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The ideal realization of quantum teleportation relies on having access to a maximally entangled state; however,
in practice, such an ideal state is typically not available and one can instead only realize an approximate
teleportation. With this in mind, we present a method to quantify the performance of approximate teleportation
when using an arbitrary resource state. More specifically, after framing the task of approximate teleportation
as an optimization of a simulation error over one-way local operations and classical communication (LOCC)
channels, we establish a semi-definite relaxation of this optimization task by instead optimizing over the larger
set of two-PPT-extendible channels. The main analytical calculations in our paper consist of exploiting the
unitary covariance symmetry of the identity channel to establish a significant reduction of the computational
cost of this latter optimization. Next, by exploiting known connections between approximate teleportation and
quantum error correction, we also apply these concepts to establish bounds on the performance of approximate
quantum error correction over a given quantum channel. Finally, we evaluate our bounds for various examples
of resource states and channels.

I. INTRODUCTION

Teleportation is one of the most basic protocols in quantum
information science [1]. By means of two bits of classical
communication and an entangled pair of qubits (a so-called
resource state), it is possible to transmit a qubit from one lo-
cation to another. This protocol demonstrates the fascinating
possibilities available under the distant laboratories paradigm
of local operations and classical communication (LOCC), and
it prompted the development of the resource theory of en-
tanglement [2]. Teleportation is so ubiquitous in quantum
information science now, that nearly every subfield (fault-
tolerant computing, error correction, cryptography, commu-
nication complexity, Shannon theory, etc.) employs it in some
manner. A number of impressive teleportation experiments
have been conducted over the past few decades [3–10].

The teleportation protocol assumes an ideal resource state;
however, if the resource state shared between the two parties is
imperfect, then the teleportation protocol no longer simulates
an ideal quantum channel, but rather some approximation of
it [11, 12]. This problem has been studied considerably in the
literature and is related to the well-known problem of entan-
glement distillation [2, 13]. Recently, it has been addressed in
a precise and general operational way, in terms of a meaningful
channel distinguishability measure [14, Definition 19].

In the seminal work [2], a connection was forged between
entanglement distillation and approximate quantum error cor-
rection. There, it was shown that certain one-way LOCC
entanglement distillation protocols can be converted to ap-
proximate quantum error correction protocols, and vice versa.
Thus, techniques for analyzing entanglement distillation can
be used to analyze quantum error correction and vice versa.

In this paper, we obtain bounds on the performance of tele-
portation when using an imperfect resource state, and by ex-
ploiting the aforementioned connection, we address a related

problem for approximate quantum error correction. We thus
consider our paper to offer two distinct, yet related contribu-
tions. The conceptual approach that we take here is linked
to that of [15], which was concerned with a more involved
protocol called bidirectional teleportation; it is also linked to
[16, 17], which introduced the set of 𝑘-extendible channels as a
semi-definite relaxation of the set of one-way LOCC channels.
Our approach has strong links as well with that taken in [18],
the latter concerned with bounding the performance of approx-
imate quantum error correction by means of 𝑘-PPT-extendible
channels; these channels were introduced in [18] as a semi-
definite relaxation of the set of one-way LOCC channels that
forms a tighter containment than 𝑘-extendible channels alone.
In fact, our method applied to the problem of approximate
quantum error correction can be understood as exploiting fur-
ther symmetries available when simulating the identity chan-
nel, in order to reduce the computational complexity required
to calculate the bounds given in [18].

Let us discuss our first contribution in a bit more detail. Sup-
pose that the goal is to use a bipartite resource state 𝜌𝐴𝐵 along
with one-way LOCC to simulate a perfect quantum channel of
dimension 𝑑. It is not always possible to perform this simula-
tion exactly, and for most resource states, an error will occur.
We can quantify the simulation error either in terms of the
diamond distance [19] or the channel infidelity [20]. However,
we prove here that the simulation error is the same, regardless
of whether we use the channel infidelity or the diamond dis-
tance, when quantifying the deviation between the simulation
and an ideal quantum channel (note that a similar result was
found previously in [15] and we exploit similar techniques to
arrive at our conclusion here). Next, in order to obtain a lower
bound on the simulation error, and due to the fact that it is
computationally challenging to optimize over one-way LOCC
channels, we optimize the error over the larger set of two-
PPT-extendible channels (defined in Section II B 5) and show
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that the resulting quantity can be calculated by means of a
semi-definite program. By exploiting the unitary covariance
symmetry of the ideal quantum channel, we reduce the com-
putational complexity of the semi-definite program to depend
only on the dimension of the resource state 𝜌𝐴𝐵 being consid-
ered. This constitutes our main contribution to the analysis of
teleportation with an imperfect resource state. We also provide
a general formulation of the simulation problem when trying
to simulate an arbitrary channel using one-way LOCC and a
resource state.

The second contribution of our paper employs a similar line
of reasoning to obtain a lower bound on the simulation error
of approximate quantum error correction. In this setting, in-
stead of a bipartite state, two parties have at their disposal a
quantum channel N𝐴→𝐵, for which they can prepend an en-
coding and append a decoding in order to simulate a perfect
quantum channel of dimension 𝑑. This encoding and decod-
ing can be understood as a superchannel [21] that transforms
N𝐴→𝐵 into an approximation of the perfect quantum chan-
nel. It is clear that the simulation error cannot increase by
allowing for a superchannel realized by one-way local opera-
tions and common randomness (LOCR), and here, following
the approach outlined above, we find a lower bound on the
simulation error by optimizing instead over the larger class of
two-PPT-extendible superchannels with an extra non-signaling
constraint. Critically, this lower bound can be calculated by
means of a semi-definite program. As indicated above, this
problem was previously considered in [18], but our contribu-
tion is that the semi-definite programming lower bound re-
ported here has a substantially reduced computational com-
plexity, depending only on the input and output dimensions of
the channel N𝐴→𝐵 of interest.

A. Organization of the paper

Our paper is organized into two major parts, according to
the contributions mentioned above. The first part (Sections II-
IV) details our contribution to quantifying the performance
of approximate teleportation. The second part (Sections V-
VII) details our contribution to quantifying the performance
of approximate quantum error correction.

The first part of our paper is organized as follows: Section II
provides some background on quantum states and channels,
with an emphasis on LOCC and LOCR bipartite channels.
Section III establishes a measure for the performance of quan-
tum channel simulation, namely, in terms of the normalized
diamond distance and channel infidelity. We prove here that
these two error measures are equal when the goal is to simulate
the identity channel, following as a consequence of the uni-
tary covariance symmetry of the identity channel. Section IV
presents the major contribution of the first part, a semi-definite
program (SDP) that gives a lower bound on the simulation error
of approximate teleportation when using an arbitrary bipartite
resource state and one-way LOCC channels. This SDP is fur-
ther simplified by exploiting the aforementioned symmetry of
the identity channel to reduce the computational cost of the
optimization task significantly.

The second part of our paper is organized as follows: Sec-
tion V provides background on quantum superchannels to gen-
eralize the concepts of one-way LOCC and LOCR bipartite
channels to superchannels. Section VI explores the task of
channel simulation, i.e., simulating a quantum channel from
an arbitrary quantum channel and LOCR superchannels. The
performance of channel simulation is again quantified with the
normalized diamond distance and channel infidelity, and again
the error measures are equal when the goal is to simulate the
identity channel with the assistance of common randomness.
Section VII presents the major contribution of the second part,
an SDP that gives a lower bound on the error in simulating a
quantum channel with an arbitrary channel and LOCR super-
channels. We detail a much simplified SDP for the simulation
of an identity channel, the case of interest in approximate
quantum error correction, by leveraging its unitary covariance
symmetry.

Section VIII presents plots that result from numerical cal-
culations of our SDP error bounds. The first example in Sec-
tion VIII A bounds the error in approximate teleportation using
a certain mixed state as the resource state, demonstrating that
two-PPT-extendiblity constraints can achieve tighter bounds
when compared to PPT constraints alone. The second exam-
ple in Section VIII B considers the bounds when using a lower
dimensional resource state to simulate a higher dimensional
identity channel. The next example in Section VIII C con-
siders the bounds for qubit and qutrit depolarizing channels.
The penultimate example in Section VIII D bounds the error
in approximate teleportation when using two-mode squeezed
states as the resource state. The final example in Section VIII E
bounds the error in simulating an identity channel when us-
ing the three-level amplitude damping channel [22], and it is
thus an example of our bound applied to approximate quantum
error correction.

Section IX concludes by discussing several open questions
for future work. We note here that Python code for calculating
the SDPs in our paper is available with its arXiv posting.

II. BACKGROUND ON STATES, CHANNELS, AND
BIPARTITE CHANNELS

We recall some basic facts about quantum information the-
ory in this section to fix our notation before proceeding; more
detailed background can be found in [23–27].

A. States and channels

A quantum state or density operator, usually denoted by
𝜌𝐴, 𝜎𝐴, etc., is a positive semi-definite, unit trace operator
acting on a Hilbert spaceH𝐴. The Heisenberg–Weyl operators
are unitary transformations of quantum states, defined for all
𝑥, 𝑧 ∈ {0, 1, . . . , 𝑑 − 1} as

𝑍 (𝑧) B
𝑑−1∑︁
𝑘=0

𝑒
2𝜋𝑖𝑘𝑧

𝑑 |𝑘〉〈𝑘 |, (1)
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𝑋 (𝑥) B
𝑑−1∑︁
𝑘=0

|𝑘 ⊕𝑑 𝑥〉〈𝑘 |, (2)

𝑊 𝑧,𝑥 B 𝑍 (𝑧)𝑋 (𝑥), (3)

where ⊕𝑑 denotes addition modulo 𝑑.
A quantum channel is a completely positive (CP), trace-

preserving (TP) map. Let N𝐴→𝐵 denote a quantum channel
that accepts as input a linear operator acting on a Hilbert
space H𝐴 and outputs a linear operator acting on a Hilbert
space H𝐵. For short, we say that the channel takes system 𝐴

to system 𝐵, where systems are identified with Hilbert spaces.
Let ΓN

𝑅𝐵
denote the Choi operator of a channel N𝐴→𝐵:

ΓN
𝑅𝐵 B N𝐴→𝐵 (Γ𝑅𝐴), (4)

where

Γ𝑅𝐴 B

𝑑𝐴−1∑︁
𝑖, 𝑗=0

|𝑖〉〈 𝑗 |𝑅 ⊗ |𝑖〉〈 𝑗 |𝐴 (5)

is the unnormalized maximally entangled operator and
{|𝑖〉𝑅}𝑑𝐴−1

𝑖=0 and {|𝑖〉𝐴}𝑑𝐴−1
𝑖=0 are orthonormal bases.

The Choi representation of a channel is isomorphic to the
superoperator representation and provides a convenient means
of characterizing a channel. Namely, a channel M𝐴→𝐵 is
completely positive if and only if its Choi operator ΓM

𝑅𝐵
is

positive semi-definite and a channelM𝐴→𝐵 is trace preserving
if and only if its Choi operator ΓM

𝑅𝐵
satisfies Tr𝐵 [ΓM

𝑅𝐵
] = 𝐼𝑅.

B. Bipartite channels

A bipartite channel N𝐴𝐵→𝐴′𝐵′ maps input systems 𝐴 and 𝐵
to output systems 𝐴′ and 𝐵′. In this model, we assume that
a single party Alice has access to systems 𝐴 and 𝐴′, while
another party Bob has access to systems 𝐵 and 𝐵′. The Choi
operator for a bipartite channel N𝐴𝐵→𝐴′𝐵′ is as follows:

ΓN
𝐴̃𝐵̃𝐴′𝐵′ = N𝐴𝐵→𝐴′𝐵′ (Γ𝐴̃𝐴 ⊗ Γ𝐵̃𝐵). (6)

1. One-way LOCC channels

A bipartite channel L𝐴𝐵→𝐴′𝐵′ is a one-way LOCC (1WL)
channel if it can be written as follows:

L𝐴𝐵→𝐴′𝐵′ =
∑︁
𝑥

E𝑥𝐴→𝐴′ ⊗ D𝑥
𝐵→𝐵′ , (7)

where {E𝑥
𝐴→𝐴′}𝑥 is a set of completely positive maps, such that

the sum map
∑
𝑥 E𝑥𝐴→𝐴′ is trace preserving, and {D𝑥

𝐵→𝐵′}𝑥
is a set of quantum channels. The idea here is that Alice
acts on her system 𝐴 with a quantum instrument described
by {E𝑥

𝐴→𝐴′}𝑥 , transmits the classical outcome 𝑥 of the mea-
surement over a classical communication channel to Bob, who
subsequently applies the quantum channel D𝑥

𝐵→𝐵′ to his sys-
tem 𝐵. A key example of a one-way LOCC channel is in the

teleportation protocol: given that Alice and Bob share a maxi-
mally entangled state in systems 𝐴̂𝐵̂ and Alice has prepared the
system 𝐴0 that she would like to teleport, the one-way LOCC
channel consists of Alice performing a Bell measurement on
systems 𝐴0 𝐴̂ (quantum instrument), sending the measurement
outcome to Bob (classical communication), who then applies
a Heisenberg–Weyl correction operation on system 𝐵 condi-
tioned on the classical communication from Alice. One-way
LOCC channels are central in our analysis of approximate
teleportation.

2. LOCR channels

A subset of one-way LOCC channels consists of those that
can be implemented by local operations and common random-
ness (LOCR). These channels have the following form:

C𝐴𝐵→𝐴′𝐵′ =
∑︁
𝑦

𝑝(𝑦)E𝑦
𝐴→𝐴′ ⊗ D𝑦

𝐵→𝐵′ , (8)

where {𝑝(𝑦)}𝑦 is a probability distribution and {E𝑦
𝐴→𝐴′}𝑦 and

{D𝑦

𝐵→𝐵′}𝑦 are sets of quantum channels. The main difference
between one-way LOCC and LOCR is that, in the latter case,
the channel is simply a probabilistic mixture of local chan-
nels. In order to simulate them, classical communication is
not needed, and only the weaker resource of common random-
ness is required. Thus, the following containment holds:

LOCR ⊂ 1WL . (9)

These channels play a role in our analysis of approximate
quantum error correction and channel simulation.

3. Two-extendible channels

A bipartite channel N𝐴𝐵→𝐴′𝐵′ is two-extendible [16, 17], if
there exists an extension channel M𝐴𝐵1𝐵2→𝐴′𝐵′

1𝐵
′
2

satisfying
permutation covariance:

M𝐴𝐵1𝐵2→𝐴′𝐵′
1𝐵

′
2
◦ F𝐵1𝐵2 = F𝐵′

1𝐵
′
2
◦M𝐴𝐵1𝐵2→𝐴′𝐵′

1𝐵
′
2

(10)

and the following non-signaling constraint:

Tr𝐵2′ ◦M𝐴𝐵1𝐵2→𝐴′𝐵′
1𝐵

′
2
= N𝐴𝐵1→𝐴′𝐵′

1
⊗ Tr𝐵2 . (11)

In the above, F𝐵1𝐵2 is the unitary swap channel that permutes
systems 𝐵1 and 𝐵2, and F𝐵′

1𝐵
′
2

is defined similarly. Also, Tr
denotes the partial trace channel. Note that the two conditions
in (10) and (11) imply that the original channel N𝐴𝐵→𝐴′𝐵′ is
non-signaling from Bob to Alice, i.e.,

Tr𝐵′ ◦N𝐴𝐵→𝐴′𝐵′ = Tr𝐵′ ◦N𝐴𝐵→𝐴′𝐵′ ◦ R 𝜋
𝐵, (12)

where

R 𝜋
𝐵 (·) B Tr[·]𝜋𝐵 (13)

is a replacer channel that traces out its input and replaces it
with the maximally mixed state 𝜋𝐵 B 𝐼

𝑑𝐵
. We provide a proof

of (12) in Appendix A.
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More generally, 𝑘-extendible channels were defined in
[16, 17], and a resource theory was constructed based on
them. However, we only make use of two-extendible chan-
nels in this work, and we leave the study of our problem using
𝑘-extendible channels for future work. See [18] for an alter-
native definition of 𝑘-extendible channels that appeared after
the original proposal of [16]. A key insight of [16, 17] is that
the set of one-way LOCC channels is contained in the set of
two-extendible channels, and we make use of this observation
in our paper.

A bipartite channel N𝐴𝐵→𝐴′𝐵′ is two-extendible if and only
if its Choi operatorΓN

𝐴𝐵𝐴′𝐵′ is such that there exists a Hermitian
operator ΓM

𝐴𝐵1𝐵2𝐴′𝐵′
1𝐵

′
2

satisfying [16, 17]

(F𝐵1𝐵2 ⊗ F𝐵′
1𝐵

′
2
) (ΓM

𝐴𝐵1𝐵2𝐴′𝐵′
1𝐵

′
2
) = ΓM

𝐴𝐵1𝐵2𝐴′𝐵′
1𝐵

′
2
, (14)

Tr𝐵′
2
[ΓM
𝐴𝐵1𝐵2𝐴′𝐵′

1𝐵
′
2
] = ΓN

𝐴𝐵1𝐴′𝐵′
1
⊗ 𝐼𝐵2 , (15)

ΓM
𝐴𝐵1𝐵2𝐴′𝐵′

1𝐵
′
2
≥ 0, (16)

Tr𝐴′𝐵′
1𝐵

′
2
[ΓM
𝐴𝐵1𝐵2𝐴′𝐵′

1𝐵
′
2
] = 𝐼𝐴𝐵1𝐵2 . (17)

The condition in (14) holds if and only if (10) does. The
condition in (15) holds if and only if (11) does. Finally, (16)
holds if and only ifM𝐴𝐵1𝐵2→𝐴′𝐵′

1𝐵
′
2
is completely positive, and

(17) holds if and only if M𝐴𝐵1𝐵2→𝐴′𝐵′
1𝐵

′
2

is trace preserving.
Related to the above, the conditions in (14) and (15) imply
the following non-signaling condition on the Choi operator of
N𝐴𝐵→𝐴′𝐵′ :

Tr𝐵′ [ΓN
𝐴𝐵𝐴′𝐵′] =

1
𝑑𝐵

Tr𝐵𝐵′ [ΓN
𝐴𝐵𝐴′𝐵′] ⊗ 𝐼𝐵, (18)

which is equivalent to (12).

4. Completely positive-partial-transpose preserving channels

A bipartite channel N𝐴𝐵→𝐴′𝐵′ is completely positive-
partial-transpose preserving (C-PPT-P) [28, 29] if the map
𝑇𝐵′ ◦ N𝐴𝐵→𝐴′𝐵′ ◦ 𝑇𝐵 is completely positive. Here, 𝑇𝐵 is the
partial transpose map, defined as the following superoperator:

𝑇𝐵 (·) B
∑︁
𝑖, 𝑗

|𝑖〉〈 𝑗 |𝐵 (·) |𝑖〉〈 𝑗 |𝐵 . (19)

See also [30]. The set of one-way LOCC channels is contained
in the set of C-PPT-P channels [28, 29], and we also make use
of this observation in our paper. A bipartite channelN𝐴𝐵→𝐴′𝐵′

is C-PPT-P if and only if its Choi operator ΓN
𝐴𝐵𝐴′𝐵′ satisfies

ΓN
𝐴𝐵𝐴′𝐵′ ≥ 0, (20)

Tr𝐴′𝐵′ [ΓN
𝐴𝐵𝐴′𝐵′] = 𝐼𝐴𝐵, (21)

𝑇𝐵𝐵′ (ΓN
𝐴𝐵𝐴′𝐵′) ≥ 0, (22)

where𝑇𝐵𝐵′ is the partial transpose acting on systems 𝐵 and 𝐵′.
We note that the C-PPT-P constraint has been used in prior
work on bounding the simulation error in bidirectional tele-
portation [15]. See also [31–35] for other contexts.

5. Two-PPT-extendible channels

We can combine the above constraints in a non-trivial way to
define the set of two-PPT-extendible channels, and we note that
this was considered recently in [18, Remark after Lemma 4.10],
as a generalization of the concept employed for bipartite states
[36, 37]. Explicitly, a bipartite channel N𝐴𝐵→𝐴′𝐵′ is two-PPT-
extendible if there exists an extension channelM𝐴𝐵1𝐵2→𝐴′𝐵′

1𝐵
′
2

satisfying the following conditions of permutation covariance,
non-signaling, and being completely-PPT-preserving:

M𝐴𝐵1𝐵2→𝐴′𝐵′
1𝐵

′
2
◦ F𝐵1𝐵2 = F𝐵′

1𝐵
′
2
◦M𝐴𝐵1𝐵2→𝐴′𝐵′

1𝐵
′
2
, (23)

Tr𝐵2′ ◦M𝐴𝐵1𝐵2→𝐴′𝐵′
1𝐵

′
2
= N𝐴𝐵1→𝐴′𝐵′

1
⊗ Tr𝐵2 , (24)

𝑇𝐵′
2
◦M𝐴𝐵1𝐵2→𝐴′𝐵′

1𝐵
′
2
◦ 𝑇𝐵2 ∈ CP, (25)

𝑇𝐴′ ◦M𝐴𝐵1𝐵2→𝐴′𝐵′
1𝐵

′
2
◦ 𝑇𝐴 ∈ CP . (26)

It is redundant to demand further that the following constraints
hold:

𝑇𝐵′
1
◦M𝐴𝐵1𝐵2→𝐴′𝐵′

1𝐵
′
2
◦ 𝑇𝐵1 ∈ CP, (27)

𝑇𝐴′𝐵′
1
◦M𝐴𝐵1𝐵2→𝐴′𝐵′

1𝐵
′
2
◦ 𝑇𝐴𝐵1 ∈ CP, (28)

𝑇𝐴′𝐵′
2
◦M𝐴𝐵1𝐵2→𝐴′𝐵′

1𝐵
′
2
◦ 𝑇𝐴𝐵2 ∈ CP, (29)

𝑇𝐵′
1𝐵

′
2
◦M𝐴𝐵1𝐵2→𝐴′𝐵′

1𝐵
′
2
◦ 𝑇𝐵1𝐵2 ∈ CP, (30)

because they follow as a consequence of (25) and (23), (25),
(27), and (26), respectively. A bipartite channel N𝐴𝐵→𝐴′𝐵′ is
two-PPT-extendible if and only if its Choi operator ΓN

𝐴𝐵𝐴′𝐵′

is such that there exists a Hermitian operator ΓM
𝐴𝐵1𝐵2𝐴′𝐵′

1𝐵
′
2

satisfying

(F𝐵1𝐵2 ⊗ F𝐵′
1𝐵

′
2
) (ΓM

𝐴𝐵1𝐵2𝐴′𝐵′
1𝐵

′
2
) = ΓM

𝐴𝐵1𝐵2𝐴′𝐵′
1𝐵

′
2
, (31)

Tr𝐵′
2
[ΓM
𝐴𝐵1𝐵2𝐴′𝐵′

1𝐵
′
2
] = ΓN

𝐴𝐵1𝐴′𝐵′
1
⊗ 𝐼𝐵2 , (32)

𝑇𝐵2𝐵
′
2
(ΓM
𝐴𝐵1𝐵2𝐴′𝐵′

1𝐵
′
2
) ≥ 0, (33)

𝑇𝐴𝐴′ (ΓM
𝐴𝐵1𝐵2𝐴′𝐵′

1𝐵
′
2
) ≥ 0, (34)

ΓM
𝐴𝐵1𝐵2𝐴′𝐵′

1𝐵
′
2
≥ 0, (35)

Tr𝐴′𝐵′
1𝐵

′
2
[ΓM
𝐴𝐵1𝐵2𝐴′𝐵′

1𝐵
′
2
] = 𝐼𝐴𝐵1𝐵2 . (36)

Observe that a bipartite channel N𝐴𝐵→𝐴′𝐵′ is C-PPT-P if it
is two-PPT-extendible. This follows from (24) and (26).

Every one-way LOCC channel of the form in (7) is two-PPT-
extendible by considering the following extension channel:∑︁

𝑥

E𝑥𝐴→𝐴′ ⊗ D𝑥
𝐵1→𝐵′

1
⊗ D𝑥

𝐵2→𝐵′
2
, (37)

which manifestly satisfies the constraints in (23)–(26). We
thus employ two-PPT-extendible channels as a semi-definite
relaxation of the set of one-way LOCC channels.

6. Two-PPT-extendible non-signaling channels

We can add a further constraint to the channels discussed
in the previous section, i.e., a non-signaling constraint of the
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following form:

Tr𝐴′ ◦M𝐴𝐵1𝐵2→𝐴′𝐵′
1𝐵

′
2
= Tr𝐴′ ◦M𝐴𝐵1𝐵2→𝐴′𝐵′

1𝐵
′
2
◦ R 𝜋

𝐴, (38)

which ensures that the extension channel M𝐴𝐵1𝐵2→𝐴′𝐵′
1𝐵

′
2

is
also non-signaling from Alice to both Bobs. The constraint on
the Choi operator ΓM

𝐴𝐵1𝐵2𝐴′𝐵′
1𝐵

′
2

is as follows:

Tr𝐴′ [ΓM
𝐴𝐵1𝐵2𝐴′𝐵′

1𝐵
′
2
] = 1

𝑑𝐴
Tr𝐴′𝐴[ΓM

𝐴𝐵1𝐵2𝐴′𝐵′
1𝐵

′
2
] ⊗ 𝐼𝐴. (39)

Every LOCR channel of the form in (8) is two-PPT-
extendible non-signaling, as is evident by choosing the fol-
lowing extension channel:∑︁

𝑦

𝑝(𝑦)E𝑦
𝐴→𝐴′ ⊗ D𝑦

𝐵1→𝐵′
1
⊗ D𝑦

𝐵2→𝐵′
2
. (40)

We thus employ two-PPT-extendible non-signaling channels
as a semi-definite relaxation of the set of LOCR channels, and
we note here that [18] previously used this approach.

Let us state explicitly here that extensions of one-way LOCC
channels of the form in (7) generally do not satisfy the non-
signaling constraint in (38), due to the fact that each map
E𝑥
𝐴→𝐴′ in (7) is not necessarily trace preserving.

III. QUANTIFYING THE PERFORMANCE OF
APPROXIMATE TELEPORTATION

In approximate teleportation, Alice and Bob are allowed to
make use of a fixed bipartite state 𝜌 𝐴̂𝐵̂ and an arbitrary one-
way LOCC channel L𝐴𝐴̂𝐵̂→𝐵, with the goal of simulating an
identity channel of dimension 𝑑. To be clear, the one-way
LOCC channel L𝐴𝐴̂𝐵̂→𝐵 has the following form:

L𝐴𝐴̂𝐵̂→𝐵 (𝜔𝐴𝐴̂𝐵̂) =
∑︁
𝑥

D𝑥

𝐵̂→𝐵
(Tr𝐴𝐴̂[Λ

𝑥

𝐴𝐴̂
𝜔𝐴𝐴̂𝐵̂]), (41)

where {Λ𝑥
𝐴𝐴̂

}𝑥 is a positive operator-valued measure (satisfy-
ing Λ𝑥

𝐴𝐴̂
≥ 0 for all 𝑥 and

∑
𝑥 Λ

𝑥

𝐴𝐴̂
= 𝐼𝐴𝐴̂) and {D𝑥

𝐵̂→𝐵
}𝑥 is a

set of quantum channels. We assume that the dimension of the
systems 𝐴̂𝐵̂ is finite, and we write the dimension of 𝐴̂ as 𝑑 𝐴̂
and the dimension of 𝐵̂ as 𝑑𝐵̂. The approximate teleportation
protocol realizes the following simulation channel S̃𝐴→𝐵 [12,
Eq. (11)]:

S̃𝐴→𝐵 (𝜔𝐴) B L𝐴𝐴̂𝐵̂→𝐵 (𝜔𝐴 ⊗ 𝜌 𝐴̂𝐵̂). (42)

In the following subsections, we discuss two seemingly differ-
ent ways of quantifying the simulation error.

A. Quantifying simulation error with normalized diamond
distance

The standard metric for quantifying the distance between
quantum channels is the normalized diamond distance [19].
See the related paper [15] for discussions of the operational

significance of the diamond distance (see also [27]). For chan-
nels N𝐶→𝐷 and Ñ𝐶→𝐷 , the diamond distance is defined as


N𝐶→𝐷 − Ñ𝐶→𝐷





�

B sup
𝜌𝑅𝐶




N𝐶→𝐷 (𝜌𝑅𝐶 ) − Ñ𝐶→𝐷 (𝜌𝑅𝐶 )





1
, (43)

where the optimization is over every bipartite state 𝜌𝑅𝐶 with
the reference system 𝑅 arbitrarily large. The following equality
is well known (see, e.g., [27])


N𝐶→𝐷 − Ñ𝐶→𝐷





�

= sup
𝜓𝑅𝐶




N𝐶→𝐷 (𝜓𝑅𝐶 ) − Ñ𝐶→𝐷 (𝜓𝑅𝐶 )





1
, (44)

where the optimization is over every pure bipartite state 𝜓𝑅𝐶
with the reference system 𝑅 isomorphic to the channel input
system 𝐶. The normalized diamond distance is then given by

1
2




N𝐶→𝐷 − Ñ𝐶→𝐷





�
, (45)

so that the resulting error takes a value between zero and
one. The reduction in (44) implies that it is a computationally
tractable problem to calculate the diamond distance, and in
fact, one can do so by means of the following semi-definite
program [38]:

inf
𝜆,𝑍𝑅𝐷 ≥0

{
𝜆 : 𝜆𝐼𝑅 ≥ Tr𝐷 [𝑍𝑅𝐷],
𝑍𝑅𝐷 ≥ ΓN

𝑅𝐷
− ΓÑ

𝑅𝐷

}
, (46)

where ΓN
𝑅𝐷

and ΓÑ
𝑅𝐷

are the Choi operators of N𝐶→𝐷 and
Ñ𝐶→𝐷 , respectively.

The simulation error when using a bipartite state 𝜌 𝐴̂𝐵̂ and a
one-way LOCC channel to simulate an identity channel id𝑑

𝐴→𝐵

of dimension 𝑑 is given by

𝑒1WL (𝜌 𝐴̂𝐵̂,L𝐴𝐴̂𝐵̂→𝐵) B
1
2




id𝑑𝐴→𝐵 −S̃𝐴→𝐵





�
, (47)

where the simulation channel S̃𝐴→𝐵 is defined in (42). Em-
ploying (44), we find that

𝑒1WL (𝜌 𝐴̂𝐵̂,L𝐴𝐴̂𝐵̂→𝐵)

= sup
𝜓𝑅𝐴

1
2



𝜓𝑅𝐴 − L𝐴𝐴̂𝐵̂→𝐵 (𝜓𝑅𝐴 ⊗ 𝜌 𝐴̂𝐵̂)




1 , (48)

with𝜓𝑅𝐴 a pure bipartite state such that system 𝑅 is isomorphic
to system 𝐴. We are interested in the minimum possible
simulation error, and so we define

𝑒1WL (𝜌 𝐴̂𝐵̂) B inf
L∈ 1WL

𝑒1WL (𝜌 𝐴̂𝐵̂,L𝐴𝐴̂𝐵̂→𝐵), (49)

where we recall that 1WL denotes the set of one-way LOCC
channels. The error 𝑒1WL (𝜌 𝐴̂𝐵̂) is one kind of simulation
error on which we are interested in obtaining computationally
efficient lower bounds. Indeed, it is a computationally difficult
problem to calculate 𝑒1WL (𝜌 𝐴̂𝐵̂) directly, and so we instead
resort to calculating lower bounds.
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B. Quantifying simulation error with channel infidelity

Another measure of the simulation error is by means of the
channel infidelity. Let us recall that the fidelity of states 𝜔 and
𝜏 is defined as [39]

𝐹 (𝜔, 𝜏) B


√𝜔√𝜏

2

1 , (50)

where ‖𝑋 ‖1 B Tr[
√
𝑋†𝑋]. From this measure, we can define

a channel fidelity measure for channels N𝐶→𝐷 and Ñ𝐶→𝐷 as
follows:

𝐹 (N , Ñ) B inf
𝜌𝑅𝐶

𝐹 (N𝐶→𝐷 (𝜌𝑅𝐶 ), Ñ𝐶→𝐷 (𝜌𝑅𝐶 )), (51)

where the optimization is over every bipartite state 𝜌𝑅𝐶 with
the reference system 𝑅 arbitrarily large. Similar to the diamond
distance, it suffices to optimize the channel fidelity over every
pure bipartite state 𝜓𝑅𝐶 with reference system 𝑅 isomorphic
to the channel input system 𝐶 (see, e.g., [27]):

𝐹 (N , Ñ) B inf
𝜓𝑅𝐶

𝐹 (N𝐶→𝐷 (𝜓𝑅𝐶 ), Ñ𝐶→𝐷 (𝜓𝑅𝐶 )). (52)

The square root of the channel fidelity can be calculated by
means of the following semi-definite program [40, 41]:

√
𝐹 (N , Ñ) = sup

𝜆≥0,𝑄𝑅𝐷

𝜆 (53)

subject to

𝜆𝐼𝑅 ≤ Re[Tr𝐷 [𝑄𝑅𝐷]], (54)[
ΓÑ
𝑅𝐷

𝑄
†
𝑅𝐷

𝑄𝑅𝐷 ΓN
𝑅𝐷

]
≥ 0. (55)

An alternative method for quantifying the simulation error
is to employ the channel infidelity, defined as 1 − 𝐹 (N , Ñ).
Indeed, we can measure the simulation error as follows,
when using a bipartite state 𝜌 𝐴̂𝐵̂ and a one-way LOCC chan-
nel L𝐴𝐴̂𝐵̂→𝐵:

𝑒𝐹1WL (𝜌 𝐴̂𝐵̂,L𝐴𝐴̂𝐵̂→𝐵) B 1 − 𝐹 (id𝑑𝐴→𝐵, S̃𝐴→𝐵), (56)

where the simulation channel S̃𝐴→𝐵 is defined in (42). By
employing (52), we find that

𝑒𝐹1WL (𝜌 𝐴̂𝐵̂,L𝐴𝐴̂𝐵̂→𝐵) =
sup
𝜓𝑅𝐴

[
1 − 𝐹 (𝜓𝑅𝐴,L𝐴𝐴̂𝐵̂→𝐵 (𝜓𝑅𝐴 ⊗ 𝜌 𝐴̂𝐵̂))

]
, (57)

where the optimization is over every pure bipartite state 𝜓𝑅𝐴
with system 𝑅 isomorphic to the channel input system 𝐴. Since
we are interested in the minimum possible simulation error,
we define

𝑒𝐹1WL (𝜌 𝐴̂𝐵̂) B inf
L∈1WL

𝑒𝐹1WL (𝜌 𝐴̂𝐵̂,L𝐴𝐴̂𝐵̂→𝐵). (58)

This is the other kind of simulation error on which we are
interested in obtaining lower bounds.

C. One-way LOCC simulation of general point-to-point
channels

Beyond the case of simulating an ideal channel, more gen-
erally we can consider using a resource state 𝜌 𝐴̂𝐵̂ along with a
one-way LOCC channel L𝐴𝐴̂𝐵̂→𝐵 in order to simulate a gen-
eral channel N𝐴→𝐵. In this case, the simulation channel has
the following form:

Ñ𝐴→𝐵 (𝜔𝐴) B L𝐴𝐴̂𝐵̂→𝐵 (𝜔𝐴 ⊗ 𝜌 𝐴̂𝐵̂). (59)

The simulation error when employing a specific one-way
LOCC channel L𝐴𝐴̂𝐵̂→𝐵 is

𝑒1WL (N𝐴→𝐵, 𝜌 𝐴̂𝐵̂,L𝐴𝐴̂𝐵̂→𝐵) B
1
2




N − Ñ




�
, (60)

and the simulation error minimized over all possible one-way
LOCC channels is

𝑒1WL (N𝐴→𝐵, 𝜌 𝐴̂𝐵̂) B
inf

L∈1WL
𝑒1WL (N𝐴→𝐵, 𝜌 𝐴̂𝐵̂,L𝐴𝐴̂𝐵̂→𝐵). (61)

We note here that this is a special case of the simulation prob-
lem considered in [42, Section II].

Alternatively, we can employ the infidelity to quantify the
simulation error as follows:

𝑒𝐹1WL (N𝐴→𝐵, 𝜌 𝐴̂𝐵̂,L𝐴𝐴̂𝐵̂→𝐵) B 1 − 𝐹 (N , Ñ), (62)

𝑒𝐹1WL (N𝐴→𝐵, 𝜌 𝐴̂𝐵̂) B
inf

L∈1WL
𝑒𝐹1WL (N𝐴→𝐵, 𝜌 𝐴̂𝐵̂,L𝐴𝐴̂𝐵̂→𝐵). (63)

D. Equality of simulation errors when simulating the identity
channel

Proposition 1 below states that the following equality holds
for every bipartite state 𝜌 𝐴̂𝐵̂:

𝑒1WL (𝜌 𝐴̂𝐵̂) = 𝑒
𝐹
1WL (𝜌 𝐴̂𝐵̂). (64)

We provide an explicit proof in Appendix B of [43]. This
equality follows as a consequence of the unitary covariance
symmetry of the identity channel being simulated and the fact
that an optimal simulating channel should respect the same
symmetries. Indeed, consider that the identity channel id𝑑

𝐴→𝐵

possesses the following unitary covariance symmetry:

id𝑑𝐴→𝐵 ◦U𝐴 = U𝐵 ◦ id𝑑𝐴→𝐵, (65)

which holds for every unitary channel U(·) = 𝑈 (·)𝑈†, with𝑈
a unitary operator. As a consequence, the theory simplifies in
the sense that we need only focus on bounding the simulation
error with respect to a single measure. We note here that a
similar result was found in [15] for the case of simulating the
bipartite swap channel by means of LOCC.
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Proposition 1 The optimization problems in (49) and (58), for
the error in simulating the identity channel id𝑑

𝐴→𝐵
, simplify as

follows:

𝑒1WL (𝜌 𝐴̂𝐵̂) = 𝑒
𝐹
1WL (𝜌 𝐴̂𝐵̂) (66)

= 1 − sup
𝐾𝐴̂𝐵̂ ,𝐿𝐴̂𝐵̂≥0

Tr[𝐾 𝐴̂𝐵̂𝜌 𝐴̂𝐵̂], (67)

subject to 𝐾 𝐴̂𝐵̂ + 𝐿 𝐴̂𝐵̂ = 𝐼 𝐴̂𝐵̂ and the following channel
L𝐴𝐴̂𝐵̂→𝐵 being a one-way LOCC channel:

L𝐴𝐴̂𝐵̂→𝐵 (𝜔𝐴𝐴̂𝐵̂) = id𝑑𝐴→𝐵 (Tr𝐴̂𝐵̂ [𝐾 𝐴̂𝐵̂𝜔𝐴𝐴̂𝐵̂])
+ D𝐴→𝐵 (Tr𝐴̂𝐵̂ [𝐿 𝐴̂𝐵̂𝜔𝐴𝐴̂𝐵̂]), (68)

where D𝐴→𝐵 is the following channel:

D𝐴→𝐵 (𝜎𝐴) B
1

𝑑2 − 1

∑︁
(𝑧,𝑥)≠(0,0)

𝑊 𝑧,𝑥𝜎(𝑊 𝑧,𝑥)†, (69)

and 𝑊 𝑧,𝑥 is defined in (3). The constraint that L𝐴𝐴̂𝐵̂→𝐵 is
a one-way LOCC channel is equivalent to the existence of a
positive operator-valued measure (POVM) {Λ𝑥

𝐵𝐴̂
}𝑥 and a set

{D𝑥

𝐵̂→𝐵
}𝑥 of channels such that

𝐾 𝐴̂𝐵̂ =
1
𝑑2

∑︁
𝑥

Tr𝐵 [𝑇𝐵 (Λ𝑥
𝐵𝐴̂

)ΓD𝑥

𝐵̂𝐵
], (70)

where ΓD𝑥

𝐵̂𝐵
is the Choi operator of the channel D𝑥

𝐵̂→𝐵
.

Proof. See Appendix B of [43].

IV. SDP LOWER BOUNDS ON THE PERFORMANCE OF
APPROXIMATE TELEPORTATION BASED ON

TWO-PPT-EXTENDIBILITY

A. SDP lower bound on the error in one-way LOCC
simulation of a channel

It is difficult to compute the simulation error
𝑒1WL (N𝐴→𝐵, 𝜌 𝐴̂𝐵̂) defined in (61) because it is challenging
to optimize over the set of one-way LOCC channels [44, 45].
Here we enlarge the set of one-way LOCC channels to the
set of two-PPT-extendible bipartite channels, with the goal of
simplifying the calculation of the simulation error. The result
is that we provide a lower bound on the one-way LOCC simu-
lation error in terms of a semi-definite program, which follows
because the set of two-PPT-extendible channels is specified by
semi-definite constraints, as indicated in (31)–(36).

In more detail, recall that a bipartite channel is two-PPT-
extendible if the conditions in (23)–(26) hold. As indicated
previously at the end of Section II B 5, every one-way LOCC
channel is a two-extendible channel, and the containment is
strict. Thus,

1WL ⊂ 2PE , (71)

where 2PE denotes the set of two-PPT-extendible channels, as
defined in Section II B 5.

We can then define the simulation error under two-PPT-
extendible channels, as a semi-definite relaxation of (61), as
follows:

𝑒2PE (N𝐴→𝐵, 𝜌 𝐴̂𝐵̂) B inf
K∈2PE

1
2




N − Ñ




�
, (72)

where

Ñ𝐴→𝐵 (𝜔𝐴) B K𝐴𝐴̂𝐵̂→𝐵 (𝜔𝐴 ⊗ 𝜌 𝐴̂𝐵̂) (73)

and K𝐴𝐴̂𝐵̂→𝐵 is a two-PPT-extendible channel, meaning that
there exists an extension channel M𝐴𝐴̂𝐵̂1 𝐵̂2→𝐵1𝐵2

satisfying
the following conditions:

Tr𝐵2 ◦M𝐴𝐴̂𝐵̂1 𝐵̂2→𝐵1𝐵2
= K𝐴𝐴̂𝐵̂1→𝐵1

⊗ Tr𝐵̂2
, (74)

M𝐴𝐴̂𝐵̂1 𝐵̂2→𝐵1𝐵2
◦ F𝐵̂1 𝐵̂2

= F𝐵1𝐵2 ◦M𝐴𝐴̂𝐵̂1 𝐵̂2→𝐵1𝐵2
,

(75)
𝑇𝐵2 ◦M𝐴𝐴̂𝐵̂1 𝐵̂2→𝐵1𝐵2

◦ 𝑇𝐵̂2
∈ CP, (76)

M𝐴𝐴̂𝐵̂1 𝐵̂2→𝐵1𝐵2
◦ 𝑇𝐴𝐴̂ ∈ CP. (77)

As a consequence of the containment in (71), the following
bound holds

𝑒2PE (N𝐴→𝐵, 𝜌 𝐴̂𝐵̂) ≤ 𝑒1WL (N𝐴→𝐵, 𝜌 𝐴̂𝐵̂). (78)

We now show that the simulation error in (72) can be cal-
culated by means of a semi-definite program.

Proposition 2 The simulation error in (72) can be calculated
by means of the following semi-definite program:

𝑒2PE (N𝐴→𝐵, 𝜌 𝐴̂𝐵̂) = inf
𝜇≥0,𝑍𝐴𝐵≥0,

𝑀𝐴𝐴̂𝐵̂1𝐵1 𝐵̂2𝐵2
≥0

𝜇, (79)

subject to

𝜇𝐼𝐴 ≥ 𝑍𝐴, (80)

𝑍𝐴𝐵 ≥ ΓN
𝐴𝐵

− Tr𝐴̂𝐵̂1

[
𝑇𝐴̂𝐵̂1

(𝜌 𝐴̂𝐵̂1
)
𝑀𝐴𝐴̂𝐵̂1𝐵1

𝑑𝐵̂

]
, (81)

Tr𝐵1𝐵2 [𝑀𝐴𝐴̂𝐵̂1𝐵1 𝐵̂2𝐵2
] = 𝐼𝐴𝐴̂𝐵̂1 𝐵̂2

, (82)
(F𝐵̂1 𝐵̂2

⊗ F𝐵1𝐵2 ) (𝑀𝐴𝐴̂𝐵̂1𝐵1 𝐵̂2𝐵2
) = 𝑀𝐴𝐴̂𝐵̂1𝐵1 𝐵̂2𝐵2

, (83)

Tr𝐵2 [𝑀𝐴𝐴̂𝐵̂1𝐵1 𝐵̂2𝐵2
] =

𝑀𝐴𝐴̂𝐵̂1𝐵1

𝑑𝐵̂
⊗ 𝐼𝐵̂2

, (84)

𝑇𝐴𝐴̂(𝑀𝐴𝐴̂𝐵̂1𝐵1 𝐵̂2𝐵2
) ≥ 0, (85)

𝑇𝐵̂2𝐵2
(𝑀𝐴𝐴̂𝐵̂1𝐵1 𝐵̂2𝐵2

) ≥ 0. (86)

The objective function in (79) and the first two con-
straints in (80) and (81) follow from the semi-definite pro-
gram in (46) for the normalized diamond distance. The quan-
tity Tr𝐴̂𝐵̂1

[
𝑇𝐴̂𝐵̂1

(𝜌 𝐴̂𝐵̂1
)
𝑀𝐴𝐴̂𝐵̂1𝐵1

𝑑𝐵̂

]
in (81) is the Choi opera-

tor corresponding to the composition of the appending chan-
nel and the simulation channel K𝐴𝐴̂𝐵̂1→𝐵1

, with Choi oper-

ator
𝑀𝐴𝐴̂𝐵̂1𝐵1

𝑑𝐵̂
, where K𝐴𝐴̂𝐵̂1→𝐵1

is the marginal channel of
M𝐴𝐴̂𝐵̂1 𝐵̂2→𝐵1𝐵2

, defined as
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K𝐴𝐴̂𝐵̂1→𝐵1
(𝜔𝐴𝐴̂𝐵̂1

)
B Tr𝐵2 [M𝐴𝐴̂𝐵̂1 𝐵̂2→𝐵1𝐵2

(𝜔𝐴𝐴̂𝐵̂1
⊗ 𝜋𝐵̂2

)] . (87)

The constraint in (82) forces M𝐴𝐴̂𝐵̂1 𝐵̂2→𝐵1𝐵2
to be trace pre-

serving, that in (83) forces M𝐴𝐴̂𝐵̂1 𝐵̂2→𝐵1𝐵2
to be permutation

covariant with respect to the 𝐵 systems (see (75)), and that in
(84) forces M𝐴𝐴̂𝐵̂1 𝐵̂2→𝐵1𝐵2

to be the extension of a marginal
channel K𝐴𝐴̂𝐵̂1→𝐵1

. The final two PPT constraints are equiv-
alent to the C-PPT-P constraints in (76) and (77), respectively.

B. SDP lower bound on the simulation error of approximate
teleportation

The semi-definite program in Proposition 2 can be evaluated
for an important case of interest, i.e., when N𝐴→𝐵 = id𝑑

𝐴→𝐵
.

Recall from Section III that this special case corresponds to ap-
proximate teleportation. The semi-definite program in Propo-
sition 2 is efficiently computable with respect to the dimensions
of the systems 𝐴, 𝐴̂, 𝐵̂, and 𝐵. However, it is in our interest
to reduce the computational complexity of these optimization
tasks even further for this important case, and we can do so
by exploiting the unitary covariance symmetry of the identity
channel, as stated in (65).

In this section, we provide a semi-definite program for eval-
uating the simulation error

𝑒2PE (𝜌 𝐴̂𝐵̂) ≡ 𝑒2PE (id𝑑𝐴→𝐵, 𝜌 𝐴̂𝐵̂), (88)

with reduced complexity, i.e., only polynomial in the dimen-
sions 𝑑 𝐴̂ and 𝑑𝐵̂ of the resource state 𝜌 𝐴̂𝐵̂. We provide a proof
of Proposition 3 in Appendix C of [43].

Proposition 3 The semi-definite program in Proposition 2, for
the special case of simulating the identity channel id𝑑

𝐴→𝐵
,

simplifies as follows for 𝑑 ≥ 3:

𝑒2PE (𝜌 𝐴̂𝐵̂)
= 𝑒𝐹2PE (𝜌 𝐴̂𝐵̂) (89)

= 1 − sup
𝑀+ ,𝑀− ,𝑀 0≥0,

𝑀 1 ,𝑀 2 ,𝑀 3∈LinOp

Tr
[
𝑇𝐴̂𝐵̂1

(𝜌 𝐴̂𝐵̂1
)
𝑃 𝐴̂𝐵̂1 𝐵̂2

𝑑𝐵̂

]
, (90)

subject to [
𝑀0 + 𝑀3 𝑀1 − 𝑖𝑀2

𝑀1 + 𝑖𝑀2 𝑀0 − 𝑀3

]
≥ 0, (91)

𝐼 𝐴̂𝐵̂1 𝐵̂2
= 𝑀+

𝐴̂𝐵̂1 𝐵̂2
+ 𝑀−

𝐴̂𝐵̂1 𝐵̂2
+ 𝑀0

𝐴̂𝐵̂1 𝐵̂2
, (92)

𝑀 𝑖

𝐴̂𝐵̂1 𝐵̂2
= F𝐵̂1 𝐵̂2

(𝑀 𝑖

𝐴̂𝐵̂1 𝐵̂2
) ∀𝑖 ∈ {+,−, 0, 1} , (93)

𝑀
𝑗

𝐴̂𝐵̂1 𝐵̂2
= −F𝐵̂1 𝐵̂2

(𝑀 𝑗

𝐴̂𝐵̂1 𝐵̂2
) ∀ 𝑗 ∈ {2, 3} , (94)

𝑃 𝐴̂𝐵̂1 𝐵̂2
=

1
𝑑𝐵̂

Tr𝐵̂2
[𝑃 𝐴̂𝐵̂1 𝐵̂2

] ⊗ 𝐼𝐵̂2
, (95)

𝑃 𝐴̂𝐵̂1 𝐵̂2
B

1
2𝑑

[
𝑑𝑀0 + 𝑀1 +

√︁
𝑑2 − 1 𝑀2

]
, (96)

𝑇𝐴̂

(2𝑀+
𝐴̂𝐵̂1 𝐵̂2

𝑑 + 2
+ 𝑀0

𝐴̂𝐵̂1 𝐵̂2
+ 𝑀1

𝐴̂𝐵̂1 𝐵̂2

)
≥ 0, (97)

𝑇𝐴̂

(2𝑀−
𝐴̂𝐵̂1 𝐵̂2

𝑑 − 2
+ 𝑀1

𝐴̂𝐵̂1 𝐵̂2
− 𝑀0

𝐴̂𝐵̂1 𝐵̂2

)
≥ 0, (98)[

𝐺0 + 𝐺3 𝐺1 − 𝑖𝐺2

𝐺1 + 𝑖𝐺2 𝐺0 − 𝐺3

]
≥ 0, (99)

𝐺0
𝐴̂𝐵̂1 𝐵̂2

B 𝑇𝐴̂

(
𝑀+ + 𝑀− + 𝑀

0 − 𝑑𝑀1

2

)
, (100)

𝐺1
𝐴̂𝐵̂1 𝐵̂2

B 𝑇𝐴̂

(
𝑀+ − 𝑀− + 𝑀

1 − 𝑑𝑀0

2

)
, (101)

𝐺2
𝐴̂𝐵̂1 𝐵̂2

B

√︃
3
(
𝑑2 − 1

)
2

𝑇𝐴̂(𝑀
2
𝐴̂𝐵̂1 𝐵̂2

), (102)

𝐺3
𝐴̂𝐵̂1 𝐵̂2

B

√︃
3
(
𝑑2 − 1

)
2

𝑇𝐴̂(𝑀
3
𝐴̂𝐵̂1 𝐵̂2

). (103)

𝑇𝐴̂𝐵̂1

(
𝑑𝑀+

𝑑 + 2
+ 𝑀− + 𝑑𝑀

0 − 𝑀1 −
√
𝑑2 − 1 𝑀2

2

)
≥ 0, (104)

𝑇𝐴̂𝐵̂1

(
𝑀+ + 𝑑𝑀−

𝑑 − 2
− 𝑑𝑀0 − 𝑀1 −

√
𝑑2 − 1 𝑀2

2

)
≥ 0, (105)

[
𝐸0 + 𝐸3 𝐸1 − 𝑖𝐸2

𝐸1 + 𝑖𝐸2 𝐸0 − 𝐸3

]
≥ 0, (106)

𝐸0
𝐴̂𝐵̂1 𝐵̂2

B
𝑇𝐴̂𝐵̂1

(
𝑑 (𝑀+ − 𝑀−) + 𝐿0

2

)
𝑑2 − 1

, (107)

𝐸1
𝐴̂𝐵̂1 𝐵̂2

B
𝑇𝐴̂𝐵̂1

(
−𝑀+ + 𝑀− + 𝐿1

2

)
𝑑2 − 1

, (108)

𝐸2
𝐴̂𝐵̂1 𝐵̂2

B
𝑇𝐴̂𝐵̂1

(𝑀+ − 𝑀− + 𝐿2

2 )
√
𝑑2 − 1

, (109)

𝐸3
𝐴̂𝐵̂1 𝐵̂2

B 𝑇𝐴̂𝐵̂1
(𝑀3

𝐴̂𝐵̂1 𝐵̂2
), (110)

𝐿0 B
(
𝑑2 − 2

)
𝑀0 + 𝑑𝑀1 + 𝑑

√︁
𝑑2 − 1 𝑀2, (111)

𝐿1 B 𝑑𝑀0 +
(
2𝑑2 − 3

)
𝑀1 −

√︁
𝑑2 − 1 𝑀2, (112)

𝐿2 B 𝑀1 − 𝑑𝑀0 −
√︁
𝑑2 − 1 𝑀2. (113)

For the case of 𝑑 = 2, the SDP is the same, with the exception
that we set 𝑀−

𝐴̂𝐵̂1 𝐵̂2
= 0 and the constraints in (98) and (105)

are not used.

Proof. See Appendix C of [43].

Remark 4 The SDP in the statement of Proposition 3 is rather
lengthy, and so we provide some explanation here. The con-
straint in (91) and the constraints 𝑀+, 𝑀−, 𝑀0 ≥ 0 in (90)
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correspond to the constraint of complete positivity in (79) (i.e.,
𝑀𝐴𝐴̂𝐵̂1𝐵1 𝐵̂2𝐵2

≥ 0). The constraint in (92) corresponds to
the constraint of trace preservation in (82). The constraints
in (93)–(94) correspond to the permutation covariance con-
straint in (83). The constraint in (95) corresponds to the
non-signaling constraint in (84). The constraints in (97)–(99)
correspond to the PPT constraint in (85), and the constraints
in (104)–(106) correspond to the PPT constraint in (86).

Remark 5 Even though the number of constraints in the SDP
above appears to increase when compared with the SDP from
Proposition 2, we note that the runtime of the SDP above is sig-
nificantly reduced because the size of the matrices involved in
each of the constraints is much smaller. This is the main advan-
tage conferred by incorporating unitary covariance symmetry
of the identity channel.

If we only optimized over the larger set of two-extendible
chanels instead of the set of two-PPT-extendible channels, the
SDP would be much simpler, given by (90)–(96). However,
optimizing over the smaller set of two-PPT-extendible channels
gives tighter bounds at a marginal increase in computational
cost, and thus we also include the PPT constraints in (97)–(99)
and (104)–(106).

V. BACKGROUND ON SUPERCHANNELS

This section constitutes the beginning of the second con-
tribution of our paper, regarding lower bounds on the error in
channel simulation and approximate quantum error correction.
We begin by reviewing the theory of superchannels, as well
as particular examples of them relevant to the aforementioned
applications.

A. Basics of superchannels

A superchannel Θ ≡ Θ(𝐴→𝐵)→(𝐶→𝐷) is a physical transfor-
mation of a channel N𝐴→𝐵 that accepts as input the channel
N𝐴→𝐵 and outputs a channel with input system 𝐶 and output
system 𝐷. Mathematically, a superchannel is a linear map that
preserves the set of quantum channels, even when the quan-
tum channel is an arbitrary bipartite channel with external input
and output systems that are arbitrarily large. Superchannels
are thus completely CPTP preserving in this sense. A general
theory of superchannels was introduced in [21] and developed
further in [46–48].

In more detail, let us denote the output of a superchannel Θ
by K𝐶→𝐷 , so that

Θ(𝐴→𝐵)→(𝐶→𝐷) (N𝐴→𝐵) = K𝐶→𝐷 . (114)

The superchannel Θ(𝐴→𝐵)→(𝐶→𝐷) is completely CPTP pre-
serving in the sense that the following output map

(id(𝑅)→(𝑅) ⊗Θ(𝐴→𝐵)→(𝐶→𝐷) ) (M𝑅𝐴→𝑅𝐵) (115)

is a quantum channel for every input quantum channel
M𝑅𝐴→𝑅𝐵, where id(𝑅)→(𝑅) denotes the identity superchan-
nel [21].

The fundamental theorem of superchannels from [21] is
that Θ(𝐴→𝐵)→(𝐶→𝐷) has a physical realization in terms of a
pre-processing channel E𝐶→𝐴𝑄 and a post-processing channel
D𝐵𝑄→𝐷 as follows:

Θ(𝐴→𝐵)→(𝐶→𝐷) (N𝐴→𝐵)
= D𝐵𝑄→𝐷 ◦ N𝐴→𝐵 ◦ E𝐶→𝐴𝑄, (116)

where𝑄 is a quantum memory system. Furthermore, every su-
perchannel Θ(𝐴→𝐵)→(𝐶→𝐷) is in one-to-one correspondence
with a bipartite channel of the following form:

P𝐶𝐵→𝐴𝐷 B D𝐵𝑄→𝐷 ◦ E𝐶→𝐴𝑄 . (117)

Note that P𝐶𝐵→𝐴𝐷 is completely positive, trace preserving,
and obeys the following non-signaling constraint:

Tr𝐷 ◦P𝐶𝐵→𝐴𝐷 = Tr𝐷 ◦P𝐶𝐵→𝐴𝐷 ◦ R 𝜋
𝐵, (118)

where the replacer channel R 𝜋
𝐵

is defined in (13). Related to
this, ΓP

𝐶𝐵𝐴𝐷
is the Choi operator of a superchannel if and only

if it satisfies the following constraints:

ΓP
𝐶𝐵𝐴𝐷

≥ 0, (119)
Tr𝐴𝐷 [ΓP

𝐶𝐵𝐴𝐷
] = 𝐼𝐶𝐵, (120)

Tr𝐷 [ΓP
𝐶𝐵𝐴𝐷

] = 1
𝑑𝐵

Tr𝐵𝐷 [ΓP
𝐶𝐵𝐴𝐷

] ⊗ 𝐼𝐵 . (121)

The first two constraints correspond to complete positivity and
trace preservation, respectively, and the last constraint is a non-
signaling constraint corresponding to P𝐶𝐵→𝐴𝐷 having the
factorization in (117), so that P𝐶𝐵→𝐴𝐷 is in correspondence
with a superchannel. To determine the Choi operator for the
output channel K𝐶→𝐷 in (114), we can use the following
propagation rule [21, 48]:

ΓK
𝐶𝐷

= Tr𝐴𝐵 [𝑇𝐴𝐵 (ΓN
𝐴𝐵

)ΓP
𝐶𝐵𝐴𝐷

], (122)

where ΓP
𝐶𝐵𝐴𝐷

is the Choi operator of P𝐶𝐵→𝐴𝐷 and ΓN
𝐴𝐵

is
the Choi operator of N𝐴→𝐵.

B. One-way LOCC superchannels

A superchannel Λ ≡ Λ(𝐴→𝐵)→(𝐶→𝐷) is implementable by
one-way LOCC if it can be written in the following form:

Λ(N𝐴→𝐵) B
∑︁
𝑥

D𝑥
𝐵→𝐷 ◦ N𝐴→𝐵 ◦ E𝑥𝐶→𝐴, (123)

where {E𝑥
𝐶→𝐴

}𝑥 is a set of completely positive maps such that
the sum map

∑
𝑥 E𝑥𝐶→𝐴

is trace preserving and {D𝑥
𝐵→𝐷}𝑥 is

a set of quantum channels. This is equivalent to the quantum
memory system 𝑄 in (116) being a classical system 𝑋 , with

E𝐶→𝐴𝑋 (𝜌𝐶 ) B
∑︁
𝑥

E𝑥𝐶→𝐴(𝜌𝐶 ) ⊗ |𝑥〉〈𝑥 |𝑋 , (124)

D𝐵𝑋→𝐷 (𝜔𝐵𝑋 ) B
∑︁
𝑥

D𝑥
𝐵→𝐷 (〈𝑥 |𝑋𝜔𝐵𝑋 |𝑥〉𝑋 ), (125)
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so that

Λ(N𝐴→𝐵) = D𝐵𝑋→𝐷 ◦ N𝐴→𝐵 ◦ E𝐶→𝐴𝑋 . (126)

In this case, the bipartite channel in (117), but corresponding
to Λ in (123), becomes the following one-way LOCC channel:

L𝐶𝐵→𝐴𝐷 B
∑︁
𝑥

E𝑥𝐶→𝐴 ⊗ D𝑥
𝐵→𝐷 . (127)

Thus, the set of one-way LOCC superchannels is in direct cor-
respondence with the set of one-way LOCC bipartite channels.

C. LOCR superchannels

A superchannel Υ ≡ Υ(𝐴→𝐵)→(𝐶→𝐷) is implementable by
local operations and common randomness (LOCR) if it can be
written in the following form:

Υ(N𝐴→𝐵) B
∑︁
𝑦

𝑝(𝑦)D𝑦

𝐵→𝐷 ◦ N𝐴→𝐵 ◦ E𝑦
𝐶→𝐴

, (128)

where {𝑝(𝑦)}𝑦 is a probability distribution and {E𝑦
𝐶→𝐴

}𝑦 and
{D𝑦

𝐵→𝐷}𝑦 are sets of quantum channels. In more detail, the
superchannel Υ(𝐴→𝐵)→(𝐶→𝐷) can be realized as

Υ(N𝐴→𝐵) = D𝐵𝑌𝐵→𝐷 ◦ N𝐴→𝐵 ◦ E𝐶𝑌𝐴→𝐴 ◦ P𝑌𝐴𝑌𝐵 , (129)

where P𝑌𝐴𝑌𝐵 is a preparation channel that prepares the com-
mon randomness state∑︁

𝑦

𝑝(𝑦) |𝑦〉〈𝑦 |𝑌𝐴 ⊗ |𝑦〉〈𝑦 |𝑌𝐵 , (130)

and the channels E𝐶𝑌𝐴→𝐴 and D𝐵𝑌𝐵→𝐷 are defined as

E𝐶𝑌𝐴→𝐴(𝜌𝐶𝑌𝐴) B
∑︁
𝑦

E𝑦
𝐶→𝐴

(〈𝑦 |𝑌𝐴𝜌𝐶𝑌𝐴 |𝑦〉𝑌𝐴), (131)

D𝐵𝑌𝐵→𝐷 (𝜔𝐵𝑌𝐵 ) B
∑︁
𝑦

D𝑦

𝐵→𝐷 (〈𝑦 |𝑌𝐵𝜔𝐵𝑌𝐵 |𝑦〉𝑌𝐵 ), (132)

In this case, the bipartite channel in (117), but corresponding
to Υ in (128), becomes the following LOCR bipartite channel:

C𝐶𝐵→𝐴𝐷 B
∑︁
𝑦

𝑝(𝑦)E𝑦
𝐶→𝐴

⊗ D𝑦

𝐵→𝐷 . (133)

Thus, the set of LOCR superchannels is in direct correspon-
dence with the set of LOCR bipartite channels.

D. Two-extendible superchannels

A superchannel Θ(𝐴→𝐵)→(𝐶→𝐷) is defined to be two-
extendible if there exists an extension channelM𝐶𝐵1𝐵2→𝐴𝐷1𝐷2
of its corresponding bipartite channel P𝐶𝐵→𝐴𝐷 that obeys the
conditions in (10) and (11). Furthermore, due to the fact that
(10) and (11) imply (12), there is no need to explicitly indicate

that (118) holds. Two-extendible superchannels were consid-
ered in [18], but this terminology was not employed there.

The specific constraints on the Choi operator of
M𝐶𝐵1𝐵2→𝐴𝐷1𝐷2 are precisely the same as those in (14)–(17),
with the identifications 𝐶 ↔ 𝐴, 𝐵 ↔ 𝐵, 𝐴 ↔ 𝐴′, and
𝐷 ↔ 𝐵′. Explicitly, a superchannel Θ(𝐴→𝐵)→(𝐶→𝐷) is two-
extendible if the Choi operator ΓP

𝐶𝐵𝐴𝐷
of its corresponding

bipartite channel P𝐶𝐵→𝐴𝐷 satisfies the following conditions:
there exists a Hermitian operator ΓM

𝐶𝐵1𝐵2𝐴𝐷1𝐷2
such that

(F𝐵1𝐵2 ⊗ F𝐷1𝐷2 ) (ΓM
𝐶𝐵1𝐵2𝐴𝐷1𝐷2

) = ΓM
𝐶𝐵1𝐵2𝐴𝐷1𝐷2

, (134)

Tr𝐷2 [ΓM
𝐶𝐵1𝐵2𝐴𝐷1𝐷2

] = ΓP
𝐶𝐵1𝐴𝐷1

⊗ 𝐼𝐵2 , (135)

ΓM
𝐶𝐵1𝐵2𝐴𝐷1𝐷2

≥ 0, (136)

Tr𝐴𝐷1𝐷2 [ΓM
𝐶𝐵1𝐵2𝐴𝐷1𝐷2

] = 𝐼𝐶𝐵1𝐵2 . (137)

Every one-way LOCC superchannel is two-extendible.

E. Completely PPT preserving superchannels

A superchannel Θ(𝐴→𝐵)→(𝐶→𝐷) is C-PPT-P if its corre-
sponding bipartite channel P𝐶𝐵→𝐴𝐷 in (117) is C-PPT-P and
obeys the non-signaling constraint in (118) [31]. This implies
the following for its Choi operator ΓP

𝐶𝐵𝐴𝐷
:

ΓP
𝐶𝐵𝐴𝐷

≥ 0, (138)
Tr𝐴𝐷 [ΓP

𝐶𝐵𝐴𝐷
] = 𝐼𝐶𝐵, (139)

Tr𝐷 [ΓP
𝐶𝐵𝐴𝐷

] = 1
𝑑𝐵

Tr𝐵𝐷 [ΓP
𝐶𝐵𝐴𝐷

] ⊗ 𝐼𝐵, (140)

𝑇𝐵𝐷 (ΓP
𝐶𝐵𝐴𝐷

) ≥ 0. (141)

F. Two-PPT-extendible superchannels

A superchannel Θ(𝐴→𝐵)→(𝐶→𝐷) is two-PPT-extendible if
its corresponding bipartite channel P𝐶𝐵→𝐴𝐷 in (117) is two-
PPT-extendible. Again, there is no need to explicitly indicate
that (118) holds. The following conditions hold for the Choi
operator ΓP

𝐶𝐵𝐴𝐷
of a two-PPT-extendible superchannel: there

exists a Hermitian operator ΓM
𝐶𝐵1𝐵2𝐴𝐷1𝐷2

such that (134)–
(137) hold, as well as

𝑇𝐵2𝐷2 (ΓM
𝐶𝐵1𝐵2𝐴𝐷1𝐷2

) ≥ 0,

𝑇𝐶𝐴(ΓM
𝐶𝐵1𝐵2𝐴𝐷1𝐷2

) ≥ 0.

Similar to what was already discussed in Section II B 5, the
following constraints are redundant:

𝑇𝐵1𝐷1 (ΓM
𝐶𝐵1𝐵2𝐴𝐷1𝐷2

) ≥ 0, (142)

𝑇𝐶𝐴𝐵2𝐷2 (ΓM
𝐶𝐵1𝐵2𝐴𝐷1𝐷2

) ≥ 0, (143)

𝑇𝐶𝐴𝐵1𝐷1 (ΓM
𝐶𝐵1𝐵2𝐴𝐷1𝐷2

) ≥ 0, (144)

𝑇𝐵1𝐷1𝐵2𝐷2 (ΓM
𝐶𝐵1𝐵2𝐴𝐷1𝐷2

) ≥ 0. (145)

Note that every one-way LOCC superchannel is two-PPT-
extendible.
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G. Two-PPT-extendible non-signaling superchannels

Finally, we can impose an additional non-signaling con-
straint on two-PPT-extendible superchannels, such that the ex-
tension of its corresponding bipartite channel is non-signaling
from Alice to both Bobs. The additional constraint on
the Choi operator ΓM

𝐶𝐵1𝐵2𝐴𝐷1𝐷2
of the extension channel

M𝐶𝐵1𝐵2→𝐴𝐷1𝐷2 is as follows:

Tr𝐴[ΓM
𝐶𝐵1𝐵2𝐴𝐷1𝐷2

] = 1
𝑑𝐶

Tr𝐴𝐶 [ΓM
𝐶𝐵1𝐵2𝐴𝐷1𝐷2

] ⊗ 𝐼𝐶 . (146)

Every LOCR superchannel is non-signaling and two-PPT-
extendible, which follows from definitions and the form of the
corresponding bipartite channel in (133). This fact plays an
important role in our analysis of approximate quantum error
correction. In more detail, we obtain our tightest lower bound
on the simulation error of approximate quantum error correc-
tion by relaxing the set of LOCR superchannels to the set
of non-signaling and two-PPT-extendible superchannels. We
note here that this approach was already considered in [18],
and our main contribution here is to employ unitary covariance
symmetry of the identity channel to reduce the complexity of
the SDPs from that work.

VI. QUANTIFYING THE PERFORMANCE OF
APPROXIMATE QUANTUM ERROR CORRECTION

A. Quantifying simulation error with normalized diamond
distance and channel infidelity

In approximate quantum error correction [49] or quantum
communication [2], the resource available is a quantum chan-
nel N𝐴̂→𝐵̂ and the goal is to use it, along with an encoding
channel E𝐴→𝐴̂ and a decoding channel D𝐵̂→𝐵, to simulate a
𝑑-dimensional identity channel id𝑑

𝐴→𝐵
. We can use the nor-

malized diamond distance to quantify the error for a fixed
encoding and decoding, as follows:

𝑒(N𝐴̂→𝐵̂, (E𝐴→𝐴̂,D𝐵̂→𝐵)) B
1
2



id𝑑𝐴→𝐵 −D𝐵̂→𝐵 ◦ N𝐴̂→𝐵̂ ◦ E𝐴→𝐴̂




� . (147)

By minimizing over all encodings and decodings, we arrive at
the error in using the channel N𝐴̂→𝐵̂ to simulate the identity
channel:

𝑒(N𝐴̂→𝐵̂) B inf
(E,D)

𝑒(N𝐴̂→𝐵̂, (E𝐴→𝐴̂,D𝐵̂→𝐵)). (148)

We can alternatively employ channel infidelity to quantify the
error:

𝑒𝐹 (N𝐴̂→𝐵̂, (E𝐴→𝐴̂,D𝐵̂→𝐵)) B
1 − 𝐹 (id𝑑𝐴→𝐵,D𝐵̂→𝐵 ◦ N𝐴̂→𝐵̂ ◦ E𝐴→𝐴̂), (149)

𝑒𝐹 (N𝐴̂→𝐵̂) B inf
(E,D)

𝑒𝐹 (N𝐴̂→𝐵̂, (E𝐴→𝐴̂,D𝐵̂→𝐵)). (150)

Note that the transformation of the channel given by

D𝐵̂→𝐵 ◦ N𝐴̂→𝐵̂ ◦ E𝐴→𝐴̂ (151)

is a superchannel, as discussed in Section V, with correspond-
ing bipartite channel

P𝐴𝐵̂→𝐴̂𝐵 B E𝐴→𝐴̂ ⊗ D𝐵̂→𝐵 . (152)

As this bipartite channel is a product channel, it is contained
within the set of LOCR superchannels, which in turn is con-
tained in the set of one-way LOCC superchannels.

By supplementing the encoding and decoding with com-
mon randomness, the resulting error correction scheme Υ ≡
Υ( 𝐴̂→𝐵̂)→(𝐴→𝐵) realizes the following simulation channel:

Υ(N𝐴̂→𝐵̂) B
∑︁
𝑦

𝑝(𝑦)D𝑦

𝐵̂→𝐵
◦ N𝐴̂→𝐵̂ ◦ E𝑦

𝐴→𝐴̂
, (153)

where {𝑝(𝑦)}𝑦 is a probability distribution and {E𝑦
𝐴→𝐴̂

}𝑦 and
{D𝑦

𝐵̂→𝐵
}𝑦 are sets of quantum channels. Recall from Sec-

tion V C that Υ is an LOCR superchannel, and let LOCR
denote the set of all LOCR superchannels. Then we can quan-
tify the simulation error under LOCR in a manner similar to
Section III A: we can use the normalized diamond distance
to quantify the error for a fixed LOCR superchannel Υ, as
follows:

𝑒LOCR (N𝐴̂→𝐵̂,Υ( 𝐴̂→𝐵̂)→(𝐴→𝐵) ) B
1
2




id𝑑𝐴→𝐵 −Υ( 𝐴̂→𝐵̂)→(𝐴→𝐵) (N𝐴̂→𝐵̂)




�
. (154)

By minimizing over all such superchannels, we arrive at the
error in using the channel N𝐴̂→𝐵̂ to simulate the identity chan-
nel:

𝑒LOCR (N𝐴̂→𝐵̂) B
inf

Υ∈LOCR
𝑒(N𝐴̂→𝐵̂,Υ( 𝐴̂→𝐵̂)→(𝐴→𝐵) ). (155)

As before, we can alternatively employ channel infidelity to
quantify the error:

𝑒𝐹LOCR (N𝐴̂→𝐵̂,Υ( 𝐴̂→𝐵̂)→(𝐴→𝐵) ) B
1 − 𝐹 (id𝑑𝐴→𝐵,Υ( 𝐴̂→𝐵̂)→(𝐴→𝐵) (N𝐴̂→𝐵̂)), (156)

𝑒𝐹LOCR (N𝐴̂→𝐵̂) B
inf

Υ∈LOCR
𝑒𝐹LOCR (N𝐴̂→𝐵̂,Υ( 𝐴̂→𝐵̂)→(𝐴→𝐵) ). (157)

However, we have the following:

Proposition 6 For a channel N𝐴̂→𝐵̂, the LOCR simulation
errors defined from normalized diamond distance and channel
infidelity are equal to each other:

𝑒LOCR (N𝐴̂→𝐵̂) = 𝑒
𝐹
LOCR (N𝐴̂→𝐵̂). (158)
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Proof. The proof of this equality is similar to the proof of
Proposition 1, following again from the symmetry of the target
channel, which is an identity channel having the symmetry in
(65), and the fact that a channel twirl can be implemented by
means of LOCR. Note that a channel twirl of a channelM𝐴→𝐵

has the following form:∫
𝑑𝑈 U†

𝐵
◦M𝐴→𝐵 ◦ U𝐴, (159)

where U is a unitary channel.
By exploiting the fact that a superchannel of the form in

(151) is contained in the set of LOCR superchannels, the fol-
lowing inequality holds

𝑒LOCR (N𝐴̂→𝐵̂) ≤ min
{
𝑒(N𝐴̂→𝐵̂), 𝑒

𝐹 (N𝐴̂→𝐵̂)
}
. (160)

It is unclear if 𝑒(N𝐴̂→𝐵̂) is equal to 𝑒𝐹 (N𝐴̂→𝐵̂) in general:
a critical aspect of the proof of Proposition 6 is the fact that
LOCR superchannels are allowed for free, so that the sym-
metrizing twirling superchannel can be used. In the unassisted
setting, we cannot use twirling because it is an LOCR super-
channel and thus not allowed for free.

Recall again that the identity channel id𝑑
𝐴→𝐵

possesses the
unitary covariance symmetry in (65). Considering this leads
to the following proposition:

Proposition 7 The optimization problems in (155) and (157),
for the error in simulating the identity channel id𝑑

𝐴→𝐵
, simplify

as follows:

𝑒LOCR (N𝐴̂→𝐵̂) = 𝑒
𝐹
LOCR (N𝐴̂→𝐵̂) (161)

= 1 − sup
P
𝐸𝐹 (N𝐴̂→𝐵̂;P), (162)

where the optimization in (162) is over every LOCR protocolP,
defined as

P B {(𝑝(𝑦), E𝑦
𝐴→𝐴̂

,D𝑦

𝐵̂→𝐵
)}𝑦 , (163)

and 𝐸𝐹 (N𝐴̂→𝐵̂;P) ∈ [0, 1] is the entanglement fidelity:

𝐸𝐹 ≡ 𝐸𝐹 (N𝐴̂→𝐵̂;P) (164)

B
∑︁
𝑦

𝑝(𝑦) Tr[Φ𝑑𝐴𝐵 (D
𝑦

𝐵̂→𝐵
◦ N𝐴̂→𝐵̂ ◦ E𝑦

𝐴→𝐴̂
) (Φ𝑑𝐴𝐵)] .

(165)

An optimal LOCR simulation channel for both 𝑒LOCR (N𝐴̂→𝐵̂)
and 𝑒𝐹LOCR (N𝐴̂→𝐵̂) has the following form:

𝐸𝐹 id𝑑𝐴→𝐵 + (1 − 𝐸𝐹 ) D𝐴→𝐵, (166)

where D𝐴→𝐵 is the channel defined in (69). Thus, the LOCR
simulation channel applies the identity channel id𝑑

𝐴→𝐵
with

probability 𝐸𝐹 and the randomizing channelD𝐴→𝐵 with prob-
ability 1 − 𝐸𝐹 .

Proof. See Appendix D of [43].

B. LOCR simulation of general point-to-point channels

We can use a point-to-point channel N𝐴̂→𝐵̂, along with
LOCR, to simulate another general point-to-point channel
O𝐴→𝐵. In this case, the simulation channel Õ𝐴→𝐵 has the
form

Õ𝐴→𝐵 B Υ( 𝐴̂→𝐵̂)→(𝐴→𝐵) (N𝐴̂→𝐵̂), (167)

whereΥ( 𝐴̂→𝐵̂)→(𝐴→𝐵) is an LOCR superchannel, as discussed
in Section V C. The simulation error when employing a specific
LOCR superchannel Υ( 𝐴̂→𝐵̂)→(𝐴→𝐵) is

𝑒LOCR (O𝐴→𝐵,N𝐴̂→𝐵̂,Υ( 𝐴̂→𝐵̂)→(𝐴→𝐵) )

B
1
2




O𝐴→𝐵 − Õ𝐴→𝐵





�
, (168)

and the simulation error minimized over all possible LOCR
superchannels is

𝑒LOCR (O𝐴→𝐵,N𝐴̂→𝐵̂) B
inf

Υ∈LOCR
𝑒LOCR (O𝐴→𝐵,N𝐴̂→𝐵̂,Υ( 𝐴̂→𝐵̂)→(𝐴→𝐵) ). (169)

Again we can alternatively consider quantifying simulation
error in terms of the channel infidelity:

𝑒𝐹LOCR (O𝐴→𝐵,N𝐴̂→𝐵̂,Υ( 𝐴̂→𝐵̂)→(𝐴→𝐵) )

B 1 − 𝐹 (O𝐴→𝐵, Õ𝐴→𝐵), (170)

𝑒𝐹LOCR (O𝐴→𝐵,N𝐴̂→𝐵̂) B
inf

Υ∈LOCR
𝑒𝐹LOCR (O𝐴→𝐵,N𝐴̂→𝐵̂,Υ( 𝐴̂→𝐵̂)→(𝐴→𝐵) ). (171)

VII. SDP LOWER BOUNDS ON THE PERFORMANCE OF
APPROXIMATE QUANTUM ERROR CORRECTION BASED

ON TWO-PPT EXTENDIBILITY AND NON-SIGNALING
CONSTRAINTS

A. SDP lower bound on the error in LOCR simulation of a
channel

Using (169) to calculate the simulation error, we again en-
counter an intractable optimization task. Employing the same
idea from Section IV A, we enlarge the set of LOCR super-
channels to two-PPT-extendible, non-signaling superchannels
(abbreviated henceforth as 2PENS). As noted in Section V G,
the 2PENS set strictly contains the set of LOCR superchan-
nels. Thus, we can obtain a lower bound on the simulation
error by optimizing over all 2PENS superchannels. We define
the simulation error under 2PENS superchannels as

𝑒2PENS (O𝐴→𝐵,N𝐴̂→𝐵̂) B inf
Υ∈2PENS

1
2




O𝐴→𝐵 − Õ𝐴→𝐵





�
,

(172)
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where Õ𝐴→𝐵 is defined in (167).
As a result of the strict containment

LOCR ⊂ 2PENS, (173)

we have the relation

𝑒2PENS (O𝐴→𝐵,N𝐴̂→𝐵̂) ≤ 𝑒LOCR (O𝐴→𝐵,N𝐴̂→𝐵̂). (174)

We now state that the simulation error in (172) can be cal-
culated by means of a semi-definite program.

Proposition 8 The simulation error in (172) can be calculated
by means of the following semi-definite program:

𝑒2PENS (O𝐴→𝐵,N𝐴̂→𝐵̂) = inf
𝜇≥0,𝑍𝐴𝐵≥0,

𝑀𝐴𝐴̂𝐵̂1𝐵1 𝐵̂2𝐵2
≥0

𝜇, (175)

subject to

𝜇𝐼𝐴 ≥ 𝑍𝐴, (176)

𝑍𝐴𝐵 ≥ ΓO
𝐴𝐵

− Tr𝐴̂𝐵̂1
[𝑇𝐴̂𝐵̂1

(ΓN
𝐴̂𝐵̂1

)𝑀𝐴𝐴̂𝐵̂1𝐵1
/𝑑𝐵̂], (177)

Tr𝐴̂𝐵1𝐵2
[𝑀𝐴𝐴̂𝐵̂1𝐵1 𝐵̂2𝐵2

] = 𝐼𝐴𝐵̂1 𝐵̂2
, (178)

(F𝐵̂1 𝐵̂2
⊗ F𝐵1𝐵2 ) (𝑀𝐴𝐴̂𝐵̂1𝐵1 𝐵̂2𝐵2

) = 𝑀𝐴𝐴̂𝐵̂1𝐵1 𝐵̂2𝐵2
, (179)

Tr𝐵2 [𝑀𝐴𝐴̂𝐵̂1𝐵1 𝐵̂2𝐵2
] =

𝑀𝐴𝐴̂𝐵̂1𝐵1

𝑑𝐵̂
⊗ 𝐼𝐵̂2

, (180)

𝑇𝐴𝐴̂(𝑀𝐴𝐴̂𝐵̂1𝐵1 𝐵̂2𝐵2
) ≥ 0, (181)

𝑇𝐵̂2𝐵2
(𝑀𝐴𝐴̂𝐵̂1𝐵1 𝐵̂2𝐵2

) ≥ 0, (182)

Tr𝐴̂[𝑀𝐴𝐴̂𝐵̂1𝐵1 𝐵̂2𝐵2
] = 𝐼𝐴 ⊗ 1

𝑑𝐴
Tr𝐴̂𝐴[𝑀𝐴𝐴̂𝐵̂1𝐵1 𝐵̂2𝐵2

] . (183)

The objective function and the first two constraints follow
from the semi-definite program in (46) for the normalized
diamond distance. The quantity

Tr𝐴̂𝐵̂1
[𝑇𝐴̂𝐵̂1

(ΓN
𝐴̂𝐵̂1

)𝑀𝐴𝐴̂𝐵̂1𝐵1
/𝑑𝐵̂] (184)

in (177) is the Choi operator of the serial composition of
the available channel N𝐴̂→𝐵̂ and the superchannel with cor-
responding bipartite channel K𝐴𝐵̂1→𝐴̂𝐵1

, with Choi operator
𝑀𝐴𝐴̂𝐵̂1𝐵1

/𝑑𝐵̂, where K𝐴𝐵̂1→𝐴̂𝐵1
is the marginal channel of

M𝐴𝐵̂1 𝐵̂2→𝐴̂𝐵1𝐵2
, defined as

K𝐴𝐵̂1→𝐴̂𝐵1
(𝜔𝐴𝐵̂1

)
B Tr𝐵2 [M𝐴𝐵̂1 𝐵̂2→𝐴̂𝐵1𝐵2

(𝜔𝐴𝐵̂1
⊗ 𝜋𝐵̂2

)] . (185)

The constraint in (178) forces M𝐴𝐵̂1 𝐵̂2→𝐴̂𝐵1𝐵2
to be trace pre-

serving, that in (179) forces M𝐴𝐵̂1 𝐵̂2→𝐴̂𝐵1𝐵2
to be permuta-

tion covariant with respect to the 𝐵 systems (see (75)), and
that in (180) forces M𝐴𝐵̂1 𝐵̂2→𝐴̂𝐵1𝐵2

to be the extension of the
marginal channel K𝐴𝐵̂1→𝐴̂𝐵1

. The final two PPT constraints
are equivalent to the C-PPT-P constraints in (76) and (77),
respectively.

B. SDP lower bound on the error of approximate quantum
error correction

The semi-definite program in Proposition 8 can be simplified
for the special case N𝐴→𝐵 = id𝑑

𝐴→𝐵
by exploiting the unitary

covariance symmetry of the identity channel, as stated in (65).

Proposition 9 The semi-definite program in Proposition 8, for
the special case of simulating the identity channel id𝑑

𝐴→𝐵
,

simplifies as follows for 𝑑 ≥ 3:

𝑒2PENS (N𝐴̂→𝐵̂)
= 𝑒𝐹2PENS (N𝐴̂→𝐵̂) (186)

= 1 − sup
𝑀+ ,𝑀− ,𝑀 0≥0,

𝑀 1 ,𝑀 2 ,𝑀 3∈LinOp

Tr
[
𝑇𝐴̂𝐵̂1

(ΓN
𝐴̂𝐵̂1

)
𝑃 𝐴̂𝐵̂1 𝐵̂2

𝑑𝐵̂

]
, (187)

subject to [
𝑀0 + 𝑀3 𝑀1 − 𝑖𝑀2

𝑀1 + 𝑖𝑀2 𝑀0 − 𝑀3

]
≥ 0, (188)

𝐼𝐵̂1 𝐵̂2
= Tr𝐴̂[𝑀

+
𝐴̂𝐵̂1 𝐵̂2

+ 𝑀−
𝐴̂𝐵̂1 𝐵̂2

+ 𝑀0
𝐴̂𝐵̂1 𝐵̂2

], (189)

𝑀 𝑖

𝐴̂𝐵̂1 𝐵̂2
= F𝐵̂1 𝐵̂2

(𝑀 𝑖

𝐴̂𝐵̂1 𝐵̂2
) ∀𝑖 ∈ {+,−, 0, 1} , (190)

𝑀
𝑗

𝐴̂𝐵̂1 𝐵̂2
= −F𝐵̂1 𝐵̂2

(𝑀 𝑗

𝐴̂𝐵̂1 𝐵̂2
) ∀ 𝑗 ∈ {2, 3} , (191)

𝑃 𝐴̂𝐵̂1 𝐵̂2
=

1
𝑑𝐵̂

Tr𝐵̂2
[𝑃 𝐴̂𝐵̂1 𝐵̂2

] ⊗ 𝐼𝐵̂2
, (192)

𝑄 𝐴̂𝐵̂1 𝐵̂2
=

1
𝑑𝐵̂

Tr𝐵̂2
[𝑄 𝐴̂𝐵̂1 𝐵̂2

] ⊗ 𝐼𝐵̂2
, (193)

𝑃 𝐴̂𝐵̂1 𝐵̂2
B

1
2𝑑

[
𝑑𝑀0 + 𝑀1 +

√︁
𝑑2 − 1𝑀2

]
, (194)

𝑄 𝐴̂𝐵̂1 𝐵̂2
B

1
2𝑑


2𝑑

(
𝑀+
𝐴̂𝐵̂1 𝐵̂2

+ 𝑀−
𝐴̂𝐵̂1 𝐵̂2

)
+ 𝑑𝑀0

𝐴̂𝐵̂1 𝐵̂2

−𝑀1
𝐴̂𝐵̂1 𝐵̂2

−
√
𝑑2 − 1𝑀2

𝐴̂𝐵̂1 𝐵̂2

 ,
(195)

𝑇𝐴̂

(2𝑀+
𝐴̂𝐵̂1 𝐵̂2

𝑑 + 2
+ 𝑀0

𝐴̂𝐵̂1 𝐵̂2
+ 𝑀1

𝐴̂𝐵̂1 𝐵̂2

)
≥ 0, (196)

𝑇𝐴̂

(2𝑀−
𝐴̂𝐵̂1 𝐵̂2

𝑑 − 2
+ 𝑀1

𝐴̂𝐵̂1 𝐵̂2
− 𝑀0

𝐴̂𝐵̂1 𝐵̂2

)
≥ 0, (197)[

𝐺0 + 𝐺3 𝐺1 − 𝑖𝐺2

𝐺1 + 𝑖𝐺2 𝐺0 − 𝐺3

]
≥ 0, (198)

𝐺0
𝐴̂𝐵̂1 𝐵̂2

B 𝑇𝐴̂

(
𝑀+ + 𝑀− + 𝑀

0 − 𝑑𝑀1

2

)
, (199)

𝐺1
𝐴̂𝐵̂1 𝐵̂2

B 𝑇𝐴̂

(
𝑀+ − 𝑀− + 𝑀

1 − 𝑑𝑀0

2

)
, (200)

𝐺2
𝐴̂𝐵̂1 𝐵̂2

B

√︃
3
(
𝑑2 − 1

)
2

𝑇𝐴̂(𝑀
2
𝐴̂𝐵̂1 𝐵̂2

), (201)
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𝐺3
𝐴̂𝐵̂1 𝐵̂2

B

√︃
3
(
𝑑2 − 1

)
2

𝑇𝐴̂(𝑀
3
𝐴̂𝐵̂1 𝐵̂2

), (202)

𝑇𝐴̂𝐵̂1

(
𝑑𝑀+

𝑑 + 2
+ 𝑀− + 𝑑𝑀

0 − 𝑀1 −
√
𝑑2 − 1𝑀2

2

)
≥ 0, (203)

𝑇𝐴̂𝐵̂1

(
𝑀+ + 𝑑𝑀−

𝑑 − 2
− 𝑑𝑀0 − 𝑀1 −

√
𝑑2 − 1𝑀2

2

)
≥ 0, (204)

[
𝐸0 + 𝐸3 𝐸1 − 𝑖𝐸2

𝐸1 + 𝑖𝐸2 𝐸0 − 𝐸3

]
≥ 0, (205)

𝐸0
𝐴̂𝐵̂1 𝐵̂2

B
𝑇𝐴̂𝐵̂1

(
𝑑 (𝑀+ − 𝑀−) + 𝐿0

2

)
𝑑2 − 1

, (206)

𝐸1
𝐴̂𝐵̂1 𝐵̂2

B
𝑇𝐴̂𝐵̂1

(
−𝑀+ + 𝑀− + 𝐿1

2

)
𝑑2 − 1

, (207)

𝐸2
𝐴̂𝐵̂1 𝐵̂2

B
𝑇𝐴̂𝐵̂1

(𝑀+ − 𝑀− + 𝐿2

2 )
√
𝑑2 − 1

, (208)

𝐸3
𝐴̂𝐵̂1 𝐵̂2

B 𝑇𝐴̂𝐵̂1
(𝑀3

𝐴̂𝐵̂1 𝐵̂2
), (209)

𝐿0 B
(
𝑑2 − 2

)
𝑀0 + 𝑑𝑀1 + 𝑑

√︁
𝑑2 − 1𝑀2, (210)

𝐿1 B 𝑑𝑀0 +
(
2𝑑2 − 3

)
𝑀1 −

√︁
𝑑2 − 1𝑀2, (211)

𝐿2 B 𝑀1 − 𝑑𝑀0 −
√︁
𝑑2 − 1𝑀2, (212)

Tr𝐴̂[2𝑀+]
(𝑑 + 2) (𝑑 − 1) =

Tr𝐴̂[2𝑀+ + 𝑀0 + 𝑀1]
𝑑 (𝑑 + 1) , (213)

Tr𝐴̂[2𝑀−]
(𝑑 − 2) (𝑑 + 1) =

Tr𝐴̂[2𝑀− + 𝑀0 − 𝑀1]
𝑑 (𝑑 − 1) , (214)

1
2

Tr𝐴̂[𝑀
0] =

𝑑𝐼𝐵̂1 𝐵̂2
+ Tr𝐴̂[𝑀− − 𝑀+ − 𝑀1]
𝑑

(
𝑑2 − 1

) , (215)

1
2

Tr𝐴̂[𝑀
1] =

−𝐼𝐵̂1 𝐵̂2
+ 𝑑 Tr𝐴̂[𝑀+ − 𝑀− + 𝑀1]

𝑑
(
𝑑2 − 1

) , (216)

Tr𝐴̂[𝑀
2] = Tr𝐴̂[𝑀

3] = 0. (217)

For the case of 𝑑 = 2, the SDP is the same, with the exception
that we set 𝑀−

𝐴̂𝐵̂1 𝐵̂2
= 0 and the constraints in (197), (204),

and (214) are not used.

Proof. See Appendix E of [43].

We now provide expository remarks similar to Remarks 4
and 5, as well as an additional remark about approximate
quantum error correction assisted by one-way LOCC.

Remark 10 The SDP in the statement of Proposition 9 is
rather lengthy, and so we provide some explanation here. The
constraint in (188) and the constraints 𝑀+, 𝑀−, 𝑀0 ≥ 0 in

(187) correspond to the constraint of complete positivity in
(175) (i.e., 𝑀𝐴𝐴̂𝐵̂1𝐵1 𝐵̂2𝐵2

≥ 0). The constraint in (189) cor-
responds to the constraint of trace preservation in (178). The
constraints in (190)–(191) correspond to the constraint of per-
mutation covariance in (179). The constraints in (192)–(193)
correspond to the non-signaling constraint in (180). The con-
straints in (196)–(198) correspond to the PPT constraint in
(181), and the constraints in (203)–(205) correspond to the
PPT constraint in (182). Finally, the constraints in (213)–
(217) correspond to the non-signaling constraint in (183).

Remark 11 Even though the number of constraints in the SDP
above appears to increase when compared with the SDP from
Proposition 8, we note that the runtime of the SDP above is
significantly reduced because the size of the matrices involved
in each of the constraints is much smaller. This is the main
advantage that we get by incorporating unitary covariance
symmetry of the identity channel.

If we only optimized over the larger set of two-extendible
chanels instead of the set of two-PPT-extendible non-signaling
channels, the SDP would be much simpler, given by (187)–
(193). However, optimizing over the smaller set of two-PPT-
extendible non-signaling channels gives tighter bounds at a
marginal increase in computational cost, and thus we also
include the PPT constraints in (196)–(198) and (203)–(205)
and the non-signaling constraints in (213)–(217).

Remark 12 By excluding the non-signaling constraints in
(213)–(217), the resulting SDP gives a lower bound on the
simulation error of approximate quantum error correction as-
sisted by a one-way LOCC channel. That is, the resulting SDP
gives a lower bound on

𝑒1WL (N𝐴̂→𝐵̂) B inf
Λ∈1WL

𝑒(N𝐴̂→𝐵̂,Λ( 𝐴̂→𝐵̂)→(𝐴→𝐵) ), (218)

where

𝑒1WL (N𝐴̂→𝐵̂,Λ( 𝐴̂→𝐵̂)→(𝐴→𝐵) ) B
1
2




id𝑑𝐴→𝐵 −Λ( 𝐴̂→𝐵̂)→(𝐴→𝐵) (N𝐴̂→𝐵̂)




�
, (219)

with Λ a one-way LOCC superchannel, as defined in (123).
By the same reasoning given for Proposition 6, this error is
no different if we use infidelity instead of normalized diamond
distance.

VIII. EXAMPLES

In this section we present some numerical results from our
semi-definite programs. To perform these numerical calcula-
tions, we employed CVXPY [50, 51] with the interior point
optimizer MOSEK. All of our Python source code is available
with the arXiv posting of our paper.

A. Approximate teleportation and quantum error correction
using special mixed states and channels

First, we provide bounds on the performance of approximate
teleportation (i.e., on the error in simulating an identity chan-



15

nel), when using a particular set of imperfect resource states. In
the past, PPT constraints alone (i.e., without two-extendibility)
have been used to obtain bounds on objective functions involv-
ing an optimization over the set of LOCC channels (see, e.g.,
[15, 31–35]). We can also use them to obtain a lower bound
on the simulation error of approximate teleportation. By fol-
lowing techniques similar to those in [15, 31], we find the
following SDP gives a lower bound on the simulation error of
approximate teleportation:

1 − sup
𝐾𝐴̂𝐵̂≥0


Tr[𝐾 𝐴̂𝐵̂𝜌 𝐴̂𝐵̂] :
𝐾 𝐴̂𝐵̂ ≤ 𝐼 𝐴̂𝐵̂,

−𝐼 𝐴̂𝐵̂ ≤ 𝑑 𝑇𝐵̂
(
𝐾 𝐴̂𝐵̂

)
≤ 𝐼 𝐴̂𝐵̂

 . (220)

See Appendix F of [43] for a proof. We note here that PPT con-
straints are implied by the two-PPT-extendibility constraints
given in Proposition 3, so that the optimal value in (220) is not
smaller than the optimal value in (187). We also note that an
SDP bearing some similarities to that in (220) was presented
in [52], but that SDP calculates a bound on one-shot distillable
entanglement, whereas the SDP in (220) calculates a bound
on the error of approximate teleportation.

In the following example, we show that two-PPT-
extendibility gives strictly stronger bounds than PPT con-
straints alone, when optimizing over one-way LOCC channels.
Consider the following mixed state:

𝑝 Φ𝐴̂𝐵̂ + (1 − 𝑝) 𝜋 𝐴̂ ⊗ 𝜎𝐵̂, (221)

where 𝑝 ∈ [0, 1], Φ𝐴̂𝐵̂ is the maximally entangled state of
Schmidt rank three, 𝜋 𝐴̂ is the maximally mixed state of di-
mension three, and 𝜎𝐵̂ is a randomly selected 3 × 3 density
matrix. Using the state in (221) as the resource for approx-
imate teleportation, lower bounds on the simulation error, as
given by two-PPT-extendibility, are stronger than those given
by PPT constraints alone, for small values of 𝑝. Figure 1
compares the lower bounds obtained for different values of 𝑝
and randomly generated 𝜎𝐵̂. The state 𝜎𝐵̂ that was used to
generate data for Figure 1 is as follows:


0.140 0.043 + 0.024𝑖 −0.143 + 0.028𝑖

0.043 − 0.024𝑖 0.222 −0.257 + 0.006𝑖
−0.143 − 0.028𝑖 −0.257 − 0.006𝑖 0.638

 .
(222)

We note here that the SDP calculations depend on the choice
of 𝜎𝐵̂. For certain choices of 𝜎𝐵̂, the difference in the errors
disappears for all values of 𝑝, e.g., when 𝜎𝐵̂ is a maximally
mixed state. It still remains open to determine the full set of
resource states for which two-PPT-extendibility gives stronger
bounds on the simulation error. Regardless, this example
demonstrates that including two-PPT-extendibility constraints
can improve the bounds obtained using PPT constraints alone.

One can consider the same comparison for approximate
quantum error correction. Using similar techniques, we derive
the following SDP lower bound on the simulation error of
approximate quantum error correction for a channel N𝐴̂→𝐵̂,
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FIG. 1. Comparison between two-PPT-extendiblity and PPT con-
straints for bounding the simulation error in approximate teleporta-
tion, when using the resource state 𝑝 Φ

𝐴̂𝐵̂
+ (1− 𝑝) 𝜋

𝐴̂
⊗ 𝜎

𝐵̂
, where

𝑝 ∈ [0, 1]. The plot shows that two-PPT-extendibility gives slightly
better bounds for 𝑝 < 0.5. For higher values of 𝑝, the two curves
become indistinguishable.

when using PPT and non-signaling constraints only:

1 − sup
𝐾𝐴̂𝐵̂ ,𝜎𝐴̂≥0


Tr[𝐾 𝐴̂𝐵̂ΓN

𝐴̂𝐵̂
] :

𝐾 𝐴̂𝐵̂ ≤ 𝜎𝐴̂ ⊗ 𝐼𝐵̂,
𝑑2 Tr𝐴̂[𝐾 𝐴̂𝐵̂] = 𝐼𝐵̂,

𝜎𝐴̂ ⊗ 𝐼𝐵̂ ± 𝑑 𝑇𝐵̂ (𝐾 𝐴̂𝐵̂) ≥ 0,
Tr[𝜎𝐴̂] = 1.


. (223)

See Appendix G of [43] for a proof. We note here that essen-
tially the same SDP was given in [31] (up to a transpose in the
objective function). The SDP in [31] resulted from taking the
error criterion to be in terms of entanglement fidelity when
transmitting the maximally entangled state. Our proof here
clarifies that essentially the same SDP results when using nor-
malized diamond distance or channel infidelity as the error cri-
terion. The second constraint in the SDP (𝑑2 Tr𝐴̂[𝐾 𝐴̂𝐵̂] = 𝐼𝐵̂)
corresponds to the non-signaling condition. Following the
same reasoning as in Remark 10, removing this constraint
leads to an SDP that provides a lower bound on the simula-
tion error of approximate quantum error correction assisted by
one-way LOCC.

The example state in (221) can also serve as the Choi state
of a channel, due to the fact that the reduced state of system 𝐴̂

is maximally mixed. In Figure 2, we plot the lower bound in
(223) and the lower bound from Proposition 9 for the corre-
sponding channel. Additionally, we also plot the simulation
errors that result from excluding the non-signaling constraints
from both SDPs. The resulting SDPs provide lower bounds
on the errors in approximate quantum error correction assisted
by one-way LOCC using PPT and two-PPT-extendibility, re-
spectively. Figure 2 demonstrates that the lower bound in
Proposition 9 improves upon (223) for one-way LOCC simu-
lation but provides no advantage for LOCR simulation. The
difference between all four curves becomes very small (less
than 10−3) for higher values of 𝑝.
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FIG. 2. Comparison between two-PPT-extendiblity and PPT con-
straints for bounding the simulation error in approximate quantum
error correction when using the resource channel with Choi state
𝑝 Φ

𝐴̂𝐵̂
+ (1 − 𝑝) 𝜋

𝐴̂
⊗ 𝜎

𝐵̂
, where 𝑝 ∈ [0, 1] and 𝜎

𝐵̂
is defined in

(222). PPTNS and 2PENS are the curves obtained using the SDPs
in (223) and Proposition 9, respectively, giving lower bounds on the
error in approximate quantum error correction. There is no signficant
difference in the numercial values obtained from these two condi-
tions. PPT and 2PE are the curves obtained using the same SDPs but
without the non-signaling constraints, hence, giving lower bounds on
the error in one-way LOCC-assisted approximate error correction.

B. Three-dimensional approximate teleportation using
two-dimensional special mixed states

In this example, we investigate the simulation error in ap-
proximate teleportation when a lower dimensional imperfect
resource state is used to teleport a higher dimensional state.
We use a similar resource state as in (221):

𝜌 𝐴̂𝐵̂ = 𝑝 Φ𝐴̂𝐵̂ + (1 − 𝑝) 𝜋 𝐴̂ ⊗ 𝜎′
𝐵̂
, (224)

but the maximally entangled and maximally mixed states are
two-dimensional. Additionally, 𝜎′

𝐵̂
was generated randomly

and is taken as

𝜎′
𝐵̂
=

[
0.287 −0.347 + 0.132𝑖

−0.347 − 0.132𝑖 0.713

]
. (225)

In Figure 3, we plot the bounds on the simulation error versus
the parameter 𝑝 in (224), when using the 2PE constraints given
in Proposition 3 and the PPT constraints given in (220). We
also compare this to the bounds on the simulation error when
using a three-dimensional special mixed state instead. The
resource state used is the same as the state in (221), but 𝜎𝐵̂ is
chosen as follows:

0.287 −0.347 + 0.132𝑖 0
−0.347 − 0.132𝑖 0.713 0

0 0 0

 , (226)

in order to provide a closer comparison with the two-
dimensional case in (224).
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FIG. 3. Comparison between bounds on the simulation error for ap-
proximate teleportation when using a two-dimensional special mixed
state and a three-dimensional special mixed state as a resource to
teleport a two dimensional state. The resource state is of the form
𝑝 Φ

𝐴̂𝐵̂
+ (1 − 𝑝) 𝜋

𝐴̂
⊗ 𝜎

𝐵̂
, where 𝑝 ∈ [0, 1] and 𝜎

𝐵̂
is chosen to

be (225) when 𝑑
𝐵̂
= 2 and (226) when 𝑑

𝐵̂
= 3. The bounds on the

simulation error are calculated using both the 2PE constraints given
in Proposition 3 and the PPT constraints given in (220). There is no
significiant difference in the numerical values obtained from both the
constraints for 𝑑

𝐵̂
= 2.

We see from Figure 3 that a two-dimensional resource state
with a small amount of imperfection can outperform a three-
dimensional resource with higher amounts of imperfection for
the task of three-dimensional approximate teleportation. We
also notice that the 2PE constraints and the PPT constraints
give the same error values when 𝑑𝐵̂ = 2, but give different
values when 𝑑𝐵̂ = 3, as seen in Figure 1 as well.

C. Approximate quantum error correction for depolarizing
channels

In this example, we investigate the simulation error in ap-
proximate error correction for qubit and qutrit depolarizing
channels, with the goal of simulating a qubit identity channel.
The Choi state of the depolarizing channel D𝐴̂→𝐵̂ is given by

ΦD
𝐴̂𝐵̂
B 𝑝 Φ𝐴̂𝐵̂ + (1 − 𝑝) 𝜋 𝐴̂𝐵̂, (227)

where 𝑝 ∈ [0, 1], Φ𝐴̂𝐵̂ is the maximally entangled state, and
𝜋 𝐴̂𝐵̂ is the maximally mixed state. For a qubit depolarizing
channel, 𝑑 𝐴̂=𝑑𝐵̂ = 2, and for a qutrit depolarizing channel,
𝑑 𝐴̂ = 𝑑𝐵̂ = 3.

In Figure 4, we plot the lower bounds on the simulation
error of approximate error correction for a depolarizing chan-
nel, when simulating a qubit identity channel. The bounds are
obtained using two-PPT-extendibility conditions from Propo-
sition 9 and using PPT conditions from (223). The bounds
are calculated for the case of one-way LOCC assistance, i.e.,
by ignoring the non-signaling constraints in (213)–(217) and
𝑑2 Tr𝐴̂[𝐾 𝐴̂𝐵̂] = 𝐼𝐵̂ in (223), respectively. We notice from Fig-
ure 4 that two-PPT-extendibility constraints give better bounds
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FIG. 4. Lower bounds on the simulation error of approximate quan-
tum error correction for depolarizing channels when simulating a
two-dimensional identity channel. The bounds are calculated using
the SDP in Proposition 9 with two-PPT-extendibility constraints, and
the SDP in (223) with PPT constraints only, for different dimensions
of the depolarizing channel (𝑑

𝐵̂
= 2 and 𝑑

𝐵̂
= 3). There is no sig-

nificant difference in the numerical values obtained from PPT and
two-PPT-extendibility constraints for 𝑑

𝐵̂
= 2. The bounds are ob-

tained without the non-signaling constraints, hence, corresponding to
one-way LOCC simulation.

compared to PPT constraints when using a three-dimensional
depolarizing channel to simulate a two-dimensional identity
channel. However, both the constraints give the same bounds
when a two-dimensional depolarizing channel is used to sim-
ulate a two-dimensional identity channel. This was also ob-
served in the numerical calculations of [18].

We also note that a three-dimensional depolarizing chan-
nel provides little advantage over a two-dimensional depolar-
izing channel for simulating two-dimensional identity chan-
nel. Therefore, a two-dimensional depolarizing channel with
slightly higher value of the parameter 𝑝 can outperform a
three-dimensional depolarizing channel with a lower value of
𝑝, for the purpose of approximating a qubit identity channel.

D. Approximate teleportation using the two-mode squeezed
vacuum state

Two-mode squeezed vacuum states are easily prepared in
laboratories and have entanglement content that can be pa-
rameterized by 𝜆 ≥ 0. They are defined as [53]√︁

1 − 𝜆2
∞∑︁
𝑛=0

𝜆𝑛 |𝑛〉 |𝑛〉 . (228)

They are used as the resource state in continuous-variable
quantum teleportation [54] and have also been used as a
resource in experiments on teleportation of photonic qubits
[4, 55]. Here we investigate bounds on the performance of
qudit teleportation with the two-mode squeezed vacuum state
as the resource state.
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FIG. 5. Lower bounds on the simulation error of unideal telportation
when using the two-mode squeezed vacuum state as the resource
state. The parameter 𝜆 = tanh(𝑟), where 𝑟 is the squeezing parameter.
Larger values of 𝜆 correspond to larger values of entanglement, which
leads to a smaller error in simulating the identity channel.

The parameter 𝜆 denotes the strength of squeezing applied
(𝜆 = tanh(𝑟), where 𝑟 is the squeezing parameter). For low
squeezing strength, we can ignore higher order terms in 𝜆

without inducing much error. We use the following state in
our calculations for qudit teleportation:

1
√

1 + 𝜆2 + 𝜆4

2∑︁
𝑛=0

𝜆𝑛 |𝑛〉 |𝑛〉 . (229)

However, for higher values of the squeezing strength (i.e., 𝜆
near to one), we do not expect this approximation to be good.

Figure 5 demonstrates that the simulation error increases
with 𝑑 for fixed values of 𝜆, where 𝑑 is the dimension of the
target identity channel that the protocol is simulating. The
simulation error does not go to zero for 𝑑 > 3, even for
maximally entangled qutrit resource states. Therefore, pro-
jecting this trend further, we conclude that simulation of a
higher-dimensional identity channel with a lower-dimensional
resource state incurs larger errors in the simulation. We note
here that we observed no difference in the values calculated by
the SDPs in (223) and Proposition 9.

E. Approximate quantum error correction for a three-level
amplitude damping channel

Here we present an example of our bound for the simu-
lation error in approximate error correction. We consider a
three-level amplitude damping channel, as defined in [22], to
demonstrate our SDP in Proposition 9.

The channel can be defined using three decay parameters,
labeled by the states involved: (𝛾10, 𝛾21, 𝛾20). See Figure 6 for
a depiction. The Kraus operators for the three-level amplitude
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FIG. 6. Action of an amplitude damping channel on a three-level
quantum system. The parameters 𝛾10, 𝛾20, and 𝛾21 represent decay
rates between the respective levels.

damping channel are as follows:

𝐾0 B


1 0 0
0

√︁
1 − 𝛾10 0

0 0
√︁

1 − 𝛾21 − 𝛾20

 , (230)

𝐾1 B


0 √

𝛾10 0
0 0 0
0 0 0

 , (231)

𝐾2 B


0 0 0
0 0 √

𝛾21
0 0 0

 , (232)

𝐾3 B


0 0 √

𝛾20
0 0 0
0 0 0

 , (233)

so that its action on an input state 𝜌 is given by
∑3
𝑖=0 𝐾𝑖𝜌𝐾

†
𝑖
.

For the map to be completely positive and trace preserving,
the decay parameters must obey{

0 ≤ 𝛾𝑖 ≤ 1 ∀𝑖 ∈ {10, 21, 20}
𝛾21 + 𝛾20 ≤ 1

. (234)

Figure 7 plots the lower bound on the simulation error as a
function of the decay parameter 𝛾10, for various values of the
other decay parameters. We notice in Figure 7 that the simula-
tion error monotonically increases with the decay parameters.
As all three decay parameters approach zero, the channel be-
comes close to an identity channel. This is reflected in the plot
as the simulation error also approaches zero. We note here
that we observed no difference in the values calculated by the
SDPs in (223) and Proposition 9.

F. Comparison of computational runtimes

In this section we present the average runtime to execute
various SDPs listed in this work. The calculations were per-
formed on a computer with 16 GB RAM and an Intel i7-9750H
processor.

All calculations that generated the entries in Table I em-
ployed the two-dimensional maximally entangled state. For
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FIG. 7. Lower bounds on the simulation error of approximate quan-
tum error correction when using a three-level amplitude damping
channel. The parameters 𝛾10, 𝛾21, and 𝛾20 are decay parameters for
the labeled states. The dimension 𝑑 of the target identity channel is
set equal to the input and output dimensions (equal to three) of the
amplitude-damping channel.

SDP Runtime (seconds)

Teleportation unsimplified 2PE 253.03
Teleportation 2PE 10.34
Teleportation PPT 0.19

Error Correction unsimplified 147.75
Error Correction unsimplified 2PENS 158.22

Error Correction 2PENS 5.65
Error Correction 2PE 5.38

Error Correction PPTNS 0.20
Error Correction PPT 0.16

TABLE I. Comparing the runtime of different SDPs presented in this
work. 2PE refers to two-PPT-extendibility constraints and NS indi-
cates that non-signaling conditions were used. All calculations are
done for two-dimensional resource and simulating two-dimensional
identity channel.

approximate teleportation, the input is the maximally entan-
gled state of Schmidt rank two, and for approximate error
correction, the input is the qubit identity channel. The simu-
lated channel is also the qubit identity channel in all cases. The
runtimes were calculated using time.time() function in Python.
They are only presented for the purpose of comparison and can
vary moderately.

All runtimes are listed in Table I, where We see that the un-
simplified SDP for approximate teleportation with two-PPT-
extendibility, given in Proposition 2, is around 25 times slower
than the simplified SDP for the same in Proposition 3. The
SDP for the simulation error in approximate teleportation us-
ing PPT constraints that is given in (220) is several times faster
than when two-PPT-extendibility constraints are employed, but
we have seen in the examples that two-PPT-extendibility con-
straints can give tighter lower bounds on the simulation error.
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Similarly, we see that the unsimplified SDP for approximate
error correction when using two-PPT-extendibility constraints
(Proposition 8) is several times slower than the simplified SDP
given in Proposition 9. Again, the SDP with PPT constraints
given in (223) is much faster than the SDP with two-PPT-
extendibility constraints, but we have demonstrated examples
for which two-PPT-extendibility constraints provide a tigher
lower bound on the simulation error.

IX. CONCLUSION

In this work, we developed a technique for quantifying the
performance of approximate teleportation using an arbitrary
resource state, by establishing a lower bound on the error in
simulating a teleportation protocol that uses an imperfect re-
source state and one-way LOCC channels. We accomplished
this by combining the notions of C-PPT-P channels and two-
extendible channels to give a relaxation of the set of one-way
LOCC channels, as was done previously in [18] but for ap-
proximate quantum error correction. We significantly reduced
the complexity of our semi-definite program by exploiting the
unitary covariance symmetry of the simulated identity chan-
nel. This symmetry is useful in semi-definite programs and
can have much wider applications with respect to dynamical
resource theories. As an example, we evaluated our lower
bound when using a two-mode squeezed vacuum state as the
resource state for approximate teleportation.

We used related techniques to quantify the performance
of approximate quantum error correction. Incorporating two-
PPT-extendibility constraints again led to computationally fea-
sible semi-definite optimizations for evaluating lower bounds
on the error in approximate quantum error correction. We
further exploited the unitary covariance symmetry of the iden-
tity channel to give a less computationally taxing semi-definite
program to calculate the error. Finally, we demonstrated some
calculations for amplitude damping channels as the resource
channels.

The SDPs in this work provide computational support to on-
going experimental research in quantum information by pro-
viding tools to analyse available resources and identify valu-

able states and channels.
Several directions for future work remain open:

1. We have only considered two-extendible channels; in-
corporation of 𝑘-extendible channels for 𝑘 > 2 into our
semi-definite optimization could offer tighter bounds on
the measures we have described. The recent work of
[56] might be helpful for addressing this problem. The
notion of two-PPT-extendible channels is interesting in
its own right via its connection with one-way LOCC
channels.

2. It would also be interesting to find semi-definite con-
straints on one-way LOCC and LOCR channels, beyond
those presented here, which include 𝑘-extendibility,
PPT, and non-signaling.

3. One could also try to find semi-definite tightenings of
one-way LOCC and LOCR, which would lead to upper
bounds on the simulation errors.

4. The paper [15] shows that PPT constraints are sufficient
to determine the exact simulation error in bidirectional
teleportation for certain special states. Future work can
identify a class of resource states that saturate the er-
ror bound using two-PPT-extendibility constraints, e.g.,
states that are PPT but two-unextendible. Such a class
of states can offer insight not only in the study of tele-
portation protocols, but also to entanglement of states
and channels.
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Appendix A: Proof of Equation (12)

We provide a proof of (12) here. Consider that

Tr𝐵′
1
◦N𝐴𝐵1→𝐴′𝐵′

1

= Tr𝐵′
1𝐵2 ◦(N𝐴𝐵1→𝐴′𝐵′

1
⊗ P 𝜋

𝐵2
) (A1)

= Tr𝐵′
1𝐵

′
2
◦M𝐴𝐵1𝐵2→𝐴′𝐵′

1𝐵
′
2
◦ P 𝜋

𝐵2
(A2)

= Tr𝐵′
1𝐵

′
2
◦F𝐵′

1𝐵
′
2
◦M𝐴𝐵1𝐵2→𝐴′𝐵′

1𝐵
′
2
◦ F𝐵1𝐵2 ◦ P 𝜋

𝐵2
(A3)

= Tr𝐵′
1𝐵

′
2
◦M𝐴𝐵1𝐵2→𝐴′𝐵′

1𝐵
′
2
◦ P 𝜋

𝐵1
◦ id𝐵1→𝐵2 (A4)

= Tr𝐵′
1
◦N𝐴𝐵1→𝐴′𝐵′

1
◦ P 𝜋

𝐵1
◦ Tr𝐵2 ◦ id𝐵1→𝐵2 (A5)

= Tr𝐵′
1
◦N𝐴𝐵1→𝐴′𝐵′

1
◦ R 𝜋

𝐵1
. (A6)

The first equality follows because P 𝜋
𝐵2

is a preparation channel
that prepares the maximally mixed state 𝜋𝐵2 on system 𝐵2, and
then we trace it out. The second equality follows by using the
non-signaling property in (11). The third equality follows from
permutation covariance of the channel M𝐴𝐵1𝐵2→𝐴′𝐵′

1𝐵
′
2

(i.e.,
the assumption that (10) holds). The fourth equality follows
because F𝐵′

1𝐵
′
2

is a unitary channel, so that

Tr𝐵′
1𝐵

′
2
◦F𝐵′

1𝐵
′
2
= Tr𝐵′

1𝐵
′
2
. (A7)

Additionally, we used the fact that

F𝐵1𝐵2 ◦ P 𝜋
𝐵2

= P 𝜋
𝐵1

◦ id𝐵1→𝐵2 , (A8)

where id𝐵1→𝐵2 is an identity channel that transforms system
𝐵1 to 𝐵2. The fifth equality again invokes the non-signaling
property in (11). The last equality follows because

P 𝜋
𝐵1

◦ Tr𝐵2 ◦ id𝐵1→𝐵2 = R 𝜋
𝐵1
. (A9)

That is, Tr𝐵2 ◦ id𝐵1→𝐵2 is equivalent to Tr𝐵1 , so that this action
combined with P 𝜋

𝐵1
realizes a replacer channel.
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