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We discover a pronounced temporal shift of the peak of an optical pulse upon total internal
reflection of the pulse from a sharp temporal boundary propagating in a homogeneous, isotropic,
weakly dispersive linear medium. We derive an analytical expression for this shift and juxtapose
the discovered effect to the spatial Goos-Hénchen shift occurring on reflection of a beam from an
interface separating two homogeneous, isotropic, conservative linear media. In particular, we show
that, in contrast to the spatial shift, the sign of the temporal shift is dictated by that of the group
velocity mismatch between the pulse and the temporal boundary, implying the possibility of a delay
or advancement of the pulse upon reflection. Our analytical results, which are in excellent agreement
with our numerical simulations, shed light on fundamental aspects of the interaction of wave packets

with temporal boundaries in material media.

PACS numbers:

The celebrated Goos—Héanchen (GH) effect corresponds
to a shift of the beam center relative to its geometrical-
optics prediction upon total internal reflection of a light
beam from a spatial boundary separating two homoge-
neous optical media [1]. The GH effect takes place in
frustrated total internal reflection as well [2, 3]. The sig-
nificance of the GH effect is twofold. On the one hand,
the GH shift heralds the wave nature of light and un-
derscores inadequacy of a purely geometrical-optics de-
scription of light beams in the situations involving light-
matter interactions. On the other hand, the GH effect is
germane to wave packets in material media of any nature.
Indeed, the optical GH effect [4, 5] has been discovered
and documented for an impressive variety of natural ma-
terials, including glasses [6], noble metals [7, 8], supercon-
ductors [9], nematic liquid crystals [10], graphene [11],
nonlinear materials [12, 13], as well as for metamateri-
als [14-17]. Besides photonics, the GH effect has been
discovered for wave packets in atom optics [18], electron
wave packets [19, 20], neutrons [21], spin waves [22], and
even quantized matter waves [23]. In addition, GH shifts
were observed in acoustics [24, 25] and are predicted to
occur in seismology [26].

While light-matter interactions at spatial interfaces
have been extensively studied, the behavior of light in
time-varying media has attracted attention only recently
[27, 28], triggered by the concept of a temporal bound-
ary (TB) [29] and the exploration of light transmission
and reflection through the TB [30]. To date, many of the
concepts and phenomena associated with light-matter in-
teractions at the spatial interface have been extended to
the time domain, including total internal reflection [31],
waveguides [32, 33], the effective medium theory [34],
anti-reflection coatings [35], Fabry-Perot cavities [36, 37],

photonic crystals [38-40], and Brewster angle [41]. In ad-
dition, anomalous light statistics associated with the TB
soliton formation [42], extreme energy transformations at
non-Hermitian TBs [43], and temporal aiming [44] have
been discovered that have no direct spatial analogues.

In this context, a fundamental question can be raised:
Does there exist a counterpart of a spatial GH effect tak-
ing place at the TB, and if so, what are the key parame-
ters of a time-varying medium supporting such an effect?

In this Letter, we show that even in the most basic
setting of a homogeneous, isotropic, weakly dispersive
linear medium, a pronounced temporal shift of the peak
of an optical pulse can occur upon total internal reflec-
tion (TIR) of the pulse from a sharp TB propagating in
such a medium. We refer to this phenomenon as a Goos-
Hénchen shift at a temporal boundary (GHSTB). In a
parameter regime accessible in typical silica-glass fibers,
the discovered GHSTB is much larger than its spatial
counterpart at the interface separating two homogeneous,
isotropic, lossless linear media. We also demonstrate that
unlike its spatial analogue in the same conditions, the
GHSTB can be either positive (delay) or negative (ad-
vancement) depending on the sign of the group velocity
mismatch between the pulse and the TB. We stress that
our results link two active areas of research: the physics
of wave-matter interactions at interfaces and photonics
of time-varying media.

As the GH effect at the TB is intimately related to
TIR, we start by ensuring that the conditions for tem-
poral TIR, elucidated in [31], are met. To this end, we
consider a sharp, step-like TB moving at a speed of vy in
a weakly dispersive linear medium. The TB introduces
a refractive index jump An(t) = Anf(t — t, — z/wvp),
where An and t, are the magnitude and temporal po-



sition of the jump, respectively, and (z) is the Heavi-
side step function. The envelope £ of the electric field
E(t,z) = &£(t, z)e?Poz=w0t) of a pulse with the carrier fre-
quency wg obeys a quasi-monochromatic wave equation,

10.E+iB10,E — 3 B20%E + ko Anb(t—ty— 2 /vy)E = 0, (1)

where 8, and (2 are the usual notations for the inverse
of the group velocity and its dispersion. Transforming to
the TB’s reference frame by changing variables as ( = z,
T=1t—1t, — z/vp, we arrive at

i0cE +iABOE — 1Ba02 € + koAnf(T)E =0.  (2)

Here AB; = B1—wv; ' is (inverse) group-velocity mismatch
between the pulse and the TB.

At this point, we clarify the distinct roles of group-
velocity dispersion and group-velocity mismatch in the
light-matter interaction at the TB. With this objective,
we make a gauge transformation, & = Ue!®*7t%0  and
choose v and « to eliminate the convective (linear) term
on the left side of Eq. (2), thereby reducing the latter to

i0cU — 120%.U + ko Anb(7)U =0, (3)

for v = —ABy1/B2 and o = AB?/26;. Eq. (3) is math-
ematically equivalent to the Schrédinger equation with
an effective potential barrier koAnf(7).We notice that in
the reference frame of the TB, the barrier is independent
of the spatial coordinate, thereby implying the existence
of the refractive index jump in time only. This jump is
independent of the group velocity mismatch. Hence the
latter cannot affect the energy distribution between the
transmitted and reflected waves, which is governed by the
interplay of the refractive-index jump and group-velocity
dispersion [45]. However, group-velocity mismatch does
affect kinematics of the reflected pulse, and hence the
magnitude of the GHSTB incurred during TIR of a rel-
atively long incident pulse at the TB.

Next, we seek plane-wave solutions to Eq. (3) in the
form

B eHa¢=i7) 4 ReilaC=2r7) 7 < (), 4
- Tei(qgfflt'r)’ 7 >0, ( )

where R and T are, in general, complex reflection and
transmission amplitudes and the subscripts ¢, r, and ¢
stand for incident, reflected and transmitted waves. In
the reference frame of the TB, the wave number ¢ is the
same for the three waves because translational invari-
ance implies linear momentum conservation in this ref-
erence frame. On substituting from Eq. (4) into (3) we
can determine the frequencies (relative to the carrier) of
the transmitted and reflected waves and by applying the
boundary conditions to the TB, we can find the complex
transmission and reflection amplitudes (see Supplemen-
tal Material [45] for details). We find that Q, = —; and
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FIG. 1: Qualitative behavior of the magnitude of the GHSTB
(solid blue curve) and maximum available bandwidth (dashed
red lines) as a function of AB1/B2. Dotted lines mark the
limiting values.

Q= /QF — Q2, where the critical frequency for TIR is
given by

ch =1/ 2kOAn/ﬁ2 (5)

It follows that any incident wave with the frequency
|9;] < Q. is totally internally reflected from the TB (be-
cause ); becomes purely imaginary). Moreover, it can
be shown [45] that the reflection amplitude is unimod-
ular such that Rpg = €% where the TIR phase is

given by
oTr(%) = Qarctan(\/m). (6)

For a pulse to undergo TIR, all frequency components
within its bandwidth Awp must satisfy the condition
|2;] < Awp, which translates to the constraint [45]

AWB é AWmax = ch - |Aﬁl/52| (7)

As a final step of our derivation, we Fourier synthesize all
frequency components of the pulse to infer that a totally
internally reflected pulse maintains its shape, acquires a
global phase shift, and, most important, exhibits a shift
of its center position given by the expression [45]

Atcusts = 00, ¢TIR|0,—Ap, /8, - (8)

On substituting from Eq. (6) into (8) we obtain, after
elementary algebra, the following elegant analytical ex-
pression for the GHSTB of the pulse:

2sign(Apy)
ATGHSTB =~y
ch - ABI /BQ
Prior to analyzing our main result, we note that the

validity of Eq. (9) requires that the reflected pulse shape
remain intact, which mathematically translates to [45]
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FIG. 2: Temporal and spectral evolution of a 6-ps-wide

Gaussian pulse undergoing TIR in a 200-m-long fiber using
B2 = 0.05 ps?/m, AB; = 0.25 ps/m, and koAn =1 m~*. The
bottom part compares intensity profile of the reflected pulse
to a pulse without the GHSTB.

Egs. (7), (9) and (10) determine the magnitude and sign
of the GHSTB and establish the range of applicability of
our main analytical result.

We notice that Eq. (9) predicts extremely large shifts
as |ApB1/P2] approaches the critical frequency. However,
the bandwidth of any reflected pulse shrinks to zero in
the same limit, as indicated by Eq. (7). It follows that
arbitrarily large values of the GHSTB are unattainable
in practice. We illustrate this point in Fig. 1, where we
sketch the magnitude of the GHSTB (solid curve) and
the maximum bandwidth Awpax (tilted dashed lines) as
functions of ApBy/fBs.

To provide a realistic estimate of the GHSTB, we
use the parameter values appropriate for optical fibers:
Ba = 0.05 ps?/m and AB; = 0.25 ps/m. We choose
koAn = 1 m™', which corresponds to a refractive-index
change at the TB of less than 1076 at Ay = 1 um. We
can infer at once from Eq. (9) that ArgusTp = 0.516 ps.
To verify our analytical result, we performed numerical
simulations based on Eq. (2) with an incident Gaussian
pulse of 6-ps FWHM at z = 0. The peak of the pulse
is initially ahead of the TB by 14 ps. Figure 2 shows
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FIG. 3: Temporal and spectral evolution of a 6-ps-wide Gaus-
sian pulse undergoing TIR under the conditions of Fig. 2
except for a change in the sign of group-velocity mismatch:
Apy = —0.25 ps/m.

the temporal and spectral evolution of the pulse under-
going TIR in a 200-m-long fiber. Note the large spectral
shift occurring around 50 m when the pulse hits the TB.
The bottom part compares the intensity profile of the
reflected pulse to a “mirrored” pulse, obtained by propa-
gating the incident pulse to the point of comparison with
the sign of group-velocity mismatch reversed. We can in-
fer from the figure that the peak of the reflected pulse is
indeed delayed relative to that of the mirror image. The
numerically evaluated delay of 0.524 ps agrees well with
our analytical prediction; we attribute a slight discrep-
ancy to numerical roundoff errors. The magnitude of the
GHSTB is 8.6% of the input pulse’s width. This value
should be contrasted to a tiny spatial GH shift (~ 1 pm)
occurring at a spatial interface separating two homoge-
neous linear media (< 1% of the beam width).

Next, it follows at once from Eq. (9) that the sign of
the GHSTB is governed by that of AfB;, implying that
the peak of the reflected pulse is either delayed or ad-
vanced in time, depending on whether the TB overtakes
the pulse, (AfB; > 0), or the pulse catches up to the
TB (A1 < 0). This situation stands in stark contrast



to the textbook GH shift at a spatial boundary between
two lossless isotropic media, which always corresponds
to a delay [46]. We note, though, that the sign of the
spatial GH shift can be altered if one of the media is
absorbing [47-49]), amplifying [50], or possesses spatial
dispersion [51].

To verify the dependence of the GHSTB on the sign of
the group-velocity mismatch, we show in Fig. 3 the evo-
lution of the same Gaussian pulse under identical con-
ditions to those in Fig. 2, except for the sign of group-
velocity mismatch: Ay = —0.25 ps/m. A comparison of
Figs. 2 and 3 reveals that the GHSTB flips sign as well, in
complete agreement with our predictions. We note that
the delay or advancement of the peak of the reflected
pulse is captured in the spectrum by a red or blue spec-
tral shift triggered by TIR. We also verified with numeri-
cal simulations the range of applicability of our analytical
results (see Fig.1 of the Supplemental material [45]) and
near independence of the GHSTB on the pulse shape—
see Fig. 2 of the Supplemental Material [45], where we
exhibit the spectral and temporal evolution for the TIR
of a secant hyperbolic pulse.

We observe that the GHSTB, visible in Figs. 2 and 3,
appears smaller relative to the width of the pulse, com-
pared to the value expected relative to the width of the
incident pulse. This is because the incident pulse broad-
ens before it arrives at the location where we compare
the reflected and “mirrored” pulses. In this connection,
we may inquire about the conditions under which the
relative GHSTB is maximized. We conjecture that the
incident pulse has to be delayed relative to the TB just
enough to ensure that the evolution of the incident and
reflected pulses is symmetric with respect to the point
of contact with the TB. Further numerical analysis re-
veals that we can maximize the GHSTB relative to the
width of the reflected pulse as a function of the dimen-
sionless quantity €2c,t,. For our numerical simulations,
we consider a linear medium with 3, = 0.05 ps?/m and
ABy = 0.3 ps/m. The refractive index jump at the TB
is such that kgAn = 1.79 m~'. The TB is delayed by
3.6 ps with respect to the peak of a Gaussian pulse of
2-ps FWHM. In Fig. 4, we exhibit the spectral and tem-
poral evolution of the optimized pulse under TIR and
compare the reflected and “mirrored” pulses at z = 24.2
m; the corresponding maximum GHSTB is 23% of the in-
cident pulse’s width. We can infer from Fig. 4 that such
a pronounced GHSTB corresponds to a rather symmet-
ric evolution (both in time and frequency) of the incident
pulse under TIR, thus validating our intuition.

Finally, we discuss how a sharp temporal boundary,
which is a prerequisite for the observation of the GH-
STB, can be engineered. Previous proposals relied, for
the most part [27, 31], either on generating a microwave
front with the aid of electro-optical modulation or on
producing a moving TB using cross-phase modulation
by a soliton-like pulse through the Kerr nonlinearity of
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FIG. 4: Optimization of the GHSTB. Temporal and spectral
evolution of a 2-ps-wide Gaussian pulse undergoing TIR in a
medium with 82 = 0.05 ps?/m, AB; = 0.3 ps/m, and koAn =
1.79 m~!. The bottom part compares intensity profile of the
reflected pulse to a pulse without the GHSTB.

the medium. Unfortunately, both approaches suffer from
potential drawbacks. The microwave front can only be
generated in a waveguide over a very limited axial dis-
tance, whereas creating a high-intensity kink-like profile
in a nonresonant medium can be a tall order, considering
relative weakness of the Kerr nonlinearity. To overcome
these hurdles, we propose to dope a fiber with resonant
impurities, such as atom defects or quantum dots, and
launch a quasi-continuous wave with its carrier frequency
close to the impurity resonance into the doped fiber. Pro-
vided the transverse (coherence) relaxation time of the
medium is much shorter than its longitudinal (population
inversion) relaxation time, an optical kink is naturally
formed over a short propagation distance for both homo-
geneously [52] and inhomogeneously [53] broadened col-
lection of impurities. This kink can serve as a sharp tem-
poral boundary for a weak probe pulse, whose frequency
is detuned far from the impurity resonance, through the
cross-phase modulation mediated by the Kerr nonlinear-
ity of the host medium. We stress that the advantage
of our proposal is in resonant enhancement of the index



change An. We also point out that the group velocity
mismatch can be controlled by adjusting either the probe
wavelength or the detuning from the impurity resonance.

In conclusion, we introduced the concept of a Goos-
Hénchen shift at a temporal boundary moving in a homo-
geneous, weakly dispersive linear medium. We have de-
rived a simple analytical expression for the GHSTB and
showed that its sign depends on the sign of group velocity
mismatch between the pulse and the temporal boundary.
Although, formally speaking, the mathematical expres-
sion for GHSTB, Eq. (8), in terms of the derivative of
a reflection coefficient with respect to frequency is remi-
niscent of a Newton—Wigner time delay, which occurs on
scattering of a pulse from interfaces [54-56] or structured
media [57], the discovered shifts are caused by TIR at a
TB. Thus, the physics of GHSTB is intimately linked
to the Goos-Hanchen effect at the temporal boundary.
Our results forge a link between the physics of GH effect
and photonics of time-varying media. Just as the spatial
GH effect has found numerous applications, from optical
heterodyne sensing [58] to the design of micrometer-size
surface-resonance waveguide devices [59], we anticipate
our results to open new avenues in the design and ma-
nipulation of time metamaterials. We note that measur-
ing the discovered GHSTBs presents an open challenge
at the moment. Facing this challenge will trigger novel
fundamental developments in photonics of time-varying
media.
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