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Abstract—We demonstrate that exceptional points of degen-
eracy (EPDs) are obtained in two coupled waveguides without
resorting to gain and loss. We show the general concept that
modes resulting from a proper coupling of forward and backward
waves exhibit EPDs of order two and that there the group velocity
vanishes. We verify our insight by using coupled mode theory
and also by fullwave numerical simulations of light in a dielectric
slab coupled to a grating, when one supports a forward wave
whereas the other (the grating) supports a backward wave. We
also demonstrate how to realize a photonic indirect bandgap in
guiding systems supporting a backward and a forward wave,
show its relations to the occurrence of EPDs, and offer a design
procedure.

Index Terms—Exceptional point of degeneracy; Coupled mode
theory; Parity time symmetry; Degenerate band edge.

I. INTRODUCTION

An EPD is a point in the parameter space of a system
at which the system’s eigenvalues and eigenvectors coalesce
[1]-[4]. The term exceptional point (EP) and the associated
perturbation theory where discussed in the well known Kato’s
book in 1966 [4]. The phenomenon of degeneracy of both
eigenvalues and eigenvectors (polarization states), studied
here, is a stronger degeneracy compared to the traditional
degeneracy of only two eigenvalues.

Non-Hermitian Hamiltonian can possess entirely real spec-
tra when the system obeys parity-time (PT) symmetry condi-
tion [5]. A system is said to be PT symmetric if the PT operator
commutes with the Hamiltonian [6], [7], where PT operator
applies a parity reflection and time reversal [5]. When the
time reversal operator is applied to physical systems, energy
changes from damping to growing and vice versa [8]. Based on
this simple concept, two symmetrical coupled waveguides with
balanced gain and loss satisfy PT symmetry [9]-[11], where
the individual application of each of the space or time reversal
would swap the gain and loss, therefore the simultaneous
application of space and time reversal operator to the system
would end up with the same system. The point separating the
complex and real spectra regimes of PT-symmetric Hamilto-
nians has been called exceptional point (EP) [4], also known
as transition point. Here, beside the mathematical aspects, we
stress the role of degeneracy, as implied also in [12], hence
include the D’ in the EPD acronym.

In this paper, we present a class of two coupled waveguides
where EPDs exist without resorting to the presence of gain
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Fig. 1. (a) Coupling between two electromagnetic waves whose complex
amplitudes are A and B. Conditions that lead to EPDs are obtained by
introducing proper coupling between: (b) two waveguides with PT symmetry
where the two media have gain and loss supporting exponentially growing
and attenuating waves; (c) two waveguides with forward and backward
propagating waves, without resorting to PT symmetry (i.e., in this case the
wav guides do not have gain and loss). The waves with black arrows represent
the directions of phase propagation. The blue and red arrows represent the
directions of power flow.

and loss. By using coupled mode theory [13], [14], we
show that two coupled waveguides, where one waveguide
supports forward propagation (i.e., where the phase and power
propagate in the same direction) whereas the other one sup-
ports backward propagation (i.e., where the phase and power
propagate in opposite direction), experience a phase transition
as in the PT-symmetric case. We show the general conditions
for modes resulting from coupling two coupled waves to
exhibit an EPD looking at both the degenerate eigenvalues and
eigenvectors. We show that the coupling of two waves, that
carry power in opposite directions, leads to an EPD and we
explain how this results in the vanishing of the group velocity
of the degenerate mode. We illustrate the concepts in a simple
system made of two coupled waveguides, i.e., a dielectric
slab coupled to a grating, when one supports a forward wave
whereas the other (the grating) supports a backward wave.
Other general conditions that lead to exceptional degeneracies
of two modes in uniform waveguide were studied in [15] using
a transmission line approach. Finally, we relate the occurrence
of EPDs to the presence of a photonic indirect bandgap.

II. SECOND ORDER EPD BY MIXING TWO WAVES

We consider two coupled electromagnetic waves as shown
in Fig. 1(a). These two waves are described by the complex
time-domain notation



a(r,t) = A(z) fa(p)e™, (1)
b(r,t) = B(z) fy(p)e™*,

where A(z) and B(z) are the complex amplitudes of waves
along the z direction, r = p + 2z, and p is the transverse
coordinate. f,(p) and fy(p) are the normalized modal field
profile in the transverse direction for each mode. When the
two waves are uncoupled, i..e., when their waveguides are far
from from each other, the evolution of the amplitudes along the
z direction is simply descried by dA(z)/dz = —if/, A(z) and
dB(z)/dz = —if;B(z), where 3, and (3, are the uncoupled
propagation constants of each wave (that is also an eigenmode
of the structure since there is no coupling). The solutions are
A(z) = Agexp(—if.z) and B(z) = Bgexp(—if,z). The
power carried by each wave in the positive z direction is given
by pa(z) = | A(2)]? and py(z) = +|B(2)|* where the sign
depends on the type of the wave. The sign is positive when the
wave is forward, i.e., when the power is carried in the same
direction of wave propagation (i.e., when the phase and group
velocity have the same directions). The sign is negative when
the waves backward, i.e., when the phase propagates along the
positive z direction whereas the power flows in the negative
z direction (i.e., when the phase and group velocity have the
opposite directions).

When coupling is introduced to those two waves, the system
eigenmode is found by solving the spatial-evolution equation
that, based on coupled mode theory [13], [14], is given by
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where 3, and 8, are “perturbed” propagation constants for the
coupled system, and kp and kyp, are the coupling coefficients
between the two modes. The relation between k., and Ky,
is determined by applying the power conservation principle.
The total power carried in the coupled structure is p;(z) =
|A(2)|?+£|B(z)|? assuming wave A is forward wave, and wave
B to be either forward or backward, when taking the + or the
— sign, respectively. Thus, there are two possible scenarios:
(1) “codirectional coupling” when both waves carry power at
the same direction and (ii) “contradirectional coupling” when
the two waves carry power in the opposite direction [13].

When the system does not have gain and loss, conservation
of energy states that dp;(z)/dz = 0, and by using (2), one
finds that the constraint Re (AB* (kpq F £%,)) = 0 should
be satisfied. Therefore, we have ko, = kp, in case of
codirectional coupling where the two waves are forward, and
Kab = —KJ, in case of contradirectional coupling where one
wave is a forward and the other one is backward [13].

The mixing of the two waves constitutes what is called
the guiding system’s eigenmode (some call it “supermode”)
which is a weighted sum of the individual guided waves. The
eigenmode propagation constant is determined by solving the
characteristic equation of the coupled system in (2) assuming
the wave amplitudes to be in the form of [A(z), B(2)]T
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Fig. 2. The two wavenumbers of the guiding system versus the coupling
parameter ~, showing the existence of an EPD. Two cases are examined:
(a) coalescence of modes in PT-symmetrical waveguides, (b) coalescence of
modes obtained by coupling a forward wave (phase and group velocities have
the same direction) and a backward wave (phase and group velocities have
opposite directions). Both cases exhibit an EPD, represented by the bifurcation
point.

e~ which yields k% — k(B4 + Bb) + (BaBb — Kabkiva) = 0.
The characteristic equation has two solutions that are given by
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where K = |kq| and the indices n = 1,2 denote the
two modes of the coupled system. Furthermore, p = 1 and
p = 2 represent the case of codirectional and contradirectional
coupling, respectively. An EPD occurs when two eigenmodes

coalesce, i.e., k1 = ko = ke, with k. = (8o + ) /2.
This EPD occurs when 8, — 3, = 2r+/(—1)". Alternatively,
the condition is satisfied by setting x = k.,where k. =

(Ba—Bb)/ g2\/(—1)p>. At an EPD, the eigenvectors must
coalesce, and in this simple system their coalescence follows
from the coalescence of the eigenvalues. Indeed, the two eigen-
vectors are [ A,, B, ]T = [ 1, (kn — Ba)/Eab ]Tand it
is easy to see that they coalesce when k; = ko.

The group velocity of the eigenmode with wavenumber k,,
is determined as (assuming k,, to be purely real)

v _ 1 _ kn - ke
on dwkn N 2kndw (ﬂn + ﬂb) + 2dw (Baﬂb + (71);0 '%2()4.)
where d, = d/dw denotes the derivative with respect to

angular frequency w. It is clear from the expression that
vg,1,2 = 0 when ky = kp = ke,i.e., exactly at the EPD. Next,
we also show what happens near the EPD.

A. Codirectional coupling (Kap = KJ,)

For the case of codirectional coupling, p = 1, the EPD
condition is simplified to 5, — 8, = +2ix. The EPD condition
puts a constraint that the difference between the propagation
constants of the uncoupled waves has to be purely imaginary
in order to exhibit an EPD. Thus, we conclude that the EPD
can never be obtained for any value of the coupling parameter
k in the case of a lossless/gainless system. If we resort to a
PT symmetry, as in Fig. 1(b), where the system has balanced



gain and loss, we have 8, = 5y + i and B, = 5y — i, and
an EPD is obtained when o = s [9]-[11], [16], [17], and the
degenerate wavenumber is k. = .

For this case, the two propagation constants of the cou-
pled system in the vicinity of the EPD are k1o = 5y +
VK2 —a? and their derivatives are dyki2 = d,fBo £
(2kdy,k — 2ad, @) / (ko — k). This is also illustrated by de-
termining the eigenvector of the degenerate eigenmode from
(2) (for codirectional coupling case where p = 1) as

Ae 1 —ikez
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and one finds that the total power carried by the degen-
erate eigenmode is pi(z) = |A(2)]? — |Be(2)]? = 0
vanishes, in agreement with the vanishing of the group
velocity. In the vicinity of an EPD we have k1 = ko
and by neglecting the d, [, usually smaller than the other
term, the group velocities of the two modes are vg 192 =~
+ (ko — k1) / (2rdyk — 2ad,c) when K > K., i.e., where the
two eigenmodes are propagating with purely real wavenum-
bers. Therefore we conclude that near an EPD in a PT-
symmetric guiding system, the two modes of the coupled
system are phase-synchronized (k; = k2), i.e., with almost
identical phase velocity, but have opposite group velocity
(vg,1 = —wy4,2), which eventually results on having a wave
in the guiding structure with vanishing group velocity when
the system is exactly at the EPD.

At the EPD, the system matrix is not diagonalizable but
rather similar to a 2 X 2 Jordan matrix. The fields in the
two-waveguide system is represented using the degenerate and
generalized eigenvectors as

1 ; —tkez
) N ( —ije—iarg(rab) ) (ur — izug) e

0 —ikez
+ e_iarg(ﬁab)/ﬁe uze !
(6)

where uq1 and wo are proper coefficients that depend on the
system excitation and boundary conditions.

As an example, for a system with PT symmetry where the
uncoupled waveguides have, respectively, a growing wave with
Ba = 100+10¢ (1/m) and an attenuating wave with 3, = 100—
10¢ (1/m), an EPD is obtained when the coupling parameter
is kK = 10 1/m as shown in Fig. 2(a).

B. Contradirectional coupling (kqp = —K},)

We consider coupling between forward wave with
wavenumber 5, > 0 and vgq > 0 (vga = dufB.) and
backward wave with wavenumber 8, > 0 and vy, < 0
(vgp = duBp). The two propagating waves carry power in
opposite directions and therefore they exhibit contradirectional
coupling, we use p = 2 in Eq. (3). The EPD condition
(k1 = ko) for this case is simplified to 5, — 5, = £2k, which
means that the difference between the propagation constants
should be purely real to have an EPD, which is possible for
a lossless/gainless system. Therefore, the EPD condition for

this case is satisfied through the proper design of the coupling
parameters, i.e, when k = |5, — (Bp| /2 (we recall that x was
defined as purely real positive). This means that there are two
possible EPD conditions, 8, — 8y = 2k and B, — 8 = —2k,
that may both occur when varying frequency. At those two
frequencies one has 3, > [y and (B, > f,, respectively. A
more detailed discussion is provided later on when discussing
the indirect bandgap.

In the vicinity of an EPD, the two propagation constants of
the coupled system are given by Eq. (3), and the derivatives
of the two wavenumbers with respect to the angular frequency
are

1 (ﬂa - ﬂb) dw (ﬂa - ,Bb) — Zﬂdwli
2 (k2 — k1) '

1
dwk1,2 = idw (ﬂa + ﬂb)i
(7)

When k < ke, i.e., where the two eigenmodes are propagat-
ing with purely real wavenumbers, in the vicinity of an EPD
we have ki &~ ko and by neglecting the term d,, (8, + 5p)
with respect to the second one, the group velocities of the two
modes are

ko — k1
L (B = B) (ved — vyp ) — 2ndui

Therefore, we conclude that near an EPD, the coupled forward
and backward waves are synchronized in phase, i.e., k1 ~ ko
but have nearly opposite group velocity (vg 1 ~ —vg42), Which
eventually results in having a wave in the guiding structure
with vanishing group velocity when the system is exactly at
an EPD.

This is also illustrated by determining the eigenvector of the
degenerate eigenmode from (2) (for contradirectional coupling
case where p = 2) as

( Ae(z) ) _ < _e—ialrg(f-f,ab) >eik527 (9)

Be(2)

and one finds that the total power carried by the degenerate
eigenmode is p;(z) = |Ac(2)|? — |Be(2)|?> = 0 vanishes, in
agreement with the vanishing of the group velocity. At the
EPD, the system matrix is not diagonalizable but rather similar
to a 2 X 2 Jordan matrix. The fields in the two-waveguide
system is represented using the degenerate and generalized
eigenvectors as

_ 1
- 7efiarg(/<aab)

0
+ e—iarg(nab)/
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where u; and wug are proper coefficients that depend on the
system excitation and boundary conditions.

The two waveguides with contradirectional coupling are
schematically shown in Fig. 1(c) and the dispersion diagram
is in Fig. 2 where we see a forward wave with 8, = 110
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Fig. 3. Example of modal EPD of order 2 between a forward wave (phase
and group velocities have the same direction) and backward wave (phase and
group velocities have opposite directions). (a) Two coupled Si layers where the
top one supports a forward wave (in red) while the bottom one is periodically
corrugated to support a backward wave (positive phase velocity and negative
group velocity, in blue). The red and blue arrows represent the direction of
power flow. (b) Dispersion relation showing the propagating eigenmodes when
the two waveguides are uncoupled (dashed) and when the are coupled (solid).
The dispersion of modes in the coupled waveguides show the existence of two
EPDs. The blue and red colors of the curves are related to the power flow
directions. Note also that because two EPDs are found, an indirect bandgap
is present between the upper and lower branches that can be designed ad-hoc.
In the shown case we have Ake = keo — ke1 < 0.

(1/m) and backward wave with 5, = 90 (1/m), and the EPD
is obtained at k = k. = 100 (1/m) , where k. = 10 (1/m) as
shown in Fig. 2(b).

The contradirectional coupling case can be realized in
two possible scenarios: (i) two modes exist in two separate
waveguides where the first waveguide supports a forward wave
and the second waveguide supports a backward wave and the
coupling is introduced by bringing them near each other; (ii)
two modes exist in the same waveguide having periodicity
where the one wave (e.g., the forward) has the fundamental
Floquet harmonic equal to 81 = 5y and the other wave (e.g.,
the backward) has its 1st harmonic Floquet harmonic equal to
B2 = —Bo + 27/d, where d is the waveguide period, and the
EPD is only possible at the band edge 8y = 7/d. An example
belonging to the first scenario, where the EPD is found in
two coupled dielectric slab waveguides, is shown later on.
The second scenario instead exists in conventional periodic
waveguides and it is not further considered in this paper.

We present an example of a guiding system that supports
two waves carrying power in opposite directions and we show
that it exhibits two EPDs. Consider the guiding system made
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Fig. 4. Schematic of a dispersion diagram showing the indirect bandgap
that results from two EPDs based on contradirectional coupling. The red-
dashed line represents the wavenumber of the forward wave 3/, whereas the
blue-dashed line the one of the backward wave f3;, when the waveguides are
uncoupled. The coupling yields the two curves with two EPDs that are labeled
as EPD1 and EPD2. The indirect bandgap width is Aw;p. In the shown case
Ake = ke — ke1 > 0.

of a Si substrate (supporting the forward wave) coupled to a
Si grating waveguide as shown in Fig. 3(a), with dimensions
w=p=h =70 nm and d = 140 nm. Silicon is modeled
with a refractive index ng; = 3.45. We first show in Fig.
3(b) the dispersion of the two wavenumbers ), and 5; of
the two uncoupled waveguides (s — oo0) as red dashed
(uniform waveguide) and blue dashed (grating waveguide).
The figure shows that the structures support a forward wave
where the group velocity is positive vy , = 1/(dwf;,) > 0
and a backward wave where the group velocity is negative
vy = 1/(dwB;) < 0. In the same Fig. 3(b), we show
the dispersion of the two wavenumbers k; and ko of the
coupled guiding system, i.e., when the two waveguide are
close to each other with a gap of s = 70 nm. The dispersion
show the existence of two EPDs associated to a wavenumber
(momentum) displacement. The dispersion diagrams we show
are for modes with electric field polarized in the y direction.
The dispersion diagrams have been found by using the finite
element method-based eigenmode solver implemented in CST
Studio Suite, by numerically simulating only one unit cell
of the structure. The proposed condition allows to locate the
EPDs at band edges that are not necessarily at the center or at
the edge of a Brillioum zone, without using loss and gain. It
also shows the capability to engineer an indirect bandgap in
these simple structures.

III. INDIRECT BANDGAP IN THE CONTRADIRECTIONAL
CASE

In the contradirectional case where coupling occurs between
a forward and backward wave, as in Fig. 1(c), an indirect
bandgap is possible and we show here how it is formed.
Since in this case one wave is forward and one is backward,
the uncoupled propagation constants /3, and J3; have opposite
slopes as schematically shown in Fig. 4 (see also dashed
blue and red curves in Fig. 3(b)), and an analogous trend is
expected for the parameters 3, and J; of the coupled system.
By looking at the dispersion diagram shown in Fig. 4, the red-



dashed curve is the forward wave with wavenumber /3, (w) and
the blue-dashed curve is the backward wave with wavenumber
Bp(w). Assuming that the coupling it not so strong, one may
assume that (,(w) ~ £, (w) and fy(w) =~ f(w), at least
in trend, hence, in slope. The forward wave has positive
slope, vy = dw/dB, > 0, whereas the backward wave
has negative slope vy, = dw/df, < 0, and the dispersion
curves for 3, and [, versus frequency should intersect at some
frequency (8, = [) because one wavenumber is increasing
with frequency whereas the other is decreasing with frequency;
an example with a grating is illustrated in Fig. 3(b) while
a schematic is in Fig. 4. Let us approximate the dispersion
curves locally, in the frequency range of interest, as straight
lines, ie., Bu(w) =~ a + v, wandﬁb()~b+vqbw
Where now vy, and vy, are assumed to have the local fixed
value. Furthermore, assuming, for simplicity, that  is constant
within the frequency range of interest, one finds that EPDs
occurs at two angular frequencies we; and w.s such that
Ba(we1) = Bp(we1) = =2k and B4 (we2) — By (wez) = 2k, where
wel < Wea. Subtracting the previous two conditions leads to
the indirect bandgap determination

4K

—1 —1-
Vg,a = Vg

(11)

AwlB = We2 — Wel

Note that v‘l -, b > 0, hence Awrp > 0. The bandgap
width can be controlled by the slope of the two parameters
B, and (p; indeed, when vgé ~ -, b, the denominator of
(11) is small and the bandgap is very wide, vice versa, the
bandgap is narrow when vg}l is very different from —v;;.
If we consider the dispersion of the coupling term x, a more
complicated picture may arise that could be determined by the
reasoning just provided.

The degenerate wavenumbers at the two EPDs are k.1 =
(ﬂa(wel) + /Bb(wel)) /2 and ke,? = (Ba(weQ) + /gb(WEQ)) /2
Using the linear approximation formulas for the wavenum-
bers [,(w) and B,(w), one finds that k.; ~ [a + b +

vy 4+ v;;) We1]/2 and kep = [a+b+ (v;}l + v;;> wea]/2
. The difference between the two degenerate wavenumbers is

-1 -1
7’09’& il Vg Awrpg.
2

Therefore, it is necessary that vg_,; + v;; 2 0 in order to have
indirect bandgap. When v, ;| > |vg_i| we get ko > ke ,hence
Ak, > 0, i.e., the EPD that occurs at the smaller frequency
we1 occurs also at the smaller degenerate wavenumber k.; and
this condition is depicted in Fig. 4. When |v 1| < [v, ], we
get ke > keo, hence Ak, < 0, i.e., the EPD that occurs at the
smaller frequency w1 occurs at larger degenerate wavenumber
k.1 and this condition is depicted in Fig. 3(b). Indeed, by
looking at Fig. 3(b), one finds by naked eye that |v, 4|
|vg.5| » (absolute change with frequency of dashed red curve is
higher than the one of the dashed blue one), therefore |v 1| <
|v;;l resulting in k.1 > k.o according to (12) and the EPD at
lower frequency, around 420 THz, occurs at higher degenerate
wavenumber of k.; = 0.9727/d .

Ake = keg — kel

Q

12)

IV. CONCLUSION

We have demonstrated that EPDs are not only obtained in
PT-symmetric waveguides but they are also obtained in two
lossless and gainless waveguides when they support forward
and backward waves that are properly coupled. We have shown
a simple system that supports this condition made of a grating
(supporting a backward guided mode) coupled to a dielectric
layer (supporting the forward mode). We have elaborated that
the scheme discussed here exhibits a photonic indirect bandgap
that can be controlled by changing the group velocities of the
forward and backward modes along with the coupling coef-
ficient. Two conditions may occur: the bandgap is associated
either to a positive or negative momentum difference between
the two energy levels. The finding in this paper can be useful to
design systems with EPDs whose use is of growing importance
for enhancing light-matter interactions and nonlinear photonic
phenomena.
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