view, the n channel uses of
NA→B are perfectly indistinguishable from the simula-
tion if every possible discrimination strategy as described
above leads to the exact same final decision probabili-
ties. That is, for all possible discrimination strategies,
the original channels and their simulation are indistin-
guishable if the following equality holds

TrQRnBnρRnBn = TrQRnBnτRnBn . (171)

We now prove that this physical notion of exact chan-
nel simulation is equivalent to the more mathematical
notion of exact channel simulation described in the pre-
vious section. First, suppose that the physical notion of
exact channel simulation holds; i.e., the equality in (171)
holds for all possible discrimination strategies. Then this
means that ρRnBn = τRnBn for all possible discrimina-
tion strategies. One possible strategy could be to pick
the input state for each system Ai as one of the following
states

ρx,yA =

 |x〉〈x|A if x = y
1
2 (|x〉A + |y〉A) (〈x|A + 〈y|A) if x < y

1
2 (|x〉A + i|y〉A) (〈x|A − i〈y|A) if x > y

.

(172)
and the output system Bi could be measured in the same
way, but with respect to an orthonormal basis for the
output system. Then all input state choices and mea-
surement outcomes could be stored in auxiliary classical
registers. Consider that for all x, y such that x < y, the
following holds

|x〉〈y|A =

(
ρx,yA − 1

2
ρx,xA − 1

2
ρy,yA

)
− i
(
ρy,xA − 1

2
ρx,xA − 1

2
ρy,yA

)
, (173)

|y〉〈x|A =

(
ρx,yA − 1

2
ρx,xA − 1

2
ρy,yA

)
+ i

(
ρy,xA − 1

2
ρx,xA − 1

2
ρy,yA

)
, (174)

so that linear combinations of all the outcomes realize the
operator basis discussed in the mathematical definition of
equivalence. Since the equivalence holds for all possible
discrimination strategies, we can collect the data from
them in the auxiliary registers, and then finally conclude
that the condition in (156) holds.

To see that the mathematical notion of exact sequential
simulation implies the physical one, we use the method
of post-selected teleportation, essentially the same idea
as what was used in the proof of [62, Theorem 4]. Con-
sider the channel defined by the serial composition of the
channels in the discrimination strategy {ρ,A, Q}:

ABn→AnRn = A(n−1)
Rn−1Bn−1→RnAn ◦ · · · ◦

A(2)
R2B2→R3A3

◦ A(1)
R1B1→R2A2

◦ ρR1A1
, (175)

where the notation ρR1A1
indicates a preparation channel

that tensors in the state ρR1A1
. Figure 6 depicts this

channel. By acting on both sides of the exact simulation
condition with the channel and then the projection onto
|Γ〉〈Γ|AnSn , with S ' R, we find that
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A3

A2

B1

A1

B2

A1

A2

R1

R2

R3

FIG. 6. The discrimination strategy ρR1A1 and

{A(i)
RiBi→Ri+1Ai+1

}n−1
i=1 represented as a single channel

ABn→AnRn , as written in (175).

〈Γ|AnSn
[
ABn→AnRn ◦ (NA→B)⊗n(ΓSnAn)

]
|Γ〉AnSn

= 〈Γ|AnSn
[
ABn→AnRn ◦ PAnA0B0→Bn(ΓSnAn ⊗ ΦM

A0B0
)
]
|Γ〉AnSn . (176)

where

|Γ〉AnSn = |Γ〉A1S1
⊗ |Γ〉A2S2

⊗ · · · ⊗ |Γ〉AnSn . (177)

From the method of post-selected teleportation, we conclude that

〈Γ|AnSn
[
ABn→AnRn ◦ (NA→B)⊗n(ΓSnAn)

]
|Γ〉AnSn = ρRnBn , (178)

〈Γ|AnSn
[
ABn→AnRn ◦ PAnA0B0→Bn(ΓSnAn ⊗ ΦM

A0B0
)
]
|Γ〉AnSn = τRnBn . (179)

Putting these together, we finally conclude that

ρRnBn = τRnBn . (180)

Thus, no physical discrimination strategy can distinguish
the original channels from their simulation if the exact
simulation condition in (162) holds. Figure 7 depicts the
operator ABn→AnRn ◦ PAnA0B0→Bn(ΓSnAn ⊗ ΦM

A0B0
) in

order to help visualize the above argument.

D. Exact sequential channel simulation cost

We first establish the following bounds on the n-shot
exact sequential simulation cost:

Proposition 18 Let NA→B be a quantum channel such
that Eκ(N ) > 0. Then the n-shot exact sequential simu-

lation cost is bounded as

log
[
2nEκ(N ) − 1

]
≤ EPPT(NA→B , n) (181)

≤ log

[
2(n+1)Eκ(N ) − 1

2Eκ(N ) − 1

]
. (182)

If Eκ(N ) = 0, then EPPT(NA→B , n) = 0.

Proof. Suppose that Eκ(N ) > 0. The inequality

log
[
2nEκ(N ) − 1

]
≤ EPPT(NA→B , n) (183)

is a direct consequence of (165), Proposition 16, and
Proposition 11.

So we now prove the other inequality. The main idea
behind the construction is for the ith completely-PPT-
preserving channel to perform the following exact simu-
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FIG. 7. This figure depicts the operator ABn→AnRn ◦
PAnA0B0→Bn(ΓSnAn ⊗ ΦM

A0B0
) in order to help visualize the

argument in (176)–(180). By projecting the systems S1A1

onto 〈Γ|S1A1 , S2A2 onto 〈Γ|S2A2 , and S3A3 onto 〈Γ|S3A3 , the
method of post-selected teleportation guarantees that the re-
maining state is τR3B3 , which is the final state of the bottom
part of Figure 5.

lation:

P(i)

AiAi−1Bi−1→BiAiBi
(ρAi ⊗ Φ

Mi−1

Ai−1Bi−1
) =

NA→B(ρAi)⊗ ΦMi

AiBi
, (184)

for i ∈ {1, . . . , n− 1} and for the nth completely-PPT-
preserving channel to perform the following exact simu-
lation:

P(n)

AnAn−1Bn−1→Bn
(ρAn ⊗ Φ

Mn−1

An−1Bn−1
) = NA→B(ρAn).

(185)
Note that, in order to perform the simulation in (184), we

could actually simulate the channel NA→B ⊗ idMi , and
then send one share of the maximally entangled state
ΦMi

AiBi
through the exactly simulated identity channel

idMi to produce the output in (184).

Thus, we should now determine an upper bound on the
simulation cost when using this construction. The most
effective way to do so is to start from the final (nth)
simulation. By the one-shot bound from Proposition 16,
its cost logMn−1 is bounded as

logMn−1 ≤ log
[
2Eκ(N ) + 1

]
. (186)

The cost logMn−2 of the n−1 simulation is then bounded

as

logMn−2 ≤ log
[
2Eκ(N⊗idMn−1 ) + 1

]
(187)

≤ log
[
2Eκ(N )+logMn−1 + 1

]
(188)

= log
[
2Eκ(N )Mn−1 + 1

]
(189)

≤ log
[
2Eκ(N )

(
2Eκ(N ) + 1

)
+ 1
]

(190)

= log

[
2∑
`=0

2`Eκ(N )

]
, (191)

where we made use of the subadditivity inequality from
Proposition 11. Performing this kind of reasoning itera-
tively, going backward until the first simulation, we find
the following bound:

logM0 ≤ log

[
n∑
`=0

2`Eκ(N )

]
= log

[
2(n+1)Eκ(N ) − 1

2Eκ(N ) − 1

]
.

(192)
If Eκ(N ) = 0, then the channel N is PPT entangle-

ment binding by Proposition 13 and thus can be sim-
ulated at no cost, so that EPPT(NA→B , n) = 0. This
concludes the proof. �

Theorem 19 (Exact sequential cost) Let NA→B be
a quantum channel. Then the exact sequential channel
simulation cost of NA→B is equal to its κ-entanglement:

EPPT(NA→B) = Eκ(NA→B). (193)

Proof. First suppose that Eκ(N ) > 0. The lower bound
follows from Proposition 18 and Theorem 17. The upper
bound follows from Proposition 18:

lim sup
n→∞

1

n
EPPT(NA→B , n)

≤ lim sup
n→∞

1

n
log

[
2(n+1)Eκ(N ) − 1

2Eκ(N ) − 1

]
(194)

= lim sup
n→∞

1

n
log

[
2nEκ(N ) − 2−Eκ(N )

1− 2−Eκ(N )

]
(195)

= Eκ(N ). (196)

If Eκ(N ) = 0, then the channel N is PPT entangle-
ment binding by Proposition 13 and thus can be simu-
lated at no cost. This concludes the proof. �

By combining Theorems 17 and 19, we reach the con-
clusion that the exact entanglement cost of parallel and
sequential simulation of quantum channels are in fact
equal and given by the κ-entanglement of the channel.
Thus, the κ-entanglement is a fundamental measure of
the entanglement of a quantum channel. Not only is it ef-
ficiently computable by means of a semi-definite program
(for finite-dimensional channels), but it also possesses a
direct operational meaning in terms of these channel sim-
ulation tasks. It is the only known channel entanglement
measure possessing these properties, and from this per-
spective, it can be helpful in understanding the funda-
mental structure of entanglement of quantum channels.



19

E. PPT-simulable channels

Although the theory of exact simulation of quantum
channels under PPT operations simplifies significantly
due to Theorems 17 and 19, there is a class of channels
for which the theory is even simpler. These channels were
defined in [47] and are known as PPT-simulable channels.
In this section, we recall their definition and show how
the theory of exact entanglement cost is quite simple for
certain PPT-simulable channels.

Definition 4 (PPT-simulable channel [47]) A
channel NA→B is PPT-simulable with associated
resource state ωA′B′ if there exists a completely PPT-
preserving channel PAA′B′→B such that, for every input
state ρA

NA→B(ρA) = PAA′B′→B(ρA ⊗ ωA′B′). (197)

A particular kind of PPT-simulable channel is one that
is resource-seizable, as defined in [14, Section VI]:

Definition 5 (Resource-seizable [14]) Let NA→B be
a PPT-simulable channel with associated resource state
ωA′B′ . The channel NA→B is resource-seizable if there
exists a PPT state τAMABM and a completely PPT-
preserving post-processing channel DAMBBM→A′B′ such
that

DAMBBM→A′B′(NA→B(τAMABM )) = ωA′B′ . (198)

For PPT-simulable channels, it follows that the ex-
act entanglement cost of sequential channel simulation is
bounded from above by the exact entanglement cost of
the underlying resource state:

Theorem 20 Let NA→B be a PPT-simulable channel
with associated resource state ωA′B′ . Then the PPT-
assisted entanglement cost of a channel is bounded from
above as

EPPT(NA→B) ≤ EPPT(ωA′B′) = Eκ(ωA′B′). (199)

Proof. The proof for this inequality follows the same
reasoning given in [14, Corollary 1]. First simulate a large
number of copies of the resource state ωA′B′ and then
use the PPT-preserving channel PAA′B′→B from (197) to
simulate the channel NA→B . The equality follows from
Proposition 6. �

If a PPT-simulable channel is additionally resource-
seizable, then its exact entanglement cost is given by the
κ-entanglement of the underlying resource state:

Theorem 21 Let NA→B be a PPT-simulable channel
with associated resource state ωA′B′ . Suppose further-
more that it is resource-seizable, as given in Definition 5.
Then

EPPT(NA→B) = E
(p)
PPT(NA→B) = Eκ(NA→B) (200)

= EPPT(ωA′B′) = Eκ(ωA′B′). (201)

Proof. The following inequality

EPPT(NA→B) ≤ EPPT(ωA′B′) = Eκ(ωA′B′). (202)

is a consequence of Theorem 20. To establish the oppo-
site inequality, consider that we always have that

EPPT(NA→B) ≥ E(p)
PPT(NA→B), (203)

where E
(p)
PPT denotes the exact parallel simulation entan-

glement cost. From Theorem 17, we have that

E
(p)
PPT(NA→B) = Eκ(NA→B). (204)

So it suffices to prove that

Eκ(NA→B) = Eκ(ωA′B′). (205)

Letting ρRA be an arbitrary input state, we have that

Eκ(NA→B(ρRA)) = Eκ(PAA′B′→B(ρRA ⊗ ωA′B′))
(206)

≤ Eκ(ρRA ⊗ ωA′B′) (207)

= Eκ(ωA′B′), (208)

where the inequality follows from the monotonicity of Eκ
under PPT-preserving channels and the final equality fol-
lows because the bipartite cut is taken as RAA′|B′. Since
this holds for an arbitrary input state ρRA, we conclude
that

Eκ(ωA′B′) ≥ Eκ(NA→B). (209)

Now we prove the opposite inequality, by using the
fact that NA→B is resource-seizable. Let τAMABM be the
input PPT state from Definition 5. Consider that

Eκ(ωA′B′) = Eκ(DAMBBM→A′B′(NA→B(τAMABM )))
(210)

≤ Eκ(NA→B(τAMABM )) (211)

= Eκ(NA→B(τAMABM ))− Eκ(τAMABM )
(212)

≤ Eκ(NA→B). (213)

The first inequality follows because Eκ does not increase
under the action of the completely PPT-preserving chan-
nel DAMBBM→A′B′ (Theorem 1). The second equal-
ity follows because τAMABM is a PPT state, so that
Eκ(τAMABM ) = 0. The final inequality is a consequence
of the amortization inequality in Proposition 8. �

F. Relationship to other quantities

A previously known efficiently computable upper
bound for quantum capacity is the partial transposition
bound [17]:

QΘ(N ) := log ‖TB→B ◦ NA→B‖♦ , (214)

where TB→B is the transpose map and ‖ · ‖♦ is the com-
pletely bounded trace norm or diamond norm. Note that
‖ · ‖♦ for finite-dimensional channels is efficiently com-
putable via semidefinite programming [63].
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Proposition 22 For every quantum channel NA→B, we
have that

QΘ(NA→B) ≤ Eκ(NA→B). (215)

Proof. Given an arbitrary quantum channel NA→B , it
holds that

Eκ(NA→B) = sup
φRA

Eκ(NA→B(φRA)) (216)

≥ sup
φRA

EN (NA→B(φRA)) (217)

= sup
φRA

log ‖NA→B(φRA)TB‖1 (218)

= log ‖TB→B ◦ NA→B‖♦ . (219)

The equality in (216) follows from Proposition 7. The
inequality in (217) follows from the property of Eκ in
Eq. (12). The last equality follows due to the definition
of the completely bounded trace norm. �

Remark 2 For qubit-input qubit-output channels, we
have that

Eκ(NA→B) = QΘ(NA→B). (220)

This follows because it suffices to optimize Eκ(NA→B)
with respect to two-qubit input states φRA, and then the
output state consists of two qubits, so that the result of
[23] applies. That is, for this case,

Eκ(NA→B) = sup
φRA

Eκ(NA→B(φRA)) (221)

= sup
φRA

EN (NA→B(φRA)) (222)

= QΘ(NA→B). (223)

V. EXACT ENTANGLEMENT COST OF
FUNDAMENTAL CHANNELS

Theorem 21 provides a formula for the exact PPT-
entanglement cost of an arbitrary resource-seizable,
PPT-simulable channel, given in terms of the entangle-
ment cost of the underlying resource state ωA′B′ . We de-
tail some simple examples here for which this simplified
formula applies. We also consider amplitude damping
channels, for which it is necessary to invoke Theorems 17
and 19 in order to determine their exact entanglement
costs.

Let us begin by recalling the notion of a covariant chan-
nel NA→B [64]. For a group G with unitary channel rep-
resentations {UgA}g∈G and {VgB}g∈G acting on the input
system A and output system B of the channelNA→B , the
channel NA→B is covariant with respect to the group G
if the following equality holds for all g ∈ G:

NA→B ◦ UgA = VgB ◦ NA→B . (224)

If the averaging channel is such that 1
|G|
∑
g U

g
A(X) =

Tr[X]I/ |A|, then we simply say that the channel NA→B
is covariant.

Then from [65, Section 7], we conclude that a covariant
channel is PPT-simulable with associated resource state
given by the Choi state of the channel, i.e., ωA′B′ =
NA→B(ΦA′A). As such, covariant channels are resource-
seizable, so that the equality in Theorem 21 applies to all
covariant channels. Thus, the exact entanglement cost of
a covariant channel is equal to the exact entanglement
cost of its Choi state.

A. Erasure channel

The quantum erasure channel is denoted by

Ep(ρ) = (1− p)ρ+ p|e〉〈e|, (225)

where ρ is a d-dimensional input state, p ∈ [0, 1] is the
erasure probability, and |e〉〈e| is a pure erasure state or-
thogonal to every input state, so that the output state
has d+ 1 dimensions. This channel is covariant.

The Choi matrix of Ep is given by

JEp = (1− p)
d−1∑
i,j=0

|ii〉〈jj|+ p

d−1∑
i=0

|i〉〈i| ⊗ |e〉〈e|. (226)

By direct calculation, we find that

EPPT(Ep) = EPPT(JEp/d) (227)

= EN (JEp/d) (228)

= log(d[1− p] + p). (229)

B. Depolarizing channel

Consider the qudit depolarizing channel:

ND,p(ρ) = (1− p)ρ+
p

d2 − 1

∑
0≤i,j≤d−1
(i,j)6=(0,0)

XiZjρ(XiZj)†,

(230)

where p ∈ [0, 1] and X,Z are the generalized Pauli oper-
ators. This channel is covariant.

The Choi matrix of ND,p is

JND,p = d

[
(1− p)ΦAB +

p

d2 − 1
(1AB − ΦAB)

]
, (231)

where Φ = 1
d

∑d−1
i,j=0 |ii〉〈jj|. Observe that the state

JND,p
d

is an isotropic state. Applying the previous result from
(29), we conclude that

EPPT(ND,p) =

{
log d(1− p) if 1− p ≥ 1

d

0 if 1− p < 1
d

(232)
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C. Dephasing channel

The qubit dephasing channel is given as

Dq(ρ) = (1− q)ρ+ qZρZ. (233)

Note that this channel is covariant with respect to the
Heisenberg–Weyl group of unitaries. The Choi matrix of
Dq is as follows:

JDq = 2[(1− q)ψ1 + qψ2], (234)

where

|ψ1〉 =
1√
2

(|00〉+ |11〉), |ψ2〉 =
1√
2

(|00〉 − |11〉).
(235)

By direct calculation, we find that

EPPT(Dq) = EPPT(JDq/2) (236)

= EN (JDq/2) (237)

= log(1 + 2|q − 1/2|). (238)

We note that this approach also works for a d-
dimensional dephasing channel.

D. Amplitude damping channel

An amplitude damping channel corresponds to the
process of asymmetric relaxation in a quantum system,
which is a key noise process in quantum information sci-
ence. The qubit amplitude damping channel is given as

NAD,r =
∑1
i=0Ei · E

†
i with

E0 = |0〉〈0|+
√

1− r|1〉〈1|, E1 =
√
r|0〉〈1|, (239)

and where r ∈ [0, 1] is the damping parameter. This
channel is covariant with respect to {I, Z}, but not with
respect to a one-design. So Theorem 21 does not apply,
and we instead need to evaluate the exact entanglement
cost of this channel by applying Theorems 17 and 19.

We plot EPPT(NAD,r) in Figure 8 and compare it with
the max-Rains information of [49, 50]. The fact that
there is a gap between these two quantities demonstrates
that the resource theory of entanglement (exact PPT
case) is irreversible, given that the max-Rains informa-
tion is an upper bound on the exact distillable entangle-
ment of an arbitrary channel [46].

VI. EXACT ENTANGLEMENT COST OF
QUANTUM GAUSSIAN CHANNELS

In this subsection, we determine formulas for the ex-
act entanglement cost of particular quantum Gaussian
channels, which include all single-mode bosonic Gaussian
channels with the exception of the pure-loss and pure-
amplifier channels. In this sense, the results found here
are complementary to those found recently in [14, The-
orem 2]. The presentation and background given in this
section largely follows that given recently in [14].

0 0.2 0.4 0.6 0.8 1

r from 0 to 1

0

0.2

0.4

0.6

0.8

1

R
a

te

FIG. 8. This plot demonstrates the difference between
EPPT(NAD,r) and Rmax(NAD,r), where NAD,r is the ampli-
tude damping channel in Section V D. The solid line depicts
EPPT(NAD,r) while the dashed line depicts Rmax(NAD,r).
The parameter r ranges from 0 to 1, and the units of the
rate (vertical axis) are ebits per channels use.

A. Preliminary observations about the exact
entanglement cost of single-mode bosonic Gaussian

channels

The starting point for our analysis of single-mode
bosonic Gaussian channels is the Holevo classification
from [66], in which canonical forms for all single-mode
bosonic Gaussian channels have been given, classifying
them up to local Gaussian unitaries acting on the in-
put and output of the channel. It then suffices for us
to focus our attention on the canonical forms, as it is
self-evident from definitions that local unitaries do not
alter the exact entanglement cost of a quantum channel.
The thermal and amplifier channels form the class C dis-
cussed in [66], and the additive-noise channels form the
class B2 discussed in the same work. The classes that
remain are labeled A, B1, and D in [66]. The channels
in A and D are entanglement-breaking [67], and are thus
entanglement-binding, and as a consequence of Proposi-
tion 13 and Theorems 17 and 19, they have zero exact
entanglement cost. Channels in the class B1 are perhaps
not interesting for practical applications, and as it turns
out, they have infinite quantum capacity [66]. Thus, their
exact entanglement cost is also infinite, because a chan-
nel’s quantum capacity is a lower bound on its distill-
able entanglement, which is in turn a lower bound on its
partial transposition bound. The partial transposition
bound is finally a lower bound on its κ-entanglement, as
shown in Proposition 22. For the same reason, the exact
entanglement cost of the bosonic identity channel is also
infinite.



22

B. Thermal, amplifier, and additive-noise bosonic
Gaussian channels

In light of the previous discussion, for the remainder
of this section, let us focus our attention on the thermal,
amplifier, and additive-noise channels. Each of these are
defined respectively by the following Heisenberg input-
output relations:

b̂ =
√
ηâ+

√
1− ηê, (240)

b̂ =
√
Gâ+

√
G− 1ê†, (241)

b̂ = â+ (x+ ip) /
√

2, (242)

where â, b̂, and ê are the field-mode annihilation opera-
tors for the sender’s input, the receiver’s output, and the
environment’s input of these channels, respectively.

The channel in (240) is a thermalizing channel, in
which the environmental mode is prepared in a thermal
state θ(NB) of mean photon number NB ≥ 0, defined as

θ(NB) :=
1

NB + 1

∞∑
n=0

(
NB

NB + 1

)n
|n〉〈n|, (243)

where {|n〉}∞n=0 is the orthonormal, photonic number-
state basis. When NB = 0, the state θ(NB) reduces
to the vacuum state, in which case the resulting chan-
nel in (240) is called the pure-loss channel—it is said
to be quantum-limited in this case because the environ-
ment is injecting the minimum amount of noise allowed
by quantum mechanics. The parameter η ∈ (0, 1) is
the transmissivity of the channel, representing the av-
erage fraction of photons making it from the input to
the output of the channel. Let Lη,NB denote this chan-
nel, and we make the further abbreviation Lη ≡ Lη,NB=0

when it is the pure-loss channel. The channel in (240) is
entanglement-breaking when (1− η)NB ≥ η [67], and is
thus entanglement-binding in this case, and as a conse-
quence of Proposition 13 and Theorems 17 and 19, it has
zero exact entanglement cost for these values.

The channel in (241) is an amplifier channel, and the
parameter G > 1 is its gain. For this channel, the
environment is prepared in the thermal state θ(NB).
If NB = 0, the amplifier channel is called the pure-
amplifier channel—it is said to be quantum-limited for
a similar reason as stated above. Let AG,NB denote this
channel, and we make the further abbreviation AG ≡
AG,NB=0 when it is the quantum-limited amplifier chan-
nel. The channel in (241) is entanglement-breaking when
(G− 1)NB ≥ 1 [67], and is thus entanglement-binding,
and as a consequence of Proposition 13 and Theorems 17
and 19, it has zero exact entanglement cost for these val-
ues.

Finally, the channel in (242) is an additive-noise chan-
nel, representing a quantum generalization of the clas-
sical additive white Gaussian noise channel. In (242),
x and p are zero-mean, independent Gaussian random
variables each having variance ξ ≥ 0. Let Tξ denote this

channel. The channel in (242) is entanglement-breaking
when ξ ≥ 1 [67], and is thus entanglement-binding, and
as a consequence of Proposition 13 and Theorems 17 and
19, it has zero exact entanglement cost for these values.

Kraus representations for the channels in (240)–(242)
are available in [68], which can be helpful for further un-
derstanding their action on input quantum states.

Due to the entanglement-breaking regions discussed
above, we are left with a limited range of single-mode
bosonic Gaussian channels to consider, which is delin-
eated by the white strip in Figure 1 of [69].

C. Exact entanglement cost of thermal, amplifier,
and additive-noise bosonic Gaussian channels

We can now state our main result for this section,
which applies to all thermal, amplifier, and additive-
noise channels that are neither entanglement-breaking
nor quantum-limited:

Theorem 23 For a thermal channel Lη,NB with trans-
missivity η ∈ (0, 1) and thermal photon number NB ∈
(0, η/[1 − η]), an amplifier channel AG,NB with gain
G > 1 and thermal photon number NB ∈ (0, 1/[G − 1]),
and an additive-noise channel Tξ with noise variance
ξ ∈ (0, 1], the following formulas characterize the exact
entanglement costs of these channels:

EPPT(Lη,NB ) = E
(p)
PPT(Lη,NB )

= log

(
1 + η

(1− η)(2NB + 1)

)
, (244)

EPPT(AG,NB ) = E
(p)
PPT(AG,NB )

= log

(
G+ 1

(G− 1)(2NB + 1)

)
, (245)

EPPT(Tξ) = E
(p)
PPT(Tξ) = log(1/ξ). (246)

Proof. To arrive at the following inequalities:

EPPT(Lη,NB ) ≤ log

(
1 + η

(1− η)(2NB + 1)

)
, (247)

EPPT(AG,NB ) ≤ log

(
G+ 1

(G− 1)(2NB + 1)

)
, (248)

EPPT(Tξ) ≤ log(1/ξ), (249)

we apply Proposition 20, along with some recent de-
velopments, to the single-mode thermal, amplifier, and
additive-noise channels that are neither entanglement-
breaking nor quantum-limited. Some recent papers
[16, 70, 71] have shown how to simulate each of these
channels by using a bosonic Gaussian resource state along
with variations of the continuous-variable quantum tele-
portation protocol [72]. Of these works, the one most rel-
evant for us is the original one [16], because these authors
proved that the logarithmic negativity of the underlying
resource state is equal to the logarithmic negativity that
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results from transmitting through the channel one share
of a two-mode squeezed vacuum state with arbitrarily
large squeezing strength. That is, let NA→B denote a
single-mode thermal, amplifier, or additive-noise chan-
nel. Then one of the main results of [16] is that, associ-
ated to this channel, there is a bosonic Gaussian resource
state ωA′B′ and a Gaussian LOCC channel GAA′B′→B
such that

EN (ωA′B′) = sup
NS≥0

EN (σNSRB) (250)

= lim
NS→∞

EN (σNSRB), (251)

where

σNSRB := NA→B(φNSRA), (252)

φNSRA := |φNS 〉〈φNS |RA, (253)

|φNS 〉RA :=
1√

NS + 1

∞∑
n=0

√(
NS

NS + 1

)n
|n〉R|n〉A,

(254)

and for every input state ρA,

NA→B(ρA) = GAA′B′→B(ρA ⊗ ωA′B′). (255)

In the above, φNSRA is the two-mode squeezed vacuum state
[35]. Note that the equality in (251) holds because one

can always produce φNSRA from φ
N ′S
RA such that N ′S ≥ NS ,

by using Gaussian LOCC and the local displacements in-
volved in the Gaussian LOCC commute with the channel
NA→B [73] (whether it be thermal, amplifier, or additive-
noise). Furthermore, the logarithmic negativity does not
increase under the action of an LOCC channel.

Thus, applying the above observations and Proposi-
tion 20, it follows that there exist bosonic Gaussian re-

source states ωη,NBA′B′ , ω
G,NB
A′B′ , and ωξA′B′ associated to the

respective thermal, amplifier, and additive-noise channels
in (240)–(242), such that the following inequalities hold

EPPT(Lη,NB ) ≤ Eκ(ωη,NBA′B′ ) = EN (ωη,NBA′B′ )

= log

(
1 + η

(1− η)(2NB + 1)

)
, (256)

EPPT(AG,NB ) ≤ Eκ(ωG,NBA′B′ ) = EN (ωG,NBA′B′ )

= log

(
G+ 1

(G− 1)(2NB + 1)

)
, (257)

EPPT(Tξ) ≤ Eκ(ωξA′B′) = EN (ωξA′B′)

= log(1/ξ). (258)

where the first equalities in each line follow because Eκ =
EN for bosonic Gaussian states (see (12) and [8]), and
the explicit formulas on the right-hand side are found in
[16, 17].

On the other hand, Theorems 17 and 19 imply that

EPPT(Lη,NB ) = E
(p)
PPT(Lη,NB ) (259)

≥ lim
NS→∞

EN (ση,NB (NS)RB) (260)

= log

(
1 + η

(1− η)(2NB + 1)

)
, (261)

EPPT(AG,NB ) = E
(p)
PPT(AG,NB ) (262)

≥ lim
NS→∞

EN (σG,NB (NS)RB) (263)

= log

(
G+ 1

(G− 1)(2NB + 1)

)
, (264)

EPPT(Tξ) = E
(p)
PPT(Tξ) (265)

≥ lim
NS→∞

EN (σξ(NS)RB) (266)

= log(1/ξ). (267)

Combining the inequalities above, we conclude the state-
ment of the theorem. �

The significance of Theorem 23 above is that it estab-
lishes a clear operational meaning of the Holevo–Werner
quantity [17] (partial transposition bound) for the ba-
sic bosonic channels that are not quantum limited. This
quantity has been used for a variety of purposes in prior
work, as an upper bound on unassisted quantum capac-
ity [17], as an upper bound on LOCC-assisted quantum
capacity [74], as a tool in arriving at a no-go theorem for
Gaussian quantum error correction [75], and as a tool in
the teleportation simulation of bosonic Gaussian chan-
nels [16]. Finally, Theorem 23 solves the long-standing
open problem of giving the Holevo–Werner quantity a
direct operational meaning for the basic bosonic chan-
nels, in terms of exact entanglement cost of parallel and
sequential channel simulation.

In light of the results stated in Theorem 23, it is quite
natural to conjecture that the following formulas hold for
the pure-loss and pure-amplifier channels with η ∈ (0, 1)
and G > 1, respectively:

EPPT(Lη) = E
(p)
PPT(Lη)

?
= log

(
1 + η

1− η

)
, (268)

EPPT(AG) = E
(p)
PPT(AG)

?
= log

(
G+ 1

G− 1

)
. (269)

Theorems 17 and 19 imply that the following inequalities
hold

EPPT(Lη) = E
(p)
PPT(Lη) ≥ log

(
1 + η

1− η

)
, (270)

EPPT(AG) = E
(p)
PPT(AG) ≥ log

(
G+ 1

G− 1

)
. (271)

However, what excludes us from making a rigorous state-
ment about the opposite inequalities is the lack of a
legitimate quantum state that can be used to simulate
these channels exactly, as was the case for the channels
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considered in Theorem 23. For example, it is not clear
that we could simply “plug in” the “EPR state” (i.e.,

the limiting object limNS→∞ φNSRA) and use the telepor-
tation simulation argument as before. There are several
issues: the limiting object is not actually a state and any
finite squeezing leads to a slight error or inexact simu-
lation. In spite of these obstacles, we think that it is
highly plausible that the equalities in (268)–(269) hold.
More generally, based on the results of [75], we suspect
that the following equality holds for an arbitrary Gaus-
sian channel N described by a scaling matrix X and a
noise matrix Y [35]:

EPPT(N )
?
= QΘ(N )

?
=

1

2
log min

{
(1 + detX)2

detY
, 1

}
.

(272)

VII. CONCLUDING REMARKS

In the zoo of entanglment measures [1, 2, 76], the κ-
entanglement of a bipartite state is the first entanglement
measure that is efficiently computable while possessing a
direct operational meaning for general bipartite states.

This unique feature of Eκ may help us better under-
stand the structure and power of quantum entanglement.
As a generalization of this notion, the κ-entanglement of
a quantum channel is also efficiently computable while
possessing a direct operational meaning as the entangle-
ment cost for exact parallel and sequential simulation of
a quantum channel.

Going forward from here, the most pressing open ques-
tion is to determine whether the formula in (272) holds,
for the exact entanglement cost of quantum Gaussian
channels. One could potentially require new methods be-
yond the scope of this paper in order to establish (272).
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Appendix A: Equality of Eκ and Edual
κ for states

acting on separable Hilbert spaces

In this appendix, we prove that

Eκ(ρAB) = Edual
κ (ρAB), (A1)

for a state ρAB acting on a separable Hilbert space. To
begin with, let us recall that the following inequality al-
ways holds from weak duality

Eκ(ρAB) ≥ Edual
κ (ρAB). (A2)

So our goal is to prove the opposite inequality. We sup-
pose throughout that Edual

κ (ρAB) < ∞. Otherwise, the
desired equality in (A1) is trivially true. We also sup-
pose that ρAB has full support. Otherwise, it is finite-
dimensional and the desired equality in (A1) is trivially
true.

To this end, consider sequences {Πk
A}k and {Πk

B}k of
projectors weakly converging to the identities 1A and
1B and such that Πk

A ≤ Πk′

A and Πk
B ≤ Πk′

B for k′ ≥ k.
Furthermore, we suppose that [Πk

B ]TB = Πk
B for all k.

Then define

ρkAB :=
(
Πk
A ⊗Πk

B

)
ρAB

(
Πk
A ⊗Πk

B

)
. (A3)

https://www.research.ibm.com/people/b/bennetc/QUPONBshort.pdf
https://www.research.ibm.com/people/b/bennetc/QUPONBshort.pdf


27

It follows that [77]

lim
k→∞

∥∥ρAB − ρkAB∥∥1
= 0. (A4)

We now prove that

Edual
κ (ρAB) ≥ Edual

κ (ρkAB) (A5)

for all k. Let Ak and Bk denote the subspaces onto which
Πk
A and Πk

B project. Let V kAkBk and W k
AkBk be arbitrary

operators satisfying V kAB +W k
AB ≤ 1AkBk =

(
Πk
A ⊗Πk

B

)
,

[V kAkBk ]TB , [W k
AkBk ]TB ≥ 0. Set

V
k

AB :=
(
Πk
A ⊗Πk

B

)
V kAkBk

(
Πk
A ⊗Πk

B

)
, (A6)

W
k

AB :=
(
Πk
A ⊗Πk

B

)
W k
AkBk

(
Πk
A ⊗Πk

B

)
, (A7)

and note that

V
k

AB +W
k

AB ≤ 1AB , (A8)

[V
k

AB ]TB , [W
k

AB ]TB ≥ 0. (A9)

Then

Tr ρkAB(V kAkBk −W k
AkBk)

= Tr
(
Πk
A ⊗Πk

B

)
ρAB

(
Πk
A ⊗Πk

B

)
(V kAkBk −W k

AkBk)

(A10)

= Tr ρAB
(
Πk
A ⊗Πk

B

)
(V kAkBk −W k

AkBk)
(
Πk
A ⊗Πk

B

)
(A11)

= Tr ρAB(V
k

AB −W
k

AB) (A12)

≤ Edual
κ (ρAB). (A13)

Since the inequality holds for arbitrary V kAkBk and

W k
AkBk satisfying the conditions above, we conclude the

inequality in (A5).
Thus, we conclude that

Edual
κ (ρAB) ≥ lim sup

k→∞
Edual
κ (ρkAB). (A14)

Now let us suppose that Edual
κ (ρAB) < ∞. Then

for all VAB and WAB satisfying VAB + WAB ≤ 1AB ,
[VAB ]TB , [WAB ]TB ≥ 0, as well as Tr ρAB(VAB−WAB) ≥
0, we have that

Tr ρAB(VAB −WAB) <∞. (A15)

Since ρAB has full support, this means that

‖VAB −WAB‖∞ <∞. (A16)

Considering that from Hölder’s inequality∣∣Tr(ρAB − ρkAB)(VAB −WAB)
∣∣ ≤∥∥ρAB − ρkAB∥∥1
‖VAB −WAB‖∞ , (A17)

and setting

V kAB :=
(
Πk
A ⊗Πk

B

)
VAB

(
Πk
A ⊗Πk

B

)
, (A18)

W k
AB :=

(
Πk
A ⊗Πk

B

)
WAB

(
Πk
A ⊗Πk

B

)
, (A19)

we conclude that

Tr ρAB(VAB −WAB)

≤ lim inf
k→∞

Tr ρkAB(VAB −WAB) (A20)

= lim inf
k→∞

Tr ρkAB(V kAB −W k
AB) (A21)

≤ lim inf
k→∞

sup
V k,Wk

Tr ρkAB(V kAB −W k
AB) (A22)

= lim inf
k→∞

Edual
κ (ρkAB). (A23)

Since the inequality holds for arbitrary VAB and WAB

satisfying the above conditions, we conclude that

Edual
κ (ρAB) ≤ lim inf

k→∞
Edual
κ (ρkAB). (A24)

Putting together (A14) and (A24), we conclude that

Edual
κ (ρAB) = lim

k→∞
Edual
κ (ρkAB). (A25)

From strong duality for the finite-dimensional case, we
have for all k that

Edual
κ (ρkAB) = Eκ(ρkAB), (A26)

and thus that

lim
k→∞

Edual
κ (ρkAB) = lim

k→∞
Eκ(ρkAB). (A27)

It thus remains to prove that

lim
k→∞

Eκ(ρkAB) = Eκ(ρAB). (A28)

We first prove that

Eκ(ρAB) ≥ lim sup
k→∞

Eκ(ρkAB). (A29)

Let SAB be an arbitrary operator satisfying

SAB ≥ 0, −STBAB ≤ ρTBAB ≤ STBAB . (A30)

Then, defining SkAB =
(
Πk
A ⊗Πk

B

)
SAB

(
Πk
A ⊗Πk

B

)
, we

have that

SkAB ≥ 0, −[SkAB ]TB ≤ [ρkAB ]TB ≤ [SkAB ]TB . (A31)

Then

log TrSAB ≥ log TrSkAB ≥ Eκ(ρkAB). (A32)

Since the inequality holds for all SAB satisfying (A30),
we conclude that

Eκ(ρAB) ≥ Eκ(ρkAB) (A33)

for all k, and thus (A29) holds.
The rest of the proof follows [20] closely. Since the

condition Πk
A ≤ Πk′

A and Πk
B ≤ Πk′

B for k′ ≥ k holds,
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in fact the same sequence of steps as above allows for
concluding that

Eκ(ρk
′

AB) ≥ Eκ(ρkAB), (A34)

meaning that the sequence is monotone non-decreasing
with k. Thus, we can define

µ := lim
k→∞

Eκ(ρkAB) ∈ R+, (A35)

and note from the above that

µ ≤ Eκ(ρAB). (A36)

For each k, let SkAB denote an optimal operator such that
Eκ(ρkAB) = log TrSkAB . From the fact that SkAB ≥ 0, and
TrSkAB ≤ 2µ, we conclude that {SkAB}k is a bounded
sequence in the trace class operators. Since the trace
class operators form the dual space of the compact oper-
ators K(HAB) [78], we can apply the Banach–Alaoglu

theorem [78] to find a subsequence {SkAB}k∈Γ with a

weak∗ limit S̃AB in the trace class operators such that

S̃AB ≥ 0 and Tr[S̃AB ] ≤ 2µ. Furthermore, the se-
quences [ρkAB ]TB + [SkAB ]TB and [SkAB ]TB − [ρkAB ]TB con-

verge in the weak operator topology to ρTBAB + S̃TBAB and

S̃TBAB − ρTBAB , respectively, and we can then conclude that

ρTBAB + S̃TBAB , S̃
TB
AB − ρTBAB ≥ 0. But this means that

Eκ(ρAB) ≤ log Tr S̃AB ≤ µ, (A37)

which implies that

Eκ(ρAB) ≤ lim inf
k→∞

Eκ(ρkAB). (A38)

Putting together (A29) and (A38), we conclude that

Eκ(ρAB) = lim
k→∞

Eκ(ρkAB). (A39)

Finally, putting together (A25), (A27), and (A39), we
conclude (A1).
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